Epileptic Syndromes in Infancy and Childhood Rima Nabbouta,B and Olivier Dulaca,B

Total Page:16

File Type:pdf, Size:1020Kb

Epileptic Syndromes in Infancy and Childhood Rima Nabbouta,B and Olivier Dulaca,B Epileptic syndromes in infancy and childhood Rima Nabbouta,b and Olivier Dulaca,b aDepartment of Neuropediatrics, Centre de re´fe´rence Purpose of review e´pilepsies rares, Hoˆpital Necker-Enfants malades, APHP, Necker-Enfants malades and bUniversity Paris The aim of this article is to review new epilepsy syndromes, acquire a new Descartes, Paris, France understanding of older ones and emphasize the impact of this concept on basic Correspondence to Rima Nabbout, MD, PhD, research regarding aetiology and treatment. Department of Neuropediatrics, Centre de re´fe´rence Recent findings e´pilepsies rares, Hoˆpital Necker-Enfants malades, APHP, 149 rue de Se`vres, Paris Cedex 15, F-75743, In addition to those included in the classification of the International League Against France Epilepsy, new epilepsy syndromes comprise febrile seizures plus, benign familial Tel: +33 1 42192695; fax: +33 1 42192692; e-mail: [email protected], neonatal–infantile seizures (BFNIS), benign infantile focal epilepsy with midline spikes [email protected] and waves during sleep (BFIS), malignant migrating partial seizures in infancy, devastating epilepsy in school age children and late onset cryptogenic spasms. Current Opinion in Neurology 2008, 21:161–166 Genetics played a central role in identifying some new entities (BFNIS, BFIS with choreoathetosis), to delineate older syndromes (Dravet syndrome and myoclonic astatic epilepsy) and determine their mechanisms (infantile spasms, pyridoxine dependent seizures, neonatal encephalopathy with suppression bursts). Summary A significant number of children, mainly infants, do not fit in any of the described epilepsy syndromes. Still many patients with infantile epilepsy require the identification of cause or recognition of an epilepsy syndrome. Keywords classification, epilepsy genetics, epilepsy syndrome, epileptic encephalopathies Curr Opin Neurol 21:161–166 ß 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins 1350-7540 date, a total of 10 families with mutations in SCN2A were Introduction reported. An Italian family with a strict phenotype of The course of epilepsy in children is most variable and the BFIC and a mutation in SCN2A suggested that BFNIS prognosiscannotbedeterminedonthebasisofageofonset, and BFIC show overlapping clinical features [2]. No seizure types, interictal condition, electroencephalography SCN2A mutations are reported in families with BFNC (EEG) pattern or cause. The combination of age of onset, although the neonatal onset is emphasized by a recent seizure types, interictal condition and EEG pattern, called review of the clinical spectrum [3]. epilepsy syndrome, however, does give some clue regard- ing cause and prognosis. It allows refined communication between caregivers. It is useful for research regarding treatment strategy and aetiology, including the eventual Familial infantile convulsions and geneticbackground.Recentadvancesinbasicepileptology choreoathetosis reinforced this concept and led to the identification of Benign familial infantile seizures with paroxysmal chor- specific cause for a given syndrome. eoathetosis inherited as an autosomal dominant trait were first recognized in 1997 [4]. Over 20 families have We will focus on new understanding of previously recog- since been reported in different countries. Seizures nized syndromes and on new epilepsy syndromes. appear at 3–12 months, and are partial and may secon- darily generalize as previously described [5]. Seizures soon stop but paroxysmal choreoathetosis starts between Benign familial neonatal–infantile seizures 5 and 9 years. It occurs in paroxysmal attacks, at rest or This condition is intermediate between benign familial induced by exercising and anxiety. Neurological exam- neonatal convulsions (BFNCs) and benign familial infan- ination and EEG tracings between these attacks are tile convulsions (BFICs), called benign familial neonatal– normal, as is psychomotor development. Genetic studies infantile seizures (BFNIS) [1]. The identification of these reveal a strong evidence of linkage to the pericentromeric families is based on the mean age of onset, which ranges region of chromosome 16. No causative gene has been from that of BFNC to BFIC, from 2 days to 6 months. To found to date. 1350-7540 ß 2008 Wolters Kluwer Health | Lippincott Williams & Wilkins Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this article is prohibited. 162 Seizure disorders seizures, was observed in two unrelated cases of EIEE Benign infantile focal epilepsy with midline with normal brain MRI [15]. spikes and waves during sleep Seizures onset is between 4 and 30 months. Seizure manifestations are typical, characterized by cyanosis, Infantile spasms and West syndrome staring and rare lateralizing signs, of short duration. There The combination of clusters of spasms, psychomotor is a strong EEG marker, a spike followed by a bell-shaped deterioration and hypsarrhythmia defines West syndrome slow-wave, localized in the midline regions, present in all that occurs mainly between 3 and 12 months of age. subjects only during sleep. The prognosis is naturally favourable and the majority of patients do not require antiepileptic drugs (AEDs) [6]. Cryptogenic cases account for 9–15% of the cases, the rest being symptomatic. The symptomatic cases are associated with several prenatal, perinatal and postnatal factors. Var- Epileptic encephalopathy with suppression ious brain dysgenesis (lissencephaly, hemimegalence- bursts phaly, focal cortical dysplasia, septal dysplasia or callosal This severe condition begins within the first 3 months of agenesis), chromosomal (including Down syndrome, life. EEG demonstrates bursts of paroxysmal activity del1p36) or single gene (mutations of ARX or STK9 gene) (polyspikes) lasting several seconds and alternating with [16,17 ] causes are reported. Untreated phenylketonuria, episodes of flat or low amplitude tracing, a combination tetrahydrobiopterine deficiency and mitochondrial cyto- called suppression bursts. This pattern is present in both pathy including the NARP mutation are occasionally awake and sleep states, or mainly during sleep. It is observed. Infantile spasms are particularly frequent in associated with partial seizures variably combined with the course of Menkes disease. myoclonus or spasms. Vigabatrin and steroids are the basis of treatment. Early The classification of the International League Against treatment results in a better outcome [18]. Controlled Epilepsy [7] recognized two conditions with suppression studies in patients with other conditions than tuberous bursts: the early infantile epileptic encephalopathy sclerosis found better short term but similar long term (EIEE) or Ohtahara syndrome [8] and the neonatal effect of steroids compared to vigabatrin, due to the high myoclonic encephalopathy (EME) [9]. relapse rate with hormonal treatment [19–21]. Radiologi- cal work-up should be performed for surgery before going In EIEE, there are spasms and the suppression burst to topiramate that may have some effect [22], although pattern is often asymmetrical, mainly affecting the side worsening has been reported [23]. The place of the of a cortical malformation, usually hemimegalencephaly or ketogenic diet also needs to be determined [24]. focal cortical dysplasia [8]. Aicardi syndrome, olivary- dentate dysplasia and schizencephaly are other conditions We reported a transient decrease of diffusion in subcor- in which such tracings are encountered [10]. In EME, tical structures in six patients with pharmacoresistant there is no radiological evidence of a brain lesion, the West syndrome of unknown cause. The eventuality of patients exhibit erratic and massive myoclonus and there is toxic lesions, including some inborn error of metabolism familial recurrence [11]. Non-ketotic hyperglycinaemia, or drug toxicity, was considered but the contribution of Menkes disease, pyridoxine and pyridoxal phosphate the epileptic encephalopathy appears the most likely dependencies, and glutamate transporter defect [12] [25]. may be involved and share excess of glutamate trans- mission. Antiquitin, the gene for pyridoxine dependency causes an excessive renal excretion of a-aminoadipic- Cryptogenic late-onset epileptic spasms semi-aldehyde that chelates pyridoxine and causes the When cryptogenic, late onset epileptic spasms beginning defect [13]. between 12 and 48 months of age have a particular pattern that is intermediary between West and Lennox–Gastaut Although the distinction between both entities is import- syndromes [26]. EEG does not show classical hypsar- ant from both the aetiologic and the therapeutic points rhythmia but a temporal or temporofrontal slow wave or of view, it may be difficult for a given patient since spike focus combined with slow spike-waves. Ictal events myoclonus and spasms may be confused at that age, combine spasms in clusters, tonic seizures and atypical because suppression bursts may be an early variant of absences. Ictal EEG discloses a generalized high-voltage fragmented hypsarrhythmia, and since all patients do slow wave followed by diffuse voltage attenuation with not fulfil the criteria for either EIEE or EME [14]. superimposed fast activity, typical of the epileptic spasms, Recently, a polyalanine expansion in the ARX gene occurring in clusters. The classical treatment of infantile (Aristales-related homeobox), longer than for infantile spasms was efficient in almost half the cases. Copyright © Lippincott Williams & Wilkins. Unauthorized reproduction of this
Recommended publications
  • 1 ILAE Classification & Definition of Epilepsy Syndromes in the Neonate
    ILAE Classification & Definition of Epilepsy Syndromes in the Neonate and Infant: Position Statement by the ILAE Task Force on Nosology and Definitions Authors: Sameer M Zuberi1, Elaine Wirrell2, Elissa Yozawitz3, Jo M Wilmshurst4, Nicola Specchio5, Kate Riney6, Ronit Pressler7, Stephane Auvin8, Pauline Samia9, Edouard Hirsch10, O Carter Snead11, Samuel Wiebe12, J Helen Cross13, Paolo Tinuper14,15, Ingrid E Scheffer16, Rima Nabbout17 1. Paediatric Neurosciences Research Group, Royal Hospital for Children & Institute of Health & Wellbeing, University of Glasgow, Member of European Reference Network EpiCARE, Glasgow, UK. 2. Divisions of Child and Adolescent Neurology and Epilepsy, Department of Neurology, Mayo Clinic, Rochester MN, USA. 3. Isabelle Rapin Division of Child Neurology of the Saul R Korey Department of Neurology, Montefiore Medical Center, Bronx, NY USA. 4. Department of Paediatric Neurology, Red Cross War Memorial Children’s Hospital, Neuroscience Institute, University of Cape Town, South Africa. 5. Rare and Complex Epilepsy Unit, Department of Neuroscience, Bambino Gesu’ Children’s Hospital, IRCCS, Member of European Reference Network EpiCARE, Rome, Italy 6. Neurosciences Unit, Queensland Children's Hospital, South Brisbane, Queensland, Australia. Faculty of Medicine, University of Queensland, Queensland, Australia. 7. Clinical Neuroscience, UCL- Great Ormond Street Institute of Child Health, London, UK. Department of Clinical Neurophysiology, Great Ormond Street Hospital for Children NHS Foundation Trust, Member of European Reference Network EpiCARE London, UK 8. Université de Paris, AP-HP, Hôpital Robert-Debré, INSERM NeuroDiderot, DMU Innov-RDB, Neurologie Pédiatrique, Member of European Reference Network EpiCARE, Paris, France. 9. Department of Paediatrics and Child Health, Aga Khan University, East Africa. 1 10. Neurology Epilepsy Unit “Francis Rohmer”, INSERM 1258, FMTS, Strasbourg University, France.
    [Show full text]
  • Research Quarterly
    Research Quarterly A dream you dream alone is only a dream. A dream you dream together is reality. – Yoko Ono In this issue of the Quarterly, we highlight some of the partnerships our research team has developed to make a bigger impact for people with epilepsy. Our research covers the entire spectrum of discovery – from idea to market. We cannot do it alone. On page 2, we provide updates on the Rare Epilepsy Network (REN), a coalition of nearly 30 different organizations working together to facilitate research that improves the outcomes of those living with rare epilepsies. On page 3, clinicians from Thomas Jefferson University Hospital in Philadelphia, PA reflect on how the Epilepsy Foundation’s support early on in their career encouraged them to pursue research within the field. Supporting the development of early career investigators is done in proud partnership with the American Epilepsy Society (AES). This collaborative effort ensures that we can pool our resources, reduce administrative cost and maximize impact. Supporting our professional workforce is one of the ways in which we can ensure that the best and the brightest are tackling the challenges that our community face. We could not do this without our partners at AES. On page 5, we provide staff reports on the conferences attended this past quarter from the Nonprofits Forum at the National Institutes of Health, to meeting new companies at Bio Conference, to facilitating discussions on how medical devices can impact SUDEP and epilepsy care with the Food and Drug Administration. We are creating a research environment in which partnerships spur innovation and exciting discoveries to end epilepsy.
    [Show full text]
  • Dravet Syndrome
    NAVIGATING LIFE WITH DRAVET SYNDROME Information and support for parents and caregivers NAVIGATING LIFE WITH DRAVET SYNDROME Information and support for parents and caregivers Contributors: Dr. Martina E. Bebin Dr. Robert Flamini Dr. Kelly Knupp Dr. Linda Laux Dr. Scott Perry Dr. Joseph Sullivan Dr. James Wheless Dr. Elaine Wirrell Dravet Syndrome Foundation Executive Team 3 TABLE OF CONTENTS INTRODUCTION 6 Caring for people with Dravet syndrome 24 QUESTIONS 8 14. What should I do when my child 24 has a seizure? Overview of Dravet syndrome 8 15. What are trigger factors for seizures? 25 1. What is Dravet syndrome? 8 16. What daily life difficulties might my 26 2. What is the cause of Dravet syndrome? 10 child face? 3. How is Dravet syndrome diagnosed? 10 Family life 27 4. Is Dravet syndrome inherited? Are my 11 17. How will our family’s daily life change? 27 other children at risk? 18. How do I explain Dravet syndrome 28 5. What type of doctors and specialists 13 to my other children? might my child need to see regularly? 19. How do I explain Dravet syndrome 29 6. Can childhood vaccines cause Dravet 14 to my family and friends? syndrome? Should I vaccinate my child? Dravet syndrome in childhood 31 Seizures and treatments 15 20. What is the course of Dravet syndrome 31 7. What types of seizures are usually 15 in childhood? seen in Dravet syndrome? 21. Can my child attend school? 33 8. What is SUDEP? 16 Dravet syndrome in puberty and adulthood 35 9. Besides seizures, what are the other 18 medical issues related to Dravet syndrome? 22.
    [Show full text]
  • Dravet Syndrome—The Polish Family's Perspective Study
    Journal of Clinical Medicine Article Dravet Syndrome—The Polish Family’s Perspective Study Justyna Paprocka 1,*, Anita Lewandowska 2, Piotr Zieli ´nski 2 , Bartłomiej Kurczab 2, Ewa Emich-Widera 1 and Tomasz Mazurczak 3 1 Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; [email protected] 2 Students’ Scientific Society, Department of Pediatric Neurology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, 40-752 Katowice, Poland; [email protected] (A.L.); [email protected] (P.Z.); [email protected] (B.K.) 3 Clinic of Paediatric Neurology, National Research Institute of Mother and Child, 01-211 Warsaw, Poland; [email protected] * Correspondence: [email protected] Abstract: Aim: The aim of the paper is to study the prevalence of Dravet Syndrome (DS) in the Polish population and indicate different factors other than seizures reducing the quality of life in such patients. Method: A survey was conducted among caregivers of patients with DS by the members of the Polish support group of the Association for People with Severe Refractory Epilepsy DRAVET.PL. It included their experience of the diagnosis, seizures, and treatment-related adverse effects. The caregivers also completed the PedsQL survey, which showed the most important problems. The survey received 55 responses from caregivers of patients with DS (aged 2–25 years). Results: Prior to the diagnosis of DS, 85% of patients presented with status epilepticus lasting more than 30 min, and the frequency of seizures (mostly tonic-clonic or hemiconvulsions) ranged from 2 per week to hundreds per day.
    [Show full text]
  • 10|18 Stiripentol Use in Children with Refractory Seizures
    PEDIATRIC PHARMACOTHERAPY Volume 24 Number 10 October 2018 Stiripentol Use in Children with Refractory Seizures Marcia L. Buck, PharmD, FCCP, FPPAG, BCPPS tiripentol was approved by the Food and concentrations of 2, 6.5, and 14.1 mg/L between S Drug Administration (FDA) on August 20, 2 and 4 hours post-dose.6 The drug is highly 2018 as adjunctive therapy with clobazam for the protein bound (99%), with an estimated treatment of seizures associated with Dravet elimination half-life of 5 to 13 hours. Although syndrome in patients 2 years of age and older.1,2 It the metabolism of stiripentol has not been fully is not currently approved as monotherapy. Dravet delineated, it is known to be a substrate for syndrome, also referred to as severe myoclonic CYP1A2, CYP2C19, and CYP3A4. As a result of epilepsy of infancy, is a rare disorder its reliance on both hepatic and renal clearance, characterized by seizures unresponsive to most use of stiripentol in patients with moderate to antiepileptics, motor impairment, and severe hepatic or renal impairment is not developmental disabilities. Nearly a quarter of recommended.2 patients die during childhood. Approximately 70% of patients have a mutation in the sodium The first published study to evaluate stiripentol channel alpha-1 subunit gene (SCN1A) leading to plasma concentrations enrolled 10 children and malfunction or loss of function in GABAergic adolescents from 6 to 16 years of age with neurons.3 As a treatment for a rare disorder, refractory atypical absence seizures.7 The patients stiripentol has been designated as an orphan drug received a mean maintenance dose of 57 by both the European Medicines Agency and the mg/kg/day (range 34-78 mg/kg/day) during the 4- FDA.
    [Show full text]
  • Epilepsy and Seizure Disorders: a Resource Guide for Parents
    $5HVRXUFH *XLGH IRU3DUHQWV www.chadkids.org/epilepsyonline Epilepsy and Seizure Disorder: A Parent Resource Guide ¡ ¡ ¨ © £ ¤ ¢ ¥ ¦ § ¦ ! " $ # ¡ ¨ ' ( £ ¤ ¢ ¥ ¦ %& ¥ - . , ! # ! ) * + * ' - / ! !! ! # ! + ) ' - 00 ! , ! # ! + ) ¡ ¡¡ ¨ ( ( £ ¤ ## ¢ ¥ ¦ % 12 - - 03 ! # # ) * 0 !! ) + 0 , # ! ! ) * + " ' 4 0$ ! ! , # ! + ) 5 8 9 £7 7 162 6 ¦ ¥ 2: ( - 0; ! < - 0> = ? @ 3A ! = ! # 'C B D 3 0 ! ! C D 33 ? ! ! D 3 B ! < 3; = ! # - 3> @ ! ! EF ¤ ¤ 7 ¢ G % H ? 3/ ! ! = C - A I 0 J www.chadkids.org/epilepsyonline Epilepsy and Seizure Disorder: A Parent Resource Guide 2 WWhathat is epilepsy/seizure disorder? 7KHEUDLQFRQWDLQVELOOLRQVRIQHUYHFHOOVFDOOHGQHXURQVWKDWFRPPXQLFDWH HOHFWURQLFDOO\DQGVLJQDOWRHDFKRWKHU$VHL]XUHRFFXUVZKHQWKHUHLVDVXGGHQDQG EULHIH[FHVVVXUJHRIHOHFWULFDODFWLYLW\LQWKHEUDLQEHWZHHQQHUYHFHOOV7KLVFDQ FDXVHDEQRUPDOPRYHPHQWVFKDQJHLQEHKDYLRURUORVVRIFRQVFLRXVQHVV 6HL]XUHVDUHQRWDPHQWDOKHDOWKGLVRUGHU,QVWHDGHSLOHSV\LVDQHXURORJLFDOFRQGLWLRQ WKDWLVVWLOOQRWFRPSOHWHO\XQGHUVWRRG +DYLQJDVLQJOHVHL]XUHGRHVQRWPHDQWKDWDFKLOGKDVHSLOHSV\$FKLOGKDVHSLOHSV\ ZKHQKHRUVKHKDVWZRRUPRUHVHL]XUHVZLWKRXWDFOHDUFDXVHVXFKDVIHYHUKHDG LQMXU\GUXJXVHDOFRKROXVHRUVOHHSGHSULYDWLRQ$ERXWPLOOLRQ$PHULFDQVKDYH HSLOHSV\DQGRIWKHQHZFDVHVWKDWGHYHORSHDFK\HDUXSWR%DUHFKLOGUHQ DQGDGROHVFHQWV,WGHYHORSVLQFKLOGUHQRIDOODJHVDQGFDQDIIHFWWKHPLQGLIIHUHQW
    [Show full text]
  • Diagnosis and Management of Epilepsies in Children and Young People 81
    81 ���� ������������������������������������������� Diagnosis and management of epilepsies 81 in children and young people A national clinical guideline 1 Introduction 1 2 Diagnosis 3 3 Investigative procedures 6 4 Management 11 5 Antiepileptic drug treatment 15 6 Management of prolonged or serial seizures and convulsive status epilepticus 21 7 Behaviour and learning 23 8 Models of care 25 9 Development of the guideline 27 10 Implementation and audit 31 Annexes 34 Abbreviations 47 References 48 March 2005 COPIES OF ALL SIGN GUIDELINES ARE AVAILABLE ONLINE AT WWW.SIGN.AC.UK KEY TO EVIDENCE STATEMENTS AND GRADES OF RECOMMENDATIONS LEVELS OF EVIDENCE 1++ High quality meta-analyses, systematic reviews of randomised controlled trials (RCTs), or RCTs with a very low risk of bias 1+ Well conducted meta-analyses, systematic reviews of RCTs, or RCTs with a low risk of bias 1 - Meta-analyses, systematic reviews of RCTs, or RCTs with a high risk of bias 2++ High quality systematic reviews of case control or cohort studies High quality case control or cohort studies with a very low risk of confounding or bias and a high probability that the relationship is causal 2+ Well conducted case control or cohort studies with a low risk of confounding or bias and a moderate probability that the relationship is causal 2 - Case control or cohort studies with a high risk of confounding or bias and a significant risk that the relationship is not causal 3 Non-analytic studies, eg case reports, case series 4 Expert opinion GRADES OF RECOMMENDATION Note: The grade of recommendation relates to the strength of the evidence on which the recommendation is based.
    [Show full text]
  • Stoke Therapeutics Presents Preclinical Data from Studies Of
    Stoke Therapeutics Presents Preclinical Data From Studies of STK-001 That Showed Improvements in Survival and Reductions in Seizure Frequency in a Mouse Model of Dravet Syndrome December 7, 2019 New data from electroencephalography (EEG) recordings showed 76% of Dravet syndrome (DS) mice treated with STK-001 were seizure free compared to 48% of placebo-treated mice An 80% reduction in the average number of spontaneous seizures was also observed among treated DS mice Data support the clinical development of STK-001 as a potential new medicine for Dravet syndrome, a severe and progressive genetic epilepsy BEDFORD, Mass.--(BUSINESS WIRE)--Dec. 7, 2019-- Stoke Therapeutics, Inc. (Nasdaq:STOK), a biotechnology company pioneering a new way to treat the underlying cause of severe genetic diseases by precisely upregulating protein expression, today announced preclinical data from studies of STK-001 that showed significant improvements in survival and reductions in seizure frequency in a mouse model of Dravet syndrome (DS). New data from electroencephalography (EEG) recordings showed 76% (16/21) of DS mice treated with STK-001 were seizure free compared to 48% (10/21) that were treated with a placebo. An 80% reduction in the average number of spontaneous seizures (3 seizures vs 16 seizures) was also observed among treated DS mice compared to placebo. EEG is a highly sensitive measure of seizure activity, which enables the detection of seizures that may not be otherwise visible. These data were presented in a poster session at the American Epilepsy Society (AES) Annual Meeting in Baltimore. “The data on STK-001 from this mouse model give us confidence in our approach to treating the underlying cause of Dravet syndrome by restoring Nav1.1 protein expression to near normal levels,” said Edward M.
    [Show full text]
  • Epilepsy in Children – Brain Growth and Behavior
    logy & N ro eu u r e o N p h f y o s l i a o l n o r Kanemura and Aihara, J Neurol Neurophysiol 2013, S2 g u y o J Journal of Neurology & Neurophysiology ISSN: 2155-9562 DOI: 10.4172/2155-9562.S2-006 ReviewResearch Article Article OpenOpen Access Access Epilepsy in Children – Brain Growth and Behavior Hideaki Kanemura1* and Masao Aihara2 1Department of Pediatrics, Faculty of Medicine, University of Yamanashi, Japan 2Interdisciplinary Graduate School of Medicine and Engineering, University of Yamanashi, Japan Abstract The degree of behavioral problems associated with epilepsy in children is greater than would be expected on the basis of the existence of a chronic illness alone. Involvement of the frontal lobe such as atypical evolution of benign childhood epilepsy with centrotemporal spikes (BCECTS), epilepsy with continuous spike-waves during slow sleep (CSWS), and frontal lobe epilepsy (FLE) are characterized by impairment of neuropsychological abilities, and are frequently associated with behavioral disorders. In volumetric studies using three-dimensional (3D) magnetic resonance imaging (MRI), frontal and prefrontal lobe volumes revealed growth disturbance in patients with atypical evolution of BCECTS, CSWS, and FLE compared with those of normal subjects. These studies also revealed that in patients with shorter seizure durations and abnormal EEG periods, developmental abnormalities of the frontal lobe were soon restored to a more normal growth ratio. Conversely, growth disturbances of the prefrontal lobes were persistent in the patients with longer seizure durations and abnormal EEG periods. These findings suggest that seizure and the duration of paroxysmal anomalies may be associated with prefrontal lobe growth abnormalities, which are associated with neuropsychological problems.
    [Show full text]
  • Genetic Epilepsy with Febrile Seizures Plus
    Genetic epilepsy with febrile seizures plus Description Genetic epilepsy with febrile seizures plus (GEFS+) is a spectrum of seizure disorders of varying severity. GEFS+ is usually diagnosed in families whose members have a combination of febrile seizures, which are triggered by a high fever, and recurrent seizures (epilepsy) of other types, including seizures that are not related to fevers ( afebrile seizures). The additional seizure types usually involve both sides of the brain ( generalized seizures); however, seizures that involve only one side of the brain (partial seizures) occur in some affected individuals. The most common types of seizure in people with GEFS+ include myoclonic seizures, which cause involuntary muscle twitches; atonic seizures, which involve sudden episodes of weak muscle tone; and absence seizures, which cause loss of consciousness for short periods that appear as staring spells. The most common and mildest feature of the GEFS+ spectrum is simple febrile seizures, which begin in infancy and usually stop by age 5. When the febrile seizures continue after age 5 or other types of seizure develop, the condition is called febrile seizures plus (FS+). Seizures in FS+ usually end in early adolescence. A condition called Dravet syndrome (also known as severe myoclonic epilepsy of infancy or SMEI) is often considered part of the GEFS+ spectrum and is the most severe disorder in this group. Affected infants typically have prolonged seizures lasting several minutes (status epilepticus), which are triggered by fever. Other seizure types, including afebrile seizures, begin in early childhood. These types can include myoclonic or absence seizures. In Dravet syndrome, these seizures are difficult to control with medication, and they can worsen over time.
    [Show full text]
  • A Case Report: Dravet Syndrome in an Adult, It Is Never Too Late to Consider
    Case Report Annals of Clinical Case Reports Published: 08 Jun, 2020 A Case Report: Dravet Syndrome in an Adult, It is never too late to Consider Angela Wabulya* Department of Neurology, University of North Carolina, USA Abstract “Dravet Syndrome (DS) is a severe form of epilepsy characterized by frequent, prolonged seizures often triggered by hyperthermia, developmental delay, speech impairment, ataxia, hypotonia, sleep disturbances, and other health problems”. DS is associated with a mutation in the SCN1A gene in 80% to 90% of cases. The EEG in DS is usually non-specific, while the brain MRI is generally normal at onset. Sodium channel blocking Anti-Seizure Medications (ASM) exacerbates seizures in DS and should be avoided. About 80% of children with DS survive to adulthood, 92% of whom continue to have seizures. While the diagnosis of DS is easily made in early childhood, it can be challenging in older children and adults and missed in ~33% patients, at times misdiagnosed with common mimickers such as Lennox Gastuat Syndrome (LGS). I present a 19-year-old female with intractable epilepsy and presumed LGS with seizure onset at three months of age, “multiple” and at times prolonged febrile seizures, worsening convulsions with sodium channel blocking ASM and cognitive limitations. A routine EEG showed diffuse slowing, while brain MRI was suggestive of right mesial temporal sclerosis. Genetic testing done revealed SCN1A pathogenic variant. Her ASMs were adjusted, leaving her with Zonisamide and Epidiolex and ~70% seizure reduction. It is never too late to consider DS as well as other SCNIA related epilepsies; if found, it allows for optimal seizure management, a decrease in seizure burden, improving the social-economic dynamics of patients, caregivers, and the health care system.
    [Show full text]
  • Etiologies of Refractory Epilepsy and Pseudo Refractory Epilepsy
    Etiologies of refractory epilepsy and pseudo refractory epilepsy KAMORNWAN KATANYUWONG M.D. DIVISION OF NEUROLOGY DEPARTMENT OF PEDIATRICS CHIANG MAI UNIVERSITY HOSPITAL 19th annual meeting Epilepsy society of Thailand Refractory epilepsy y Terminology : drug-resistant epilepsy (DRE) : pharmaco-resistant epilepsy (PRE) y Definition : failure of adequate drug trials of 2 tolerated and appropriately chosen and used AED regimens to achieve seizure freedom (monoRx or polyRx) : seizure freedom 1. a period of at least 12 months or 2. a period that is at a minimum 3 times longer than the longest preintervention interseizure interval Etiologies of refractory epilepsy How to approach y R/O pseudo refractory epilepsy y True refractory epilepsy : Structural vs Genetic related : Pattern of epileptic and developmental progression : Disease biology Pseudo refractory epilepsy y Wrong diagnosis: Paroxysmal event: self-gratification, syncope, etc Psychogenic non epileptic seizure (PNES) Failure to identify an underlying causes e.g. metabolic illness y Inappropriate treatment of epilepsy Incorrect AED selection: wrong drug for epilepsy type decreased efficacy of AED due to drug interaction Corrected AED but inappropriate dosage Corrected AED but wrong preparation Pseudo refractory epilepsy y Non-adherence to therapy Poor compliance, unusual lifestyle, alcohol abuse Intolerable adverse effects Inadequate patient education Prohibitive cost of medication PNES y Sudden alterations of behaviour that resemble epileptic seizures y Psychogenic factors---causes
    [Show full text]