Data-Constrained Assessment of Ocean Circulation Changes Since the Middle Miocene in an Earth System Model Katherine A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Summary of the Paleontology of the Santa Fe Group (Mio-Pliocene), North-Central New Mexico Barry S
New Mexico Geological Society Downloaded from: http://nmgs.nmt.edu/publications/guidebooks/30 Summary of the paleontology of the Santa Fe Group (Mio-Pliocene), north-central New Mexico Barry S. Kues and Spencer G. Lucas, 1979, pp. 237-241 in: Santa Fe Country, Ingersoll, R. V. ; Woodward, L. A.; James, H. L.; [eds.], New Mexico Geological Society 30th Annual Fall Field Conference Guidebook, 310 p. This is one of many related papers that were included in the 1979 NMGS Fall Field Conference Guidebook. Annual NMGS Fall Field Conference Guidebooks Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico. Free Downloads NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks. Copyright Information Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. -
Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3
Contents Episodes 149 September 2009 Published by the International Union of Geological Sciences Vol.32, No.3 Editorial 150 IUGS: 2008-2009 Status Report by Alberto Riccardi Articles 152 The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Middle Miocene) by F.J. Hilgen, H.A. Abels, S. Iaccarino, W. Krijgsman, I. Raffi, R. Sprovieri, E. Turco and W.J. Zachariasse 167 Using carbon, hydrogen and helium isotopes to unravel the origin of hydrocarbons in the Wujiaweizi area of the Songliao Basin, China by Zhijun Jin, Liuping Zhang, Yang Wang, Yongqiang Cui and Katherine Milla 177 Geoconservation of Springs in Poland by Maria Bascik, Wojciech Chelmicki and Jan Urban 186 Worldwide outlook of geology journals: Challenges in South America by Susana E. Damborenea 194 The 20th International Geological Congress, Mexico (1956) by Luis Felipe Mazadiego Martínez and Octavio Puche Riart English translation by John Stevenson Conference Reports 208 The Third and Final Workshop of IGCP-524: Continent-Island Arc Collisions: How Anomalous is the Macquarie Arc? 210 Pre-congress Meeting of the Fifth Conference of the African Association of Women in Geosciences entitled “Women and Geosciences for Peace”. 212 World Summit on Ancient Microfossils. 214 News from the Geological Society of Africa. Book Reviews 216 The Geology of India. 217 Reservoir Geomechanics. 218 Calendar Cover The Ras il Pellegrin section on Malta. The Global Stratotype Section and Point (GSSP) of the Serravallian Stage (Miocene) is now formally defined at the boundary between the more indurated yellowish limestones of the Globigerina Limestone Formation at the base of the section and the softer greyish marls and clays of the Blue Clay Formation. -
The Indication of Mid Miocene Climatic Optimum (MMCO) from Cibulakan Formation
1 The Indication of Mid Miocene Climatic Optimum (MMCO) from Cibulakan Formation, 2 Bogor Basin, Indonesia 3 R. Kapid1), W.D. Santoso1), B. Ikhsan1), M.A. Jambak2), and D.E. Irawan1)* 4 1) Department of Geology, Institut Teknologi Bandung, Indonesia. 5 2) Department of Geology, Trisakti University, Indonesia 6 *Correspondence author: Dasapta Erwin Irawan ([email protected] cc 7 [email protected]) 8 Abstract 9 Nannoplankton analyses have been proven to identify rapid climate shifts in sedimentary records. Here, 10 we took 58 samples from Early Miocene to Late Miocene sediments of Cibulakan Formation (Bogor 11 Basin, Indonesia), to evaluate climatic benchmarks for Middle Miocene Climate Optimum in the tropical 12 region. The Helicosphaera carteri and Umbilicosphaera jafari were counted to identify the salinity signal. 13 We identify seven-biostratigraphy zones of Cibulakan Fm, indicating the change of seawater temperature 14 and salinity. We identify that warmer temperature in Middle Miocene as the effect of MMCO. The 15 temperature increased until Late Miocene triggered by global increasing temperature at Pacific Ocean and 16 widely distributed flow of terrestrial water at North West Java Basin. 17 Keywords: Mid Miocene Climatic Optimum (MMCO), nannoplankton, temperature, salinity, Cibulakan 18 Formation 19 20 Introduction 21 Mid-Miocene Climatic Optimum (MMCO) was a global climatic event during Middle Miocene featuring 22 increasing global temperature (You et al., 2009; Hansen et al., 2003). The CO2 content in the atmosphere 1 23 increased with the increasing temperature during MMCO period. The impact of MMCO was widely 24 distributed and associated with 60C of temperature warming in the mid latitude region (Flower and 25 Kennet, 1994). -
Middle Miocene Paleoenvironmental Reconstruction of the Central Great Plains from Stable Carbon Isotopes in Large Mammals Willow H
University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Dissertations & Theses in Earth and Atmospheric Earth and Atmospheric Sciences, Department of Sciences 7-2017 Middle Miocene Paleoenvironmental Reconstruction of the Central Great Plains from Stable Carbon Isotopes in Large Mammals Willow H. Nguy University of Nebraska-Lincoln, [email protected] Follow this and additional works at: http://digitalcommons.unl.edu/geoscidiss Part of the Geology Commons, Paleobiology Commons, and the Paleontology Commons Nguy, Willow H., "Middle Miocene Paleoenvironmental Reconstruction of the Central Great Plains from Stable Carbon Isotopes in Large Mammals" (2017). Dissertations & Theses in Earth and Atmospheric Sciences. 91. http://digitalcommons.unl.edu/geoscidiss/91 This Article is brought to you for free and open access by the Earth and Atmospheric Sciences, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dissertations & Theses in Earth and Atmospheric Sciences by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. MIDDLE MIOCENE PALEOENVIRONMENTAL RECONSTRUCTION OF THE CENTRAL GREAT PLAINS FROM STABLE CARBON ISOTOPES IN LARGE MAMMALS by Willow H. Nguy A THESIS Presented to the Faculty of The Graduate College at the University of Nebraska In Partial Fulfillment of Requirements For the Degree of Master of Science Major: Earth and Atmospheric Sciences Under the Supervision of Professor Ross Secord Lincoln, Nebraska July, 2017 MIDDLE MIOCENE PALEOENVIRONMENTAL RECONSTRUCTION OF THE CENTRAL GREAT PLAINS FROM STABLE CARBON ISOTOPES IN LARGE MAMMALS Willow H. Nguy, M.S. University of Nebraska, 2017 Advisor: Ross Secord Middle Miocene (18-12 Mya) mammalian faunas of the North American Great Plains contained a much higher diversity of apparent browsers than any modern biome. -
Mammalia, Pinnipedia) from the Middle Miocene (Langhian) of Miste (The Netherlands
An early seal (Mammalia, Pinnipedia) from the Middle Miocene (Langhian) of Miste (The Netherlands) S. Schneider & K. Heissig Schneider, S. & Heissig, K. An early seal (Mammalia, Pinnipedia) from the Middle Miocene (Langhian) of Miste (The Netherlands). Scripta Geologica, 129: 151-158, 4 figs., Leiden, April 2005. Simon Schneider, Ludwig-Maximilians-Universität München, Department für Geo- und Umweltwissen- schaften, Sektion Paläontologie, Richard-Wagner-Str. 10, D-80333 München, Germany (cuspidaria@web. de); Kurt Heissig, Bayerische Staatssammlung für Paläontologie und Geologie, Richard-Wagner-Str. 10, D-80333 München, Germany ([email protected]). Key words — Miophoca, Pinnipedia, Middle Miocene, Miste, The Netherlands. A single, upper premolar tooth of a seal from the Miste mollusc bed (Miocene, middle Langhian: The Netherlands) is determined as an upper P3 of Miophoca cf. vetusta Zapfe. Fossils of this species and genus have to date only been reported from the Late Badenian (uppermost Langhian) of the Central Paratethys, at “Neudorf-Sandberg” (Devínská Nová Ves, Slovakia). This latter locality, however, is some two million years younger than the Miste Bed. The tooth from Miste represents the first evidence for the presence of the genus Miophoca in the North Sea Basin. Contents Introduction ..................................................................................................................................................................................... 151 Geological overview ............................................................................................................................................................... -
44.4. Late Tertiary Channel System in Northern Libya and Its Implications on Mediterranean Sea Level Changes
F. T. BARR, B. R. WALKER 44.4. LATE TERTIARY CHANNEL SYSTEM IN NORTHERN LIBYA AND ITS IMPLICATIONS ON MEDITERRANEAN SEA LEVEL CHANGES F. T. Barr and B. R. Walker, Oasis Oil Company of Libya, Inc., Tripoli, Libya ABSTRACT A large fossil drainage system of probable upper Miocene age is recognized along the northeastern flank of the Sirte Basin, northern Libya. The main channel has been traced for about 150 km eventually being lost under the sarir, just south of Qasr as Sahabi. It has cut into middle Miocene limestone to a depth of over 1300 feet. In this region the surface is near present sea level. It is postulated that the Sahabi drainage system is the result of an abrupt drop in Mediterranean sea level of at least 1300 feet, and probably more than 2000 feet, during the late Miocene. During the early Pliocene, the sea returned to a level about the same as, or a little less than, that just prior to the late Miocene regression. Other possible late Miocene drainage systems have been recorded in eastern Libya and the western Desert of Egypt; these may be related to the same sequence of late Tertiary events that affected a great portion of the eastern Mediterranean region. These Neogene geomorphic features of northeastern Africa, which have long been a perplexing problem, now fit well into an hypothesis which accommodates much of the new data obtained from drilling beneath the floor of the Mediterranean Sea. INTRODUCTION DESCRIPTION OF CHANNEL SYSTEM This channel system is recognized along the northeastern Geophysical crews prospecting for oil along the eastern flank of the Sirte Basin between latitude 29° to 30° North, margin of the Sirte Basin, northern Libya, during the late and longitude 20° 45' to 22° East. -
Evolutionary Paleoecology of the Maryland Miocene
The Geology and Paleontology of Calvert Cliffs Calvert Formation, Calvert Cliffs, South of Plum Point, Maryland. Photo by S. Godfrey © CMM A Symposium to Celebrate the 25th Anniversary of the Calvert Marine Museum’s Fossil Club Program and Abstracts November 11, 2006 The Ecphora Miscellaneous Publications 1, 2006 2 Program Saturday, November 11, 2006 Presentation and Event Schedule 8:00-10:00 Registration/Museum Lobby 8:30-10:00 Coffee/Museum Lobby Galleries Open Presentation Uploading 8:30-10:00 Poster Session Set-up in Paleontology Gallery Posters will be up all day. 10:00-10:05 Doug Alves, Director, Calvert Marine Museum Welcome 10:05-10:10 Bruce Hargreaves, President of the CMMFC Welcome Induct Kathy Young as CMMFC Life Member 10:10-10:30 Peter Vogt & R. Eshelman Significance of Calvert Cliffs 10:30-11:00 Susan Kidwell Geology of Calvert Cliffs 11:00-11-15 Patricia Kelley Gastropod Predator-Prey Evolution 11:15-11-30 Coffee/Juice Break 11:30-11:45 Lauck Ward Mollusks 11:45-12:00 Bretton Kent Sharks 12:00-12:15 Michael Gottfried & L. Compagno C. carcharias and C. megalodon 12:15-12:30 Anna Jerve Lamnid Sharks 12:30-2:00 Lunch Break Afternoon Power Point Presentation Uploading 2:00-2:15 Roger Wood Turtles 2:15-2:30 Robert Weems Crocodiles 2:30-2:45 Storrs Olson Birds 2:45-3:00 Michael Habib Morphology of Pelagornis 3:00-3:15 Ralph Eshelman, B. Beatty & D. Domning Terrestrial Vertebrates 3:15-3:30 Coffee/Juice Break 3:30-3:45 Irina Koretsky Seals 3:45-4:00 Daryl Domning Sea Cows 4:00-4:15 Jennifer Gerholdt & S. -
The PRISM4 (Mid-Piacenzian) Paleoenvironmental Reconstruction
Clim. Past, 12, 1519–1538, 2016 www.clim-past.net/12/1519/2016/ doi:10.5194/cp-12-1519-2016 © Author(s) 2016. CC Attribution 3.0 License. The PRISM4 (mid-Piacenzian) paleoenvironmental reconstruction Harry Dowsett1, Aisling Dolan2, David Rowley3, Robert Moucha4, Alessandro M. Forte5,6, Jerry X. Mitrovica7, Matthew Pound8, Ulrich Salzmann8, Marci Robinson1, Mark Chandler9,10, Kevin Foley1, and Alan Haywood2 1Eastern Geology and Paleoclimate Science Center, United States Geological Survey, Reston, VA 20192, USA 2School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK 3Department of the Geophysical Sciences, University of Chicago, Chicago, IL 60637, USA 4Department of Earth Sciences, Syracuse University, Syracuse, NY 13244, USA 5Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA 6GEOTOP, Université du Québec à Montréal, Montréal QC, H3C 3P8, Canada 7Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA 02138, USA 8Department of Geography, Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8ST, UK 9Center for Climate Systems Research at Columbia University, New York, NY, USA 10NASA Goddard Institute for Space Studies, New York, NY, USA Correspondence to: Harry Dowsett ([email protected]) Received: 16 March 2016 – Published in Clim. Past Discuss.: 21 March 2016 Revised: 22 June 2016 – Accepted: 23 June 2016 – Published: 13 July 2016 Abstract. The mid-Piacenzian is known as a period of rel- 1 Introduction ative warmth when compared to the present day. A compre- hensive understanding of conditions during the Piacenzian The Pliocene, specifically the mid-Piacenzian (3.264 to serves as both a conceptual model and a source for boundary 3.025 Ma), has been a focus of synoptic paleoclimate re- conditions as well as means of verification of global climate search for the past 25 years. -
Shorter Contributions to Paleontology, 1979
Shorter Contributions to Paleontology, 1979 GEOLOGICAL SURVEY PROFESSIONAL JPAPEK 1125-A-D Shorter Contributions to Paleontology, 1979 Western Hemisphere Cretaceous Itieriidae Gastropods By HEINZ A. KOLLMANN and NORMAN F. SOHL Ostracode Biostratigraphy of Pliocene and Pleistocene Deposits of the Cape Fear Arch Region, North and South Carolina By THOMAS M. CRONIN and JOSEPH E. HAZEL Miocene Mollusks of the Topsy Formation, Lituya District, Gulf of Alaska Tertiary Province, Alaska By LOUIE MARINCOVICH, JR. Variability in Trithyrodinium Drugg 1967 By FRED E. MAY and DON G. BENSON, JR. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1125-A-D UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1980 UNITED STATES DEPARTMENT OF THE INTERIOR CECIL D. ANDRUS, Secretary GEOLOGICAL SURVEY H. William Menard, Director Library of Congress catalog-card No. 79-600193 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 Stock Number 024-001-03248-1 CONTENTS [Letters designate the chapters] (A) Western Hemisphere Cretaceous Itieriidae Gastropods, by Heinz A. Kollmann and Norman F. Sohl (B) Ostracode Biostratigraphy of Pliocene and Pleistocene Deposits of the Cape Fear Arch Region, North and South Carolina, by Thomas M. Cronin and Joseph E. Hazel (C) Miocene Mollusks of the Topsy Formation, Lituya District, Gulf of Alaska Tertiary Province, Alaska, by Louie Marincovich, Jr. (D) Variability in Trithyrodinium Drugg 1967, by Fred E. May and Don G. Benson, Jr. CONVERSION FACTORS Metric unit Inch-Pound equivalent Metric -
Chapter 2 OLIGOCENE CHRONOSTRATIGRAPHY
Cushman Foundation Special Publication No. 46 p. 29-54, 2018 Chapter 2 OLIGOCENE CHRONOSTRATIGRAPHY AND PLANKTONIC FORAMINIFERAL BIOSTRATIGRAPHY: HISTORICAL REVIEW AND CURRENT STATE-OF-THE-ART William A. Berggren1,2, Bridget S. Wade3, and Paul N. Pearson4 1Department of Earth and Planetary Sciences, Busch Campus, Rutgers University, Piscataway, NJ 08854, U.S.A. 2Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, U.S.A. Email: [email protected] 3Department of Earth Sciences, University College London, Gower Street, London, WC1E 6BT, U.K. Email: [email protected] 4School of Earth and Ocean Sciences, Cardiff University, Main Building, Park Place, Cardiff, CF10 3AT, U.K. Email: [email protected] ABSTRACT We review past and recent advances in Oligocene from Chron C13r.0.14 to Subchron C6Cn.2n(o), chronostratigraphy (and its internal subdivisions) corresponding to astronomical cycles 84Ol-C13n to 58Ol- and geochronology, the so-called “missing” Oligocene C6Cn. It is currently subdivided into two (Rupelian and debate of the 1960s, and planktonic foraminiferal Chattian) ages/stages. The planktonic foraminiferal biostratigraphies of (sub)tropical and austral biostratigraphy is characterized by a 7-fold (sub) biogeographies. The Oligocene spans the interval tropical and 4-fold austral zonation, respectively. INTRODUCTION work) incorporates coverage of planktonic foraminiferal We present an overview of Oligocene taxa that extend above/beyond the Oligocene/Miocene chronostratigraphy and planktonic foraminiferal boundary we include the zonal biostratigraphy from biostratigraphy. We have divided this paper into mid-Miocene Zone M5/N8 to upper Eocene Zone E15. two parts: Part 1: in view of the rather complex and This paper has been accordingly prepared to serve as a colorful history that has characterized the Oligocene we background to, and framework for, the data presented consider it appropriate, and opportune, to provide an in this Atlas of Oligocene Planktonic Foraminifera. -
Boundary Conditions for the Middle Miocene Climate Transition (MMCT V1.0)
Geosci. Model Dev., 11, 1607–1626, 2018 https://doi.org/10.5194/gmd-11-1607-2018 © Author(s) 2018. This work is distributed under the Creative Commons Attribution 4.0 License. Boundary conditions for the Middle Miocene Climate Transition (MMCT v1.0) Amanda Frigola1, Matthias Prange1,2, and Michael Schulz1,2 1MARUM Center for Marine Environmental Sciences, University of Bremen, 28359 Bremen, Germany 2Faculty of Geosciences, University of Bremen, 28359 Bremen, Germany Correspondence: Amanda Frigola ([email protected]) Received: 12 July 2017 – Discussion started: 18 September 2017 Revised: 7 March 2018 – Accepted: 14 March 2018 – Published: 24 April 2018 Abstract. The Middle Miocene Climate Transition was char- tion is the increase in δ18O shown in benthic foraminiferal acterized by major Antarctic ice sheet expansion and global records (e.g., Lear et al., 2010; Shevenell et al., 2008; Hol- cooling during the interval ∼ 15–13 Ma. Here we present bourn et al., 2005). two sets of boundary conditions for global general circulation An increase in benthic foraminiferal δ18O reflects either models characterizing the periods before (Middle Miocene an increase in global ice volume, a decrease in bottom wa- Climatic Optimum; MMCO) and after (Middle Miocene ter temperature (BWT), or a combination of both. Differ- Glaciation; MMG) the transition. These boundary conditions ent studies using benthic foraminiferal Mg = Ca ratios (an in- include Middle Miocene global topography, bathymetry, and dependent proxy for BWT) to separate the global ice vol- vegetation. Additionally, Antarctic ice volume and geome- ume from the BWT signal in the benthic foraminiferal δ18O try, sea level, and atmospheric CO2 concentration estimates records conclude that both an increase in global ice volume for the MMCO and the MMG are reviewed. -
Desert Quartzite Solar Project Draft Plan Amendment Environmental
DESERT QUARTZITE SOLAR PROJECT DRAFT PLAN AMENDMENT/ENVIRONMENTAL IMPACT STATEMENT/ENVIRONMENTAL IMPACT REPORT APPENDIX T PRELIMINARY PALEONTOLOGICAL RESOURCE ASSESSMENT TECHNICAL REPORT PRELIMINARY PALEONTOLOGICAL RESOURCE ASSESSMENT TECHNICAL REPORT prepared in support of DESERT QUARTZITE SOLAR PROJECT Southeastern Riverside County, California Submitted to: Statistical Research, Inc. 2 1 West Stuart Avenue Post Office Box 390 Redlands, California 92373-0123 On behalfof Desert Quartzite, LLC 135 Main Street, 6th Floor San Francisco, California 94105 Submitted by: Robert E. Reynolds & E. Bruce Lander, Ph.D. Paleo Environmental Associates, Inc. 2248 Winrock Avenue Altadena, California 91001 -3205 626/797-9895 [email protected] PALEO ENVIRONME TAL ASSOCIATES. I CORPORATED 20 13- 13 March 2016 desert quartzite.doc PRELIMINARY PALEONTOLOGICAL RESOURCE ASSESSMENT TECHNICAL REPORT prepared in support of DESERT QUARTZITE SOLAR PROJECT Southeastern Riverside County, California submitted to: Statistical Research, Inc. 21 West Stuart Avenue Post Office Box 390 Redlands, California 92373-0123 on behalf of: Desert Quartzite, LLC 135 Main Street, 6th Floor San Francisco, California 94105 Submitted by: Robert E. Reynolds & E. Bruce Lander, Ph.D. Paleo Environmental Associates, Inc. 2248 Winrock Avenue Altadena, California 91001-3205 626/797-9895 [email protected] March 2016 PALEO ENVIRONMENTAL ASSOCIATES MANAGEMENT SUMMARY Statistical Research, Inc., on behalf of Desert Quartzite, LLC, retained Paleo Environmental Associates, Inc., to conduct a paleontological resource literature review, archival search, and preliminary paleontological resource assessment for the Desert Quartzite Solar Project (Project). The approximately 5,010-acre Project site is situated on Federal land (4,850 acres) with a 160-acre private parcel. The Project is located 0.5 mile south of Interstate 10 and 7.0 miles west-southwest of Blythe in southeastern Riverside County, southeastern California.