International Journal of Molecular Sciences Review Synthetic Biology on Acetogenic Bacteria for Highly Efficient Conversion of C1 Gases to Biochemicals 1,2, 1,2, 1,2 3 1,2 Sangrak Jin y , Jiyun Bae y, Yoseb Song , Nicole Pearcy , Jongoh Shin , Seulgi Kang 1,2, Nigel P. Minton 3 , Philippe Soucaille 3,4,5,6 and Byung-Kwan Cho 1,2,7,8,* 1 Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea;
[email protected] (S.J.);
[email protected] (J.B.);
[email protected] (Y.S.);
[email protected] (J.S.);
[email protected] (S.K.) 2 KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea 3 BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, University Park, The University of Nottingham, Nottingham NG7 2RD, UK;
[email protected] (N.P.);
[email protected] (N.P.M.);
[email protected] (P.S.) 4 Université de Toulouse, INSA, UPS, INP, LISBP, 31400 Toulouse, France 5 Institut National de la Recherche Agronomique (INRA), UMR 792, 31077 Toulouse, France 6 Centre National de la Recherche Scientifique (CNRS), UMR 5504, 31400 Toulouse, France 7 Innovative Biomaterials Center, Daejeon 34141, Korea 8 Intelligent Synthetic Biology Center, Daejeon 34141, Korea * Correspondence:
[email protected]; Tel.: +82-042-350-2660 These authors contributed equally to this work. y Received: 25 September 2020; Accepted: 13 October 2020; Published: 15 October 2020 Abstract: Synthesis gas, which is mainly produced from fossil fuels or biomass gasification, consists of C1 gases such as carbon monoxide, carbon dioxide, and methane as well as hydrogen.