Review Article Hookworm Infection
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human Ascariasis and Trichuriasis in Mazandaran Province, Northern Iran
Environmental Health Engineering and Management Journal 2017, 4(1), 1–6 doi 10.15171/EHEM.2017.01 http://ehemj.com Environmental Health H E M J Engineering and Management Journal Review Article Open Access Publish Free Geohelminthic: human ascariasis and trichuriasis in Mazandaran province, northern Iran Hajar Ziaei1, Fatemeh Sayyahi2, Mahboobeh Hoseiny3, Mohammad Vahedi4, Shirzad Gholami5* 1Associate Professor, Toxoplasmosis Research Center, Mazandaran University of Medical Sciences, Sari, Iran 2Medical Student, Research Committee, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran 3MSC Statistic, GIS Research Center, Mazandaran University of Medical Sciences, Sari, Iran 4MSC Microbiology, Faculty Member, Department of Microbiology, Mazandaran University of Medical Sciences, Sari, Iran 5Associate Professor, Molecular and Cell Biology Research Center, Department of Parasitology and Mycology, Mazandaran University of Medical Sciences, Sari, Iran Abstract Article History: Background: Ascariasis and trichuriasis are the most common intestinal geohelminthic diseases, and Received: 21 October 2015 as such they are significant in terms of clinical and public health. This study was done to determine Accepted: 8 January 2016 prevalence, status and geographic distribution patterns for Ascariasis and Trichuriasis. The study was ePublished: 5 February 2016 done in the period 1991-2014 in northern Iran using Aregis 9.2 software. Methods: This was a review study, using description and analysis, of geographical distribution of Ascaris and Trichuris relating to townships in Mazandran province, northern Iran, covering a 23-year period. Data were collected from a review of the relevant literature, summarized and classified using Arc GIS, 9.2 to design maps and tables. Results: Based on results presented in tables and maps, means for prevalence of Ascaris and Trichuris were divided into five groups. -
The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca Volvulus Excretory Secretory Products
pathogens Review The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products Luc Vanhamme 1,*, Jacob Souopgui 1 , Stephen Ghogomu 2 and Ferdinand Ngale Njume 1,2 1 Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; [email protected] (J.S.); [email protected] (F.N.N.) 2 Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon; [email protected] * Correspondence: [email protected] Received: 28 October 2020; Accepted: 18 November 2020; Published: 23 November 2020 Abstract: Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). Wewill mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). -
84364615004.Pdf
Biomédica ISSN: 0120-4157 ISSN: 2590-7379 Instituto Nacional de Salud Bolaños, Fernando; Jurado, Leonardo F.; Luna-Tavera, Rina L.; Jiménez, Jaime M. Abdominal angiostrongyliasis, report of two cases and analysis of published reports from Colombia Biomédica, vol. 40, no. 2, 2020, pp. 233-242 Instituto Nacional de Salud DOI: 10.7705/biomedica.5043 Available in: http://www.redalyc.org/articulo.oa?id=84364615004 How to cite Complete issue Scientific Information System Redalyc More information about this article Network of Scientific Journals from Latin America and the Caribbean, Spain and Journal's webpage in redalyc.org Portugal Project academic non-profit, developed under the open access initiative Biomédica 2020;40:233-42 Abdominal angiostrongyliasis in Colombia doi: https://doi.org/10.7705/biomedica.5043 Case report Abdominal angiostrongyliasis, report of two cases and analysis of published reports from Colombia Fernando Bolaños1,2, Leonardo F. Jurado3,4,5, Rina L. Luna-Tavera1, Jaime M. Jiménez1 1 Departamento de Patología, Hospital Universitario Hernando Moncaleano Perdomo, Neiva, Colombia 2 Departamento de Patología, Hospital Universitario Departamental de Nariño, Pasto, Colombia 3 Departamento de Patología y Laboratorios, Hospital Universitario Fundación Santa Fe de Bogotá, Bogotá, D.C., Colombia 4 Departamento de Microbiología, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, D.C., Colombia 5 Facultad de Medicina, Fundación Universitaria Sanitas, Bogotá, D.C., Colombia Abdominal angiostrongyliasis is a parasitic zoonosis, endemic in the American continent. Its etiological agent is Angiostrongylus costaricensis, a nematode whose definitive hosts are rats and other rodents and the intermediate hosts, slugs. Mammals acquire the infection by consuming vegetables contaminated with L3 larvae. -
Animal Parasites and Human Diseases
380 ANIMALS AND DISEASE ANIMAL PARASITES AND HUMAN DISEASES By Paul C. Beaver, Ph.D. Department of Tropical Medicine and Public Health, Tulane University School of Medicine P A1IASITES fall only roughly into the two directed to parasitic infections caused by categories implied in the title of this worms which, regardless of length of resi- discussion. While a few of them arc totally dence in the human body, do not reach full dependent upon htmman hosts, and some are reproductive maturity and are therefore not able to develop only in other animals, a diagnosable by the usual laboratory majority of the parasites commonly re- methods. It is of course the larval stages ferred to as “parasites of man” are in or immature adults that arc involve(! amid!, reality parasites of other animals.1 In the owing to their tendency to be mostly in the latter grouip are such familiar examples as tissues and in many instances difficult to Trichinella, found in rats and many other find and identify, the infections caused by animals, including pigs; Balantidium and them are often unrecognized. Largely for some lesser protozoa of pigs; Toxoplasma, this reason the frequency and severity of which occurs in many wild and domesti- infections of this nature have not been cated animals. Trypanosoma cnuzi, which is fully determined. There are, however, some carried by a variety of animals, is the cause familiar examples. of Chagas’ disease commonly seen in parts Certain well known larval tapeworm in- of South America and found recently in a fections are acquired from other animals. -
Hookworm (Ancylostomiasis)
Hookworm (ancylostomiasis) Hookworm (ancylostomiasis) rev Jan 2018 BASIC EPIDEMIOLOGY Infectious Agent Hookworm is a soil transmitted helminth. Human infections are caused by the nematode parasites Necator americanus and Ancylostoma duodenale. Transmission Transmission primarily occurs via direct contact with fecal contaminated soil. Soil becomes contaminated with eggs shed in the feces of an individual infected with hookworm. The eggs must incubate in the soil for several days before they become infectious and are able to be transmitted to another person. Oral transmission can sometimes occur from consuming improperly washed food grown or exposed to fecal contaminated soil. Transmission can also occur (rarely) between a mother and her fetus/infant via infected placental or mammary tissue. Incubation Period Eggs must incubate in the soil for 5-10 days before they mature into infectious filariform larvae that can penetrate the skin. Within the first 10 days following penetration of the skin filariform larvae will migrate to the lungs and occasionally cause respiratory symptoms. Three to five weeks after skin penetration the larvae will migrate to the intestinal tract where they will mature into an adult worm. Adult worms may live in the intestine for 1-5 years depending on the species. Communicability Human to human transmission of hookworm does NOT occur because part of the worm’s life cycle must be completed in soil before becoming infectious. However, vertical transmission of dormant filariform larvae can occur between a mother and neonate via contaminated breast milk. These dormant filariform larvae can remain within in a host for months to years. Soil contamination is perpetuated by fecal contamination from infected individuals who can shed eggs in feces for several years after infection. -
Lecture 5: Emerging Parasitic Helminths Part 2: Tissue Nematodes
Readings-Nematodes • Ch. 11 (pp. 290, 291-93, 295 [box 11.1], 304 [box 11.2]) • Lecture 5: Emerging Parasitic Ch.14 (p. 375, 367 [table 14.1]) Helminths part 2: Tissue Nematodes Matt Tucker, M.S., MSPH [email protected] HSC4933 Emerging Infectious Diseases HSC4933. Emerging Infectious Diseases 2 Monsters Inside Me Learning Objectives • Toxocariasis, larva migrans (Toxocara canis, dog hookworm): • Understand how visceral larval migrans, cutaneous larval migrans, and ocular larval migrans can occur Background: • Know basic attributes of tissue nematodes and be able to distinguish http://animal.discovery.com/invertebrates/monsters-inside- these nematodes from each other and also from other types of me/toxocariasis-toxocara-roundworm/ nematodes • Understand life cycles of tissue nematodes, noting similarities and Videos: http://animal.discovery.com/videos/monsters-inside- significant difference me-toxocariasis.html • Know infective stages, various hosts involved in a particular cycle • Be familiar with diagnostic criteria, epidemiology, pathogenicity, http://animal.discovery.com/videos/monsters-inside-me- &treatment toxocara-parasite.html • Identify locations in world where certain parasites exist • Note drugs (always available) that are used to treat parasites • Describe factors of tissue nematodes that can make them emerging infectious diseases • Be familiar with Dracunculiasis and status of eradication HSC4933. Emerging Infectious Diseases 3 HSC4933. Emerging Infectious Diseases 4 Lecture 5: On the Menu Problems with other hookworms • Cutaneous larva migrans or Visceral Tissue Nematodes larva migrans • Hookworms of other animals • Cutaneous Larva Migrans frequently fail to penetrate the human dermis (and beyond). • Visceral Larva Migrans – Ancylostoma braziliense (most common- in Gulf Coast and tropics), • Gnathostoma spp. Ancylostoma caninum, Ancylostoma “creeping eruption” ceylanicum, • Trichinella spiralis • They migrate through the epidermis leaving typical tracks • Dracunculus medinensis • Eosinophilic enteritis-emerging problem in Australia HSC4933. -
Studies Show That Fecal Dx Antigen Tests Allow for Earlier Detection of More Intestinal Parasites
Research update Studies show that Fecal Dx antigen tests allow for earlier detection of more intestinal parasites Antigen detection is commonly used today to diagnose Results heartworm and Giardia infections, and now it is available for In the 1,156 field fecal samples for the roundworm and hookworm additional parasites. IDEXX Reference Laboratories, as a leader study and the 1,000 field fecal samples for the whipworm study, in pet healthcare innovation, has developed immunoassays for egg-positive roundworm, hookworm, and whipworm results were the detection of hookworm, roundworm, and whipworm antigens noted in 23, 13, and 27 samples, respectively. In contrast, 26, 19, in feces of dogs and cats. These antigens are secreted from the and 35 samples were antigen positive for roundworm, hookworm, adult worm and are not present in their eggs, which allows for and whipworm. The T. canis ELISA detected T. cati coproantigen in detection of prepatent stages as well as the ability to overcome the feline samples. Fecal antigens detected more infections than did challenges of intermittent egg laying. Earlier detection during the fecal flotation. prepatent period will also reduce the frequency of environmental contamination with potentially infectious eggs. Roundworm Hookworm Whipworm Two recent papers describing the performance of the Fecal Dx™ antigen tests, enzyme-linked immunosorbent assays (ELISAs) Fecal flotation 23 13 27 developed by IDEXX for coproantigen detection of Trichuris vulpis, positive Ancylostoma caninum and Toxocara canis in dogs and Toxocara cati in cats, are summarized below. Fecal Dx antigen 26 19 35 • Enzyme-linked immunosorbent assay for coproantigen detection test positive of Trichuris vulpis in dogs1 • Enzyme-linked immunosorbent assays for coproantigen Table 1. -
ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 REVIEW ARTICLE ……………………………………………………
ISSN: 2320-5407 Int. J. Adv. Res. 5(3), 972-999 Journal Homepage: - www.journalijar.com Article DOI: 10.21474/IJAR01/3597 DOI URL: http://dx.doi.org/10.21474/IJAR01/3597 REVIEW ARTICLE HAEMONCHUS CONTORTUS AND OVINE HOST: A RETROSPECTIVE REVIEW. *Saeed El-Ashram1,2, Ibrahim Al Nasr3,4, Rashid mehmood5,6, Min Hu7, Li He7, *Xun Suo1 1. National Animal Protozoa Laboratory, College of Veterinary Medicine, China Agricultural University, Beijing 100193, China. 2. Faculty of Science, Kafr El-Sheikh University, Kafr El-Sheikh, Egypt. 3. College of Science and Arts in Unaizah, Qassim University, Unaizah, Saudi Arabia. 4. College of Applied Health Sciences in Ar Rass, Qassim University, Ar Rass 51921, Saudi Arabia. 5. College of information science and technology, Beijing normal university, Beijing, china. 6. Department of Computer Science and Information Technology, University of Management Sciences and Information Technology, Kotli Azad Kashmir, 11100, Pakistan 7. State Key Laboratory of Agricultural Microbiology, Key Laboratory of Development of Veterinary Products, Ministry of Agriculture, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, Hubei,China. …………………………………………………………………………………………………….... Manuscript Info Abstract ……………………. ……………………………………………………………… Manuscript History Gastrointestinal (GI) parasitic infections are a world-wide problem for Received: 05 January 2017 both small- and large-scale farmers. Infection by GI parasites in Final Accepted: 09 February 2017 ruminants, including sheep and goat can result in harsh economic losses Published: March 2017 in a variety of ways: reproductive inefficiency, decreased work capacity, involuntary culling, diminished food intake, poor animal growth rates and lower weight gains, treatment and management costs, Key words:- Gastrointestinal (GI) parasitic infections; and mortality in heavily parasitized animals. -
Dr. Donald L. Price Center for Parasite Repository and Education College of Public Health, University of South Florida
Dr. Donald L. Price Center For Parasite Repository and Education College of Public Health, University of South Florida PRESENTS Sources of Infective Stages and Modes of Transmission of Endoparasites Epidemiology is the branch of science that deals with the distribution and spread of disease. How diseases are transmitted, i.e. how they are passed from an infected individual to a susceptible one is a major consideration. Classifying and developing terminology for what takes place has been approached in a variety of ways usually related to specific disease entities such as viruses, bacteria, etc. The definitions that follow apply to those disease entities usually classified as endoparasites i.e. those parasites that reside in a body passage or tissue of the definitive host or in some cases the intermediate host. When the definition of terms for the “Source of Infection” or “Mode of Infection” relate to prevention and/or control of an endoparasitic disease, they should be clearly described. For the source of infection, the medium (water, soil, utensils, etc.) or the host organism (vector, or intermediate host) on which or in which the infective stage can be found should be precisely identified. For the mode of transmission, the precise circumstances and means by which the infective stage is able to come in contact with, enter, and initiate an infection in the host should be described. SOURCE OF INFECTION There are three quite distinct and importantly different kinds of sources of the infective stage of parasites: Contaminated Sources, Infested Sources, and Infected Sources. CONTAMINATE SOURCES Contaminated Source, in parasitology, implies something that has come in contact with raw feces and is thereby polluted with feces or organisms that were present in it. -
A Parasite of Red Grouse (Lagopus Lagopus Scoticus)
THE ECOLOGY AND PATHOLOGY OF TRICHOSTRONGYLUS TENUIS (NEMATODA), A PARASITE OF RED GROUSE (LAGOPUS LAGOPUS SCOTICUS) A thesis submitted to the University of Leeds in fulfilment for the requirements for the degree of Doctor of Philosophy By HAROLD WATSON (B.Sc. University of Newcastle-upon-Tyne) Department of Pure and Applied Biology, The University of Leeds FEBRUARY 198* The red grouse, Lagopus lagopus scoticus I ABSTRACT Trichostrongylus tenuis is a nematode that lives in the caeca of wild red grouse. It causes disease in red grouse and can cause fluctuations in grouse pop ulations. The aim of the work described in this thesis was to study aspects of the ecology of the infective-stage larvae of T.tenuis, and also certain aspects of the pathology and immunology of red grouse and chickens infected with this nematode. The survival of the infective-stage larvae of T.tenuis was found to decrease as temperature increased, at temperatures between 0-30 C? and larvae were susceptible to freezing and desiccation. The lipid reserves of the infective-stage larvae declined as temperature increased and this decline was correlated to a decline in infectivity in the domestic chicken. The occurrence of infective-stage larvae on heather tips at caecal dropping sites was monitored on a moor; most larvae were found during the summer months but very few larvae were recovered in the winter. The number of larvae recovered from the heather showed a good correlation with the actual worm burdens recorded in young grouse when related to food intake. Examination of the heather leaflets by scanning electron microscopy showed that each leaflet consists of a leaf roll and the infective-stage larvae of T.tenuis migrate into the humid microenvironment' provided by these leaf rolls. -
Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being
Research and Reviews on Healthcare: Open Access Journal DOI: 10.32474/RRHOAJ.2020.06.000226 ISSN: 2637-6679 Research Article Pathophysiology and Gastrointestinal Impacts of Parasitic Helminths in Human Being Firew Admasu Hailu1*, Geremew Tafesse1 and Tsion Admasu Hailu2 1Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia 2Addis Ababa Medical and Business College, Addis Ababa, Ethiopia *Corresponding author: Firew Admasu Hailu, Dilla University, College of Natural and Computational Sciences, Department of Biology, Dilla, Ethiopia Received: November 05, 2020 Published: November 20, 2020 Abstract Introduction: This study mainly focus on the major pathologic manifestations of human gastrointestinal impacts of parasitic worms. Background: Helminthes and protozoan are human parasites that can infect gastrointestinal tract of humans beings and reside in intestinal wall. Protozoans are one celled microscopic, able to multiply in humans, contributes to their survival, permits serious infections, use one of the four main modes of transmission (direct, fecal-oral, vector-borne, and predator-prey) and also helminthes are necked multicellular organisms, referred as intestinal worms even though not all helminthes reside in intestines. However, in their adult form, helminthes cannot multiply in humans and able to survive in mammalian host for many years due to their ability to manipulate immune response. Objectives: The objectives of this study is to assess the main pathophysiology and gastrointestinal impacts of parasitic worms in human being. Methods: Both primary and secondary data were collected using direct observation, books and articles, and also analyzed quantitativelyResults and and conclusion: qualitatively Parasites following are standard organisms scientific living temporarily methods. in or on other organisms called host like human and other animals. -
Helminthology Nematodes Strongyloides.Pdf
HelminthologyHelminthology –– NematodesNematodes StrongyloidesStrongyloides TerryTerry LL DwelleDwelle MDMD MPHTMMPHTM ClassificationClassification ofof NematodesNematodes Subclass Order Superfamily Genus and Species Probable (suborder) prevalence in man Secernentea Rhabditida Rhabditoidea Strongyloides stercoralis 56 million Stronglyloides myoptami Occasional Strongyloides fuelloborni Millions Strongyloides pyocyanis Occasional GeneralGeneral InformationInformation ► PrimarilyPrimarily aa diseasedisease ofof tropicaltropical andand subtropicalsubtropical areas,areas, highlyhighly prevalentprevalent inin Brazil,Brazil, Columbia,Columbia, andand SESE AsiaAsia ► ItIt isis notnot uncommonuncommon inin institutionalinstitutional settingssettings inin temperatetemperate climatesclimates ((egeg mentalmental hospitals,hospitals, prisons,prisons, childrenchildren’’ss homes)homes) ► SeriousSerious problemproblem inin thosethose onon immunosuppressiveimmunosuppressive therapytherapy ► HigherHigher prevalenceprevalence inin areasareas withwith aa highhigh waterwater tabletable GeneralGeneral RecognitionRecognition FeaturesFeatures ► Size;Size; parasiticparasitic femalefemale 2.72.7 mm,mm, freefree livingliving femalefemale 1.21.2 mm,mm, freefree livingliving malemale 0.90.9 mmmm ► EggsEggs –– 5050--5858 XX 3030--3434 umum ► TheThe RhabdiformRhabdiform larvaelarvae havehave aa shortershorter buccalbuccal canalcanal vsvs hookwormhookworm ► LarvaeLarvae havehave aa doubledouble laterallateral alaealae,, smallersmaller thanthan hookwormhookworm ► S.S.