Russia (Eastern)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
PICES Sci. Rep. No. 2, 1995
TABLE OF CONTENTS Page FOREWORD vii Part 1. GENERAL INTRODUCTION AND RECOMMENDATIONS 1.0 RECOMMENDATIONS FOR INTERNATIONAL COOPERATION IN THE OKHOTSK SEA AND KURIL REGION 3 1.1 Okhotsk Sea water mass modification 3 1.1.1Dense shelf water formation in the northwestern Okhotsk Sea 3 1.1.2Soya Current study 4 1.1.3East Sakhalin Current and anticyclonic Kuril Basin flow 4 1.1.4West Kamchatka Current 5 1.1.5Tides and sea level in the Okhotsk Sea 5 1.2 Influence of Okhotsk Sea waters on the subarctic Pacific and Oyashio 6 1.2.1Kuril Island strait transports (Bussol', Kruzenshtern and shallower straits) 6 1.2.2Kuril region currents: the East Kamchatka Current, the Oyashio and large eddies 7 1.2.3NPIW transport and formation rate in the Mixed Water Region 7 1.3 Sea ice analysis and forecasting 8 2.0 PHYSICAL OCEANOGRAPHIC OBSERVATIONS 9 2.1 Hydrographic observations (bottle and CTD) 9 2.2 Direct current observations in the Okhotsk and Kuril region 11 2.3 Sea level measurements 12 2.4 Sea ice observations 12 2.5 Satellite observations 12 Part 2. REVIEW OF OCEANOGRAPHY OF THE OKHOTSK SEA AND OYASHIO REGION 15 1.0 GEOGRAPHY AND PECULIARITIES OF THE OKHOTSK SEA 16 2.0 SEA ICE IN THE OKHOTSK SEA 17 2.1 Sea ice observations in the Okhotsk Sea 17 2.2 Ease of ice formation in the Okhotsk Sea 17 2.3 Seasonal and interannual variations of sea ice extent 19 2.3.1Gross features of the seasonal variation in the Okhotsk Sea 19 2.3.2Sea ice thickness 19 2.3.3Polynyas and open water 19 2.3.4Interannual variability 20 2.4 Sea ice off the coast of Hokkaido 21 -
Gap Analysis in Support of Cpan: the Russian Arctic
CAFF Habitat Conservation Report No. 9 GAP ANALYSIS IN SUPPORT OF CPAN: THE RUSSIAN ARCTIC Igor Lysenko and David Henry CAFF INTERNATIONAL SECRETRARIAT 2000 This report, prepared by Igor Lysenko, World Conservation Monitoring Centre (WCMC) and David Henry, United Nations Environment Program (UNEP) Global Resource Information Database (GRID)-Arendal, is a technical account of a Gap Analysis Project conducted for the Russian Arctic in 1997-1999 in support of the Circumpolar Protected Areas Network (CPAN) of CAFF. It updates the status and spatial distribution of protected areas within the CAFF area of the Russian Federation and provides, in 22 GIs based maps and several data sets, a wealth of information relevant for present and future management decisions related to habitat conservation in the Russian Arctic. The present Gap Analysis for the Russian Arctic was undertaken in response to the CPAN Strategy and Action Plan requirement for countries to identify gaps in protected area coverage of ecosystems and species and to select sites for further action. Another important objective was to update the Russian data base. The Analysis used a system of twelve landscape units instead of the previously used vegetation zone system as the basis to classify Russia's ecosystems. A comparison of the terrestrial landscape systems against protected area coverage indicates that 27% of the glacier ecosystem is protected, 9.3% of the tundra (treeless portion) and 4.7% of the forest systems within the Arctic boundaries are under protection, but the most important Arctic forested areas have only 0.1% protection. In general, the analysis indicates a negative relationship between ecosystem productivity and protection, which is consistent with findings in 1996. -
The Shantar Tidal Mixing Front
Tidally driven system around the Shantar Islands (the Sea of Okhotsk). I.A. Zhabin V.I.Il'ichev Pacific Oceanological Institute, Vladivostok, RUSSIA PICES-2011, Khabarovsk, Russia The Shantar Islands are located in the southwestern part of the Sea of Okhotsk (Russia, Khabarovsk Region). The Shantar Islands National Park The Shantar Islands area is a unique marine ecosystem that features complex oceanographic processes maintains a high biological diversity of marine life The Sea of Okhotsk is a region of strong tidal currents. According to Kowalik and Polyakov (1998) the major energy sink for diurnal tides is Shelikhov Bay. The major portion of semidiurnal tide energy is dissipated in the southwestern region (Shantar Islands area). The tidal current enhanced over Kashevarov Bank. Vertical stirring assosiated with strong tidal currents is sufficient in some area to mix downward the seasonal buoyancy input and prevent or partly destroy the summer stratification. The boundary between the mixed and stratified waters is delineated by a well defined fronts with sharp change in SST and another properties. The rate of energy dissipation per unit surface in the Okhotsk Sea (erg s-1 cm-2) due to the K1 and M2 tidal components from Kowalik and Polyakov, 1998. The Shantar tidal mixing front The location and seasonal variability of the tidal mixing front (TMF) around the Shantar Islands were studied using satellite and hydrographic data. The Shantar TMF is the dominant feature of the summer hydrographic structure of the southwestern shelf of the Sea of Okhotsk . The mean positions of TMF are compared to the distribution of Simpson and Hunter's (1974) tidal mixing parameter. -
Preserving the Symbol of Siberia, Moving On: Sobol' and The
EA-13 • RUSSIA • JULY 2009 ICWA Letters INSTITUTE OF CURRENT WORLD AFFAIRS Preserving the Symbol of Siberia, Moving On: Sobol’ and the Elena Agarkova is studying management Barguzinsky Zapovednik (Part I) of natural resources and the relationship between By Elena Agarkova Siberia’s natural riches and its people. Previously, Elena was a Legal Fellow at the LAKE BAIKAL–I started researching this news- University of Washington’s letter with a plan to write about the Barguzin- School of Law, at the sky zapovednik, a strict nature reserve on the Berman Environmental eastern shore of Baikal, the first and the old- Law Clinic. She has clerked est in the country.1 I went to Nizhneangarsk, a for Honorable Cynthia M. Rufe of the federal district small township at the north shore of the lake, court in Philadelphia, and where the zapovednik’s head office is located has practiced commercial now. I crossed the lake and hiked on the east- litigation at the New York ern side through some of the zapovednik’s ter- office of Milbank, Tweed, ritory. I talked to people who devoted their lives Hadley & McCloy LLP. Elena to preserving a truly untouched wilderness, on was born in Moscow, Rus- a shoestring budget. And along the way I found sia, and has volunteered for myself going in a slightly different direction environmental non-profits than originally planned. An additional protago- in the Lake Baikal region of Siberia. She graduated nist emerged. I became fascinated by a small, from Georgetown Universi- elusive animal that played a central role not ty Law Center in 2001, and only in the creation of Russia’s first strict nature has received a bachelor’s reserve, but in the history of Russia itself. -
Sakhalin Island: Nivkh
70 Chapter 3 Chapter 3 Sakhalin Island: Nivkh The Nivkh (or Gilyak in older literature) have traditionally inhabited the north- ern half of Sakhalin Island and adjacent regions of the mainland. They are relatively homogeneous in the cultural sense; their differences are mainly based on local adaptations to geographic environments, and the two distinct dialects, Sakhalin and mainland, are mutually intelligible. Their ethnic compo- sition is more homogeneous than that of their Tungusic-speaking Amur neigh- bors as it consists of a large core of kin groups of Nivkh origin and a minority of lineages that trace their descent to non-Nivkh ethnic ancestors, mainly those of Amur groups and Ainu. Nivkh culture, with its emphasis on sedentary fishing, is to a large extent analogous to those of their Amur and Ainu neighbors; however, the specialized maritime hunting of the coastal Nivkh was of a significance equal to fishing, and their sea-mammal hunting technology as well as the belief system empha- sizing marine animal cults connect the Nivkh with North Pacific coastal cul- tures of both sides of the Bering Strait, and archaeologically, with the maritime Okhotsk culture of the southern Sea of Okhotsk and the Old Koryak culture of northern Sea of Okhotsk. Other traits that distinguish the traditional Nivkh culture from their neighbors are aspects of their non-material culture such as corpse disposal by cremation and the alliance of three lineage units based on asymmetric connubium that contrasts with the reciprocal connubium charac- teristic for the mainland Tungus society as well as for the Amur ethnic com- plex. -
Sources and Pathways 4.1
Chapter 4 Persistant toxic substances (PTS) sources and pathways 4.1. Introduction Chapter 4 4.1. Introduction 4.2. Assessment of distant sources: In general, the human environment is a combination Longrange atmospheric transport of the physical, chemical, biological, social and cultur- Due to the nature of atmospheric circulation, emission al factors that affect human health. It should be recog- sources located within the Northern Hemisphere, par- nized that exposure of humans to PTS can, to certain ticularly those in Europe and Asia, play a dominant extent, be dependant on each of these factors. The pre- role in the contamination of the Arctic. Given the spa- cise role differs depending on the contaminant con- tial distribution of PTS emission sources, and their cerned, however, with respect to human intake, the potential for ‘global’ transport, evaluation of long- chain consisting of ‘source – pathway – biological avail- range atmospheric transport of PTS to the Arctic ability’ applies to all contaminants. Leaving aside the region necessarily involves modeling on the hemi- biological aspect of the problem, this chapter focuses spheric/global scale using a multi-compartment on PTS sources, and their physical transport pathways. approach. To meet these requirements, appropriate modeling tools have been developed. Contaminant sources can be provisionally separated into three categories: Extensive efforts were made in the collection and • Distant sources: Located far from receptor sites in preparation of input data for modeling. This included the Arctic. Contaminants can reach receptor areas the required meteorological and geophysical informa- via air currents, riverine flow, and ocean currents. tion, and data on the physical and chemical properties During their transport, contaminants are affected by of both the selected substances and of their emissions. -
Виктор Гаврилюк (1928–2005) И Его Вклад В Исследование Чукотки Viktor Gavrilyuk (1928–2005) and His Input in the Study of Chukotka
Растительность России. СПб., 2018. Vegetation of Russia. St. Petersburg, 2018. № 34. С. 147–153. N 34. P. 147–153. https://doi.org/10.31111/vegrus/2018.34.147 ИсторИя наукИ Виктор ГаВрилюк (1928–2005) и его вклад в исследоВание Чукотки VIKTOR GAVRILYUK (1928–2005) AND HIS INPUT IN THE STUDY OF CHUKOTKA © О. В. СВистун¹, Г. А. Чорна², т. В. МаМЧур¹, М. И. Парубок¹ O. V. SVYSTUN, G. A. CHORNA, T. V. MAMCHUR, M. I. PARUBOK ¹Уманский национальный университет садоводства. 20300, Украина, Умань, ул. Интернациональная, 1. Uman National University of Horticulture (Uman city, Ukraine) E-mail: [email protected] ²Уманский государственный педагогический университет им. Павла Тычины. 20300, Украина, Умань, ул. Садовая, 2. Uman State Pedagogical University named after Pavlo Tychyna (Uman city, Ukraine) «…Впереди природа — с которой я никогда не расстанусь; впереди леса, поля — дорогие и милые места; впереди — мои любимые цветы; впереди много людей — моих товарищей… …O, Erd, o, Sonne, o, Glück, o, Lust¹!» Из «Дневника записей событий, в жизни моих происхоящих». В. А. Гаврилюк Начало ХХІ столетия ознаменовалось в ботанической науке под- ведением итогов ряда исследований. Современники по достоинству оценивают труды предшественников, с особым почтением отдавая должное тем ученым-натуралистам, которые по крупицам добыва- ли сведения о растительном мире суровых краев (Полежаев, Череш- нев, 2008; Матвеева, 2014; Мамчур и др., 2017). Итоги изучения растительного покрова Крайнего Севера, в том числе и Чукотки, сотрудниками Ботанического института им. В. Л. Комарова РАН были подведены Надеждой Васильевной Мат- веевой (2014). Она поименно вспомнила более 130 человек, кото- рые в той или иной степени связали свою жизнь с Арктикой. Есть в этом списке и имя Виктора Антоновича Гаврилюка, скромного уманского ботаника, впоследствии подготовившего не одно поколе- ние агрономов для ряда регионов бывшего Советского Союза. -
Migration: on the Move in Alaska
National Park Service U.S. Department of the Interior Alaska Park Science Alaska Region Migration: On the Move in Alaska Volume 17, Issue 1 Alaska Park Science Volume 17, Issue 1 June 2018 Editorial Board: Leigh Welling Jim Lawler Jason J. Taylor Jennifer Pederson Weinberger Guest Editor: Laura Phillips Managing Editor: Nina Chambers Contributing Editor: Stacia Backensto Design: Nina Chambers Contact Alaska Park Science at: [email protected] Alaska Park Science is the semi-annual science journal of the National Park Service Alaska Region. Each issue highlights research and scholarship important to the stewardship of Alaska’s parks. Publication in Alaska Park Science does not signify that the contents reflect the views or policies of the National Park Service, nor does mention of trade names or commercial products constitute National Park Service endorsement or recommendation. Alaska Park Science is found online at: www.nps.gov/subjects/alaskaparkscience/index.htm Table of Contents Migration: On the Move in Alaska ...............1 Future Challenges for Salmon and the Statewide Movements of Non-territorial Freshwater Ecosystems of Southeast Alaska Golden Eagles in Alaska During the A Survey of Human Migration in Alaska's .......................................................................41 Breeding Season: Information for National Parks through Time .......................5 Developing Effective Conservation Plans ..65 History, Purpose, and Status of Caribou Duck-billed Dinosaurs (Hadrosauridae), Movements in Northwest -
The Petroleum Potential of the Riphean–Vendian Succession of Southern East Siberia
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/253369249 The petroleum potential of the Riphean–Vendian succession of southern East Siberia CHAPTER in GEOLOGICAL SOCIETY LONDON SPECIAL PUBLICATIONS · MAY 2012 Impact Factor: 2.58 · DOI: 10.1144/SP366.1 CITATIONS READS 2 95 4 AUTHORS, INCLUDING: Olga K. Bogolepova Uppsala University 51 PUBLICATIONS 271 CITATIONS SEE PROFILE Alexander P. Gubanov Scandiz Research 55 PUBLICATIONS 485 CITATIONS SEE PROFILE Available from: Olga K. Bogolepova Retrieved on: 08 March 2016 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 Geological Society, London, Special Publications The petroleum potential of the Riphean-Vendian succession of southern East Siberia James P. Howard, Olga K. Bogolepova, Alexander P. Gubanov and Marcela G?mez-Pérez Geological Society, London, Special Publications 2012, v.366; p177-198. doi: 10.1144/SP366.1 Email alerting click here to receive free e-mail alerts when service new articles cite this article Permission click here to seek permission to re-use all or request part of this article Subscribe click here to subscribe to Geological Society, London, Special Publications or the Lyell Collection Notes © The Geological Society of London 2013 Downloaded from http://sp.lyellcollection.org/ by guest on March 25, 2013 The petroleum potential of the Riphean–Vendian succession of southern East Siberia JAMES P. HOWARD*, OLGA K. BOGOLEPOVA, ALEXANDER P. GUBANOV & MARCELA GO´ MEZ-PE´ REZ CASP, West Building, 181a Huntingdon Road, Cambridge CB3 0DH, UK *Corresponding author (e-mail: [email protected]) Abstract: The Siberian Platform covers an area of c. -
Investment Cooperation
YENISEY SIBERIA DEVELOPMENT CORPORATION INVESTMENT PROPOSALS CONTENTS 3 About Yenisey Siberia Development Corporation 5 Investment proposals of Krasnoyarsk region 7 Development of building lime production 9 Modernization of amorphous graphite production 11 Troitsk saltworks ABOUT 13 Prime meridian medical centre 15 Latta antibacterial sprays YENISEY SIBERIA 17 Football arena chain 19 Marketplace coworking Street for eat DEVELOPMENT 21 Production of freeze-dried berries and functional beverages CORPORATION 23 Establishment of Uyar oil refinery 25 Kuznetsovo Glamping 27 Terephthalic acid production 29 Investment proposals of Khakassia republic 31 Fruit and berry garden 33 Pervomaysky dairy production complex Yenisey Siberia Development Corporation 35 Production of gypsum-based construction materials does not only provide comprehensive support for 37 Tasty Day ready-to-eat healthy food delivery chain large-scale projects but also supports promising investment projects. 39 Berkuty territory of river and cruise tourism 41 Priiskovy tourist and recreation facility development The investment proposals are promising projects 43 Podnebesye all-season resort with a mature concept, which initiators are already on the way of implementing their own ideas. Being at 45 IT center establishment the scaling stage, they are considering cooperation 49 Investment proposals of Tyva republic with a strategic investor as one of the financing options. 51 Full-service medical centre in Kyzyl 53 Full-service dental polyclinic in Kyzyl Interested investors are offered -
RCN #33 21/8/03 13:57 Page 1
RCN #33 21/8/03 13:57 Page 1 No. 33 Summer 2003 Special issue: The Transformation of Protected Areas in Russia A Ten-Year Review PROMOTING BIODIVERSITY CONSERVATION IN RUSSIA AND THROUGHOUT NORTHERN EURASIA RCN #33 21/8/03 13:57 Page 2 CONTENTS CONTENTS Voice from the Wild (Letter from the Editors)......................................1 Ten Years of Teaching and Learning in Bolshaya Kokshaga Zapovednik ...............................................................24 BY WAY OF AN INTRODUCTION The Formation of Regional Associations A Brief History of Modern Russian Nature Reserves..........................2 of Protected Areas........................................................................................................27 A Glossary of Russian Protected Areas...........................................................3 The Growth of Regional Nature Protection: A Case Study from the Orlovskaya Oblast ..............................................29 THE PAST TEN YEARS: Making Friends beyond Boundaries.............................................................30 TRENDS AND CASE STUDIES A Spotlight on Kerzhensky Zapovednik...................................................32 Geographic Development ........................................................................................5 Ecotourism in Protected Areas: Problems and Possibilities......34 Legal Developments in Nature Protection.................................................7 A LOOK TO THE FUTURE Financing Zapovedniks ...........................................................................................10 -
Of the Shantar Islands (Khabarovsk Krai, Russia)
Ecologica Montenegrina 34: 43-48 (2020) This journal is available online at: www.biotaxa.org/em http://dx.doi.org/10.37828/em.2020.34.5 Longicorn beetles (Coleoptera, Cerambycidae) of the Shantar Islands (Khabarovsk Krai, Russia) NIKOLAY S. ANISIMOV1* & VITALY G. BEZBORODOV2 1All-Russian Scientific Research Institute of Soybean, Ignatevskoye Shosse 19, Blagoveshchensk 675027 Russia. 2Amur Branch of the Botanical Garden-Institute FEB RAS, Ignatevskoye Shosse 2-d km, Blagoveshchensk 675000 Russia. *Corresponding Author: e-mail: [email protected] Received: 25 July 2020│ Accepted by V. Pešić: 30 August 2020 │ Published online: 7 September 2020. The Shantar Islands are located in the western part of the Sea of Okhotsk, near the eastern coast of Eurasia. They are administratively included in the Tuguro-Chumikansky district of Khabarovsk Krai of Russia. The archipelago consists of 15 large and small islands, the largest of which is the Bоlshoy Shantar.The total area of the islands is 550 thousand hectares. The entire archipelago has the status of the National Park. The islands are dominated by mountainous relief with river valleys. Heights are up to 721 m. The climate is temperate monsoon with excessive summer moisture. Strong northwest winds prevail, they delay the phenological cycles of biota by 1-1,5 months in comparison with the nearest mainland areas. The boreal component of the middle taiga subzone dominates in the flora of the archipelago. Nemoral flora is represented by single species in phytocenoses of deep valleys of the large islands (Nechaev, 1955). There are two altitudinal vegetation belts in the Shantar Islands – mountain taiga belt and subalpine altitudinal belt (mountain tundra occupies 2% of the territory).