Holocene Faulting in the Western Grand Canyon, Arizona

Total Page:16

File Type:pdf, Size:1020Kb

Holocene Faulting in the Western Grand Canyon, Arizona Holocene faulting in the western Grand Canyon, Arizona PETER W. HUNTOON Department of Geology and Water Resources Research Institute, University of Wyoming, Laramie, Wyoming 82071 ABSTRACT pre-1964 literature on events associated with the entire Hurricane fault zone of Utah and Arizona appears in Averitt (1964). The The Toroweap and Hurricane faults and a subsidiary fault in the findings of these workers and others substantiate that the southern western Grand Canyon exhibit evidence of Holocene movement. Colorado Plateau was experiencing compressional stress through- This evidence includes scarps in alluvium and sediments ponded out the Laramide orogeny, during which folds, usually east-dipping against a fault on the downthrown block. These displacements are monoclines, were formed (Huntoon, 1974). By Miocene time the the latest in a well-exposed record of recurrent movements along region was under tension, and a system of high-angle normal faults the major faults in the region. developed, many along the trends of the earlier Laramide folds. The tensional environment has persisted to the present. Reverse drag, INTRODUCTION defined as downfolding along the downthrown side of a fault an- tithetic to the displacement, developed along many of the faults in In this paper I document newly discovered examples of Holocene the region contemporaneously with Cenozoic movements faulting in the western Grand Canyon and place this faulting in (Hamblin, 1965). perspective as part of the record of recurrent movements along the major faults in the area. RECENT FAULTING The arid climate, topographic relief, and presence of successive lava flows and young alluvial sediments in the western Grand Can- A detailed examination of the literature and field work convinces yon combine to offer classic exposures in which recurrent move- me that our ability to distinguish additional Cenozoic movements ments along several of the major faults can be readily documented along faults such as the Hurricane or Toroweap is limited only by (see Fig. 1). A partial record of recurrent movements along the To- the existing number of successively young lava flows and other dat- roweap and Hurricane faults in and immediately adjacent to the able strata that cross the faults. It is clear, as stated by Hamblin Grand Canyon now exists through the efforts of Dutton (1882), (1974, p. 169), that movement along these faults has been relatively Davis (1903), Huntington and Goldthwait (1903), Gardner (1941), continuous, at least from Miocene to Holocene time. McKee and Schenk (1942), Koons (1945), Kurie (1966), Hamblin William Morris Davis (1903, p. 20) made the startling discovery (1970a), Young (1970), and Lovejoy (1973). A summary of the that there were at least 6 m of Holocene movement along the To- roweap fault that resulted in displacement of alluvium in Prospect Valley immediately south of the Colorado River (Fig. 2). Such a fresh scarp was most unusual for the region, and 1 am not aware of a discovery of such a feature in the southwestern part of the Col- orado Plateau previous to Davis's work. Although no one would deny the existence of Holocene faulting in the southwestern part of the Colorado Plateau, evidence to document such features is 0 5 10 Kilometers E3HE5CE5 I Figure 2. Holocene fault scarp in alluvium and lava along Toroweap Figure 1, Location of the faults described. Shaded parts of fault traces fault in Prospect Valley. Notice that lava flow to right of cone is displaced are those that exhibit evidence of Holocene movement. more than alluvium to left of cone. View is toward southeast. Geological Society of America Bulletin, v. 88, p. 1619-1622, 4 figs., November 1977, Doc. no. 71108. 1619 Downloaded from http://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/88/11/1619/3429262/i0016-7606-88-11-1619.pdf by guest on 27 September 2021 1620 P. W. HUNTOON difficult to establish. This is primarily because rocks younger than Mesozoic in age are largely stripped from the area. For example, the youngest rocks composing the land surface in the vicinity of the eastern Grand Canyon are Permian limestones. Koons (1945, p. 160) observed that the same scarp recorded by Davis was present on the eastern side of Vulcan's Throne, a small volcano situated on the Toroweap fault on the north edge of the gorge of the Colorado River. Hamblin (1970a, p. 12) identified a Holocene 15-m scarp in lava rocks along the Hurricane fault a few kilometres north of the Colorado River. Koons (1964, p. 104, 106, 107) documented Holocene faulting along major faults on the Hualapai Indian Reservation within 50 km of the Colorado River and east of the Hurricane fault. His observations were of faults that have not been proven to be as recent as those observed by Davis or Hamblin, but they do displace Quaternary lavas and gravels. Av- eritt (1964) summarized data from Townley and Allen (1939), Heck (1947), and the U.S. Coast and Geodetic Survey (1928- Figure 3. Holocene fault scarps in alluvium along Hurricane fault south 1951), in which are listed 15 minor tremors attributable to move- of the mouth of Whitmore Wash. Notice adjustment of stream channel in ment along the Hurricane fault between 1881 and 1951. Sturgul lower right corner. Inner gorge of Colorado River at top. View is toward and Irwin (1971) updated earthquake data for the region through the east. 1966. Field mapping conducted by myself, George Billingsley, and James Sears led to the discovery of additional evidence for HURRICANE FAULT Holocene faulting along several kilometres of the Toroweap fault, the Hurricane fault, and a subsidiary fault west of the Hurricane The Hurricane fault is a high-angle normal fault that marks the fault. In the cases of the Hurricane and Toroweap faults, we have boundary between the Colorado Plateau and Basin and Range located 1.5- to 6-m scarps in alluvium which are becoming partially provinces in Utah; however, the Grand Wash fault is defined as the eroded and rounded. The recency of faulting along the subsidiary province boundary 55 km to the west of Hurricane fault in the fault is revealed by locally ponded sediments on the downthrown western Grand Canyon region of Arizona. The strike of the Hur- block, which are now partially dissected by a small drainage ricane fault in the vicinity of the Grand Canyon is sinuous but channel. maintains a northerly regional trend. The west side is displaced down, and the fault is characterized by reverse drag north of the TOROWEAP FAULT Colorado River. The 10-km-wide block of Paleozoic rocks that separates the Hurricane and Toroweap faults in the Grand Canyon The Toroweap fault is an extensive, north-trending, high-angle is broken by numerous high-angle normal faults that trend predom- normal fault that has displaced the Paleozoic rocks along the Col- inantly toward the northwest. orado River down to the west a total of 193 m (McKee and Schenk, Rocks younger than Paleozoic are virtually missing along the 1942, p. 262). A 1.2 ± 0.6-m.y.-old lava flow (Damon, 1965, p. Hurricane fault in the Grand Canyon south of Whitmore Wash. 42) that occurs near river level has been displaced 44.5 m by the However, the mouth of Whitmore Wash provides classic exposures fault. Older lava flows that fill Prospect Valley have been displaced in which are recorded evidence for at least three periods of recur- 46 m 2.5 km south of the river (Hamblin, 1970a, p. 17). North of rent movement. The Paleozoic section is displaced on the order of Volcan's Throne, Koons (1945, p. 160) described various flows 300 m by the fault at this site. Basalt flows that fill an old course of that are displaced between 11 and 46 m along the fault. These flows Whitmore Wash to a depth of about 300 m are displaced 23 m by are classified by Koons as stage Ilia and were reclassified by the fault. These lavas are similar to the older basalts that fill To- Hamblin (1970b) as stage IV. Koons (1945, p. 160) correlated the roweap Valley and are no younger than early stage III flows flows with others in the vicinity that have been dated in the (Hamblin, 1974, p. 156). Stage IV flows that crossed the fault and 25,000-to 30,000—yrB.P. range (McKee and others, 1967, p. 44). cascaded into Whitmore Wash are displaced about 15 m, a rela- The fresh scarp in the alluvium of Prospect Valley described by tionship cited by Hamblin (1970a, p. 12). This scarp is Holocene in Davis (1903) can be traced about 5.5 km to the south of the Col- age. orado River. As shown in Figure 2, both alluvium and a cinder cone During the course of this investigation, an apparently younger and associated flow are displaced along the scarp. The cinder cone Holocene scarp, coincident with Hamblin's and which alternately lies 4 km south of the Colorado River and is in the stage IV group displaced lavas and alluvium, was traced 14 km northward along of Hamblin (1970b), which suggests a date of eruption that is Whitmore Wash from the Colorado River. The scarp is less than probably more recent than 30,000 yr B.P. The alluvium is offset 4.5 m high and is rounded by erosion. North of the mouth of about 6 m in the vicinity of the cone; however, the lava from the Whitmore Wash, the scarp is a single break that occurs at eleva- cone is displaced below the surface on the downthrown western tions between 800 and 1,300 m. As shown in Figure 3, a short block, which requires a vertical throw of at least 15 m.
Recommended publications
  • I2628 Pamphlet
    U.S. DEPARTMENT OF THE INTERIOR TO ACCOMPANY MAP I–2628 U.S. GEOLOGICAL SURVEY Version 1.0 GEOLOGIC MAP OF THE LITTLEFIELD 30' × 60' QUADRANGLE, MOHAVE COUNTY, NORTHWESTERN ARIZONA By George H. Billingsley and Jeremiah B. Workman INTRODUCTION 10 km north of the north-central part of the map and are the largest settlements near the map area. This map is one result of the U.S. Geological Survey’s Interstate Highway 15 and U.S. Highway 91 provide intent to provide geologic map coverage and a better under- access to the northwest corner of the map area, and Arizona standing of the transition in regional geology between the State Highway 389 provides access to the northeast corner. Basin and Range and Colorado Plateaus in southeastern Ne- Access to the rest of the map area is by dirt roads maintained vada, southwestern Utah, and northwestern Arizona. Infor- by the U.S. Bureau of Land Management, Arizona Strip Dis- mation gained from this regional study provides a better trict, St. George, Utah. The area is largely managed by the understanding of the tectonic and magmatic evolution of an U.S. Bureau of Land Management, the Arizona Strip Dis- area of extreme contrasts in late Mesozoic-early Tertiary trict, which includes sections of land controlled by the State compression, Cenozoic magmatism, and Cenozoic extension. of Arizona. There are several isolated sections of privately This map is a synthesis of 32 new geologic maps encom- owned lands, mainly near the communities of Littlefield, passing the Littlefield 30' x 60' quadrangle, Arizona. Geo- Beaver Dam, and Colorado City.
    [Show full text]
  • Demise of the Dams: the Construction, Destruction, and Legacy of Late Cenozoic Volcanism in the Western Grand Canyon
    CHAPTER 7: DEMISE OF THE DAMS: THE CONSTRUCTION, DESTRUCTION, AND LEGACY OF LATE CENOZOIC VOLCANISM IN THE WESTERN GRAND CANYON "We have no difficulty as we float along, and I am able to observe the wonderful phenomena connected with this flood of lava. The canyon was doubtless filled to a height of 1,200 to 1,500 feet, perhaps by more than one flood. This would dam the water back, and in cutting through this great lava bed, a new channel has been formed, sometimes on one side, sometimes on the other . What a conflict of water and fire there must have been here! Just imagine a river of molten rock running down a river of melted snow. What a seething and boiling of waters, what clouds of steam rolled into the heavens!" John Wesley Powell, August 25, 1869 ALISHA N. CLARK INTRODUCTION Volcanic episodes have occurred periodically throughout the history of the Grand Canyon (e.g. Garber, this volume; Bennett, this volume). During certain phases of the tectonic evolution of the Grand Canyon, uplift of the Colorado Plateau lead to an extensional tectonic environment that thinned the Earth’s crust facilitating transport of magmatic material to the Earth’s surface, often along fault zones that acted as conduits for the basaltic magma generated in the mantle below (see Bennett, this volume for discussion of regional tectonics). There are three volcanic fields on the western Grand Canyon: the Grand Wash, Shivwits Plateau, and UinKaret Plateau, from west to east, respectively. The youngest of these, the UinKaret Plateau, was active during the Pleistocene (Crow et al., 2008; Dalrymple and Hamblin, 1998; Hamblin, 1994).
    [Show full text]
  • Fault Segmentation, Fault Linkage, and Hazards Along the Sevier Fault, Southwestern Utah
    UNLV Retrospective Theses & Dissertations 1-1-2002 Fault segmentation, fault linkage, and hazards along the Sevier fault, southwestern Utah Ilsa M Schiefelbein University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Schiefelbein, Ilsa M, "Fault segmentation, fault linkage, and hazards along the Sevier fault, southwestern Utah" (2002). UNLV Retrospective Theses & Dissertations. 1393. http://dx.doi.org/10.25669/pu4m-oa41 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMi films the text directly from the original or copy submitted. Thus, some tfiesis and dissertation copies are in typewriter foce, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy sulMnitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.
    [Show full text]
  • An Analysis of Fractures Around the Sevier Fault Zone in Red Hollow Canyon Near Orderville, Utah
    ShortShort ContributionsContributions KeckKeck GeologyGeology ConsortiumConsortium VolumeVolume 3232 MayMay 20192019 Published by the Keck Geology Consortium AN ANALYSIS OF FRACTURES AROUND THE SEVIER FAULT ZONE IN RED HOLLOW CANYON NEAR ORDERVILLE, UTAH CHARLEY H. HANKLA, The College of Wooster Research Advisor: Dr. Shelley Judge an area of weakness formed in Red Hollow Canyon, ABSTRACT allowing the fault to propagate easily at 030. These Structural discontinuities - such as opening mode results compare favorably to previous brittle fracture joints, shear fractures, and faults - tend to occur in studies within propagating fault zones. Outliers in the data could be associated with NW rotation of σ , close geographic proximity to one another; however, 3 timing relationships between these structures are not similar to nearby joints in Zion National Park. always easy to discern in the field. In southwestern Utah, the Jurassic Navajo Sandstone is cut by large- INTRODUCTION scale normal faults associated with the Sevier Fault Zone, making it perfect for observing several fracture In the western US, there are multiple physiographic types. The aim of this study is to complete a dynamic provinces. In southern Utah, the Colorado Plateau and and kinematic analysis of the fractures near a major the Basin and Range provinces dominate, with the fault and to determine the chronologic relationships Transition Zone between them. Marked by changes between the fractures. Specifically, we observed an in deformation, volcanism, topography, and crustal unnamed segment of the Sevier Fault Zone - herein structure, the Colorado Plateau gradually gives way referred to as the Mountain Lion Den Fault (MLD) - to the Basin and Range province in the west (Jackson, previously interpreted as a west dipping normal fault 1990b, 1990a; Porter et al., 2017).
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Sevier/Toroweap fault zone, central Toroweap section (Class A) No. 997c Last Review Date: 2006-04-17 Compiled in cooperation with the Arizona Geological Survey citation for this record: Black, B.D., Hylland, M.D., and Hecker, S., compilers, 2006, Fault number 997c, Sevier/Toroweap fault zone, central Toroweap section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:11 PM. Synopsis General: The Sevier/Toroweap fault zone is a long, north- to northeast-trending structure near the western margin of the Colorado Plateaus that has had substantial Cenozoic normal displacement. It extends from south of the Grand Canyon to north of Panguitch, Utah. The fault has generated a west-facing bedrock escarpment along the east side of Toroweap and Prospect Valleys, Ariz., and Long Valley, Utah. Detailed studies indicate that about 50 km of the fault, centered approximately on the Colorado River, ruptured during the middle to late Holocene. There is clear ruptured during the middle to late Holocene. There is clear evidence for recurrent late Quaternary displacement events on this section of the fault. The high, relatively linear fault escarpment continues about 10 km south of the young rupture, suggesting that the southern section of the fault zone has also been quite active during the Quaternary.
    [Show full text]
  • Tectonic Geomorphology of the Toroweap Fault, Western Grand Canyon, Arizona: Implications for Transgression of Faulting on the Colorado Plateau
    Tectonic Geomorphology of the Toroweap Fault, western Grand Canyon, Arizona: Implications for Transgression of Faulting on the Colorado Plateau by Garrett Jackson Arizona Geological Survey Open-File Report 90-4 1990 Arizona Geological Survey 416 W. Congress, Suite #100, Tucson, Arizona 85701 This report is preliminary and has not been edited or reviewed for conformity with Arizona Geological Survey standards TABLE OF CONTENTS ~ ABSTRACT 1 I. INTRODUCTION 2 II. PREVIOUS WORK 3 III. STUDY AREA 4 Geologic setting 4 Climatic setting 5 Quaternary geology and geomorphology 6 IV. SURFACE CLASSIFICATION 7 V. SOILS 9 Carbonate accumulation 9 Total carbonate content 11 VI. MORPHOLOGIC SCARP DATING 13 VII. ESCARPMENT SINUOSITY 17 VIII. BEHAVIOR OF THE TOROWEAP FAULT 20 Spatial variations 20 Segmentation 20 Whitmore Wash Scarps 22 Temporal variations 22 Earthquake magnitude 23 IX. IMPLICATIONS FOR TRANSGRESSION OF FAULTING 25 REFERENCES 27 APPENDIX 1. Soil profile descriptions 32 APPENDIX 2. Summary of carbonate data 34 1 ABSTRACT The Toroweap fault is a major normal fault in Northwestern Arizona. Along its southern end are four displaced Quaternary surfaces, three of which have measurable displacements that are multiples of about 2.2 m. Soil carbonate analysis was carried out to estimate ages for the three surfaces. An extrapolated carbonate accumulation was used to estimate an age for the oldest surface of between 26 and 54 ka; the youngest displaced surface is between 4 and 11 ka. Oldest undisplaced surface is 2 ± 1 ka. Diffusion modelling determined the most recent surface rupture to be 3 ± 1 ka. An aid in determining degree of tectonic activity where displaced materials are not present is the escarpment sinuosity index (Es).
    [Show full text]
  • Geologic Map of Pipe Spring National Monument and the Western Kaibab-Paiute Indian Reservation, Mohave County, Arizona
    Geologic Map of Pipe Spring National Monument and the Western Kaibab-Paiute Indian Reservation, Mohave County, Arizona By George H. Billingsley, Susan S. Priest, and Tracey J. Felger Prepared in cooperation with the National Park Service and the Kaibab-Paiute Tribe Pamphlet to accompany Scientific Investigations Map 2863 2004 U.S. Department of the Interior U.S. Geological Survey INTRODUCTION This geologic map is a product of a cooperative project between the U.S. Geological Survey, the National Park Service, and the Kaibab-Paiute Indian Tribe to provide a uniform quality geologic database for this part of the Uinkaret Plateau of the Arizona Strip north of Grand Canyon National Park and west of Fredonia, Arizona. The geologic data will be useful for future geologic, biologic, and hydrologic resource studies of this area conducted by the National Park Service, the Kaibab-Paiute Tribe, the citizens of Moccasin, Arizona, the Bureau of Land Management (BLM), the State of Arizona, local private ranching organizations, and individuals. Sandy Canyon Wash, Bitter Seeps Wash, and Bulrush Wash are the principal drainages in the map area that flow south into Kanab Creek, the principal drainage of this region that flows south toward the Colorado River in Grand Canyon. Moccasin Mountain and Moquith Mountain (Moki Mountain on old maps) form highland plateaus west and north of Moccasin and Kaibab, Arizona. The Vermilion Cliffs are a prominent topographic expression of the landscape that marks the southern and eastern edges of Moccasin and Moquith Mountains. The north edge of the map area abuts the Utah/Arizona State line. Access to the map area is by Arizona State Highway 389 and a short paved road to Pipe Spring National Monument and the towns of Kaibab and Moccasin, Arizona (fig.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Sevier/Toroweap fault zone, northern Toroweap section (Class A) No. 997b Last Review Date: 1997-04-03 Compiled in cooperation with the Utah Geological Survey and the Arizona Geological Survey citation for this record: Black, B.D., and Hecker, S., compilers, 1997, Fault number 997b, Sevier/Toroweap fault zone, northern Toroweap section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:11 PM. Synopsis General: The Sevier/Toroweap fault zone is a long, north- to northeast-trending structure near the western margin of the Colorado Plateaus that has had substantial Cenozoic normal displacement. It extends from south of the Grand Canyon to north of Panguitch, Utah. The fault has generated a west-facing bedrock escarpment along the east side of Toroweap and Prospect Valleys, Ariz., and Long Valley, Utah. Detailed studies indicate that about 50 km of the fault, centered approximately on the Colorado River, ruptured during the middle to late Holocene. There is clear ruptured during the middle to late Holocene. There is clear evidence for recurrent late Quaternary displacement events on this section of the fault. The high, relatively linear fault escarpment continues about 10 km south of the young rupture, suggesting that the southern section of the fault zone has also been quite active during the Quaternary.
    [Show full text]
  • Utah Geological Survey Special Study
    Paleoseismology of Utah, Volume 16 PALEOSEISMIC RECONNAISSANCE OF THE SEVIER FAULT, KANE AND GARFIELD COUNTIES, UTAH by William R. Lund, Tyler R. Knudsen, and Garrett S. Vice SPECIAL STUDY 122 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2008 Paleoseismology of Utah, Volume 16 PALEOSEISMIC RECONNAISSANCE OF THE SEVIER FAULT, KANE AND GARFIELD COUNTIES, UTAH by William R. Lund, Tyler R. Knudsen, and Garrett S. Vice Cover Photo: Sevier fault in the Navajo Sandstone near Mt. Carmel Junction, Utah. View is to the northeast. ISBN 1-55791-787-6 SPECIAL STUDY 122 UTAH GEOLOGICAL SURVEY a division of Utah8 Department of Natural Resources 200 STATE OF UTAH Jon Huntsman, Jr., Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map & Bookstore 1594 W. North Temple Salt Lake City, Utah 84116 telephone: 801-537-3320 toll free: 1-888-UTAH MAP Web site: mapstore.utah.gov email: [email protected] UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, Utah 84116 telephone: 801-537-3300 fax: 801-537-3400 Web site: geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for any particular use. The Utah Department of Natural Resources, Utah Geological Sur- vey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. The Utah Department of Natural Resources receives federal aid and prohibits discrimination on the basis of race, color, sex, age, national origin, or disability.
    [Show full text]
  • UGS Special Study
    Paleoseismology of Utah, Volume 14 PALEOSEISMIC INVESTIGATION AND LONG-TERM SLIP HISTORY OF THE HURRICANE FAULT IN SOUTHWESTERN UTAH by William R. Lund1, Michael J. Hozik2, and Stanley C. Hatfield3 1Utah Geological Survey 88 Fiddler Canyon Road, Suite C Cedar City, UT 84720 2The Richard Stockton College of New Jersey P.O. Box 195, Pomona, NJ 08240-0195 3Southwestern Illinois College 2500 Carlyle Ave., Belleville, IL 62221 Cover Photo: Scarp formed on the Hurricane fault at Shurtz Creek about 8 km south of Cedar City. ISBN 1-55791-760-4 SPECIAL STUDY 119 UTAH GEOLOGICAL SURVEY a division of Utah Department of Natural Resources 2006 STATE OF UTAH Jon Huntsman, Jr., Governor DEPARTMENT OF NATURAL RESOURCES Michael Styler, Executive Director UTAH GEOLOGICAL SURVEY Richard G. Allis, Director PUBLICATIONS contact Natural Resources Map/Bookstore 1594 W. North Temple Salt Lake City, Utah 84116 telephone: 801-537-3320 toll-free: 1-888-UTAH MAP Web site: http://mapstore.utah.gov email: [email protected] THE UTAH GEOLOGICAL SURVEY contact 1594 W. North Temple, Suite 3110 Salt Lake City, Utah 84116 telephone: 801-537-3300 fax: 801-537-3400 Web site: http://geology.utah.gov Although this product represents the work of professional scientists, the Utah Department of Natural Resources, Utah Geological Survey, makes no warranty, expressed or implied, regarding its suitability for any particular use. The Utah Department of Natural Resources, Utah Geological Sur- vey, shall not be liable under any circumstances for any direct, indirect, special, incidental, or consequential damages with respect to claims by users of this product. The Utah Department of Natural Resources receives federal aid and prohibits discrimination on the basis of race, color, sex, age, national origin, or disability.
    [Show full text]
  • Resume of the Geology of Arizona," Prepared by Dr
    , , A RESUME of the GEOWGY OF ARIZONA by Eldred D. Wilson, Geologist THE ARIZONA BUREAU OF MINES Bulletin 171 1962 THB UNIVBR.ITY OP ARIZONA. PR••• _ TUC.ON FOREWORD CONTENTS Page This "Resume of the Geology of Arizona," prepared by Dr. Eldred FOREWORD _................................................................................................ ii D. Wilson, Geologist, Arizona Bureau of Mines, is a notable contribution LIST OF TABLES viii to the geologic and mineral resource literature about Arizona. It com­ LIST OF ILLUSTRATIONS viii prises a thorough and comprehensive survey of the natural processes and phenomena that have prevailed to establish the present physical setting CHAPTER I: INTRODUCTION Purpose and scope I of the State and it will serve as a splendid base reference for continued, Previous work I detailed studies which will follow. Early explorations 1 The Arizona Bureau of Mines is pleased to issue the work as Bulletin Work by U.S. Geological Survey.......................................................... 2 171 of its series of technical publications. Research by University of Arizona 2 Work by Arizona Bureau of Mines 2 Acknowledgments 3 J. D. Forrester, Director Arizona Bureau of Mines CHAPTER -II: ROCK UNITS, STRUCTURE, AND ECONOMIC FEATURES September 1962 Time divisions 5 General statement 5 Methods of dating and correlating 5 Systems of folding and faulting 5 Precambrian Eras ".... 7 General statement 7 Older Precambrian Era 10 Introduction 10 Literature 10 Age assignment 10 Geosynclinal development 10 Mazatzal Revolution 11 Intra-Precambrian Interval 13 Younger Precambrian Era 13 Units and correlation 13 Structural development 17 General statement 17 Grand Canyon Disturbance 17 Economic features of Arizona Precambrian 19 COPYRIGHT@ 1962 Older Precambrian 19 The Board of Regents of the Universities and Younger Precambrian 20 State College of Arizona.
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Sevier/Toroweap fault zone, southern Toroweap section (Class A) No. 997d Last Review Date: 1997-04-03 Compiled in cooperation with the Arizona Geological Survey citation for this record: Black, B.D., and Hecker, S., compilers, 1997, Fault number 997d, Sevier/Toroweap fault zone, southern Toroweap section, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 12/14/2020 03:11 PM. Synopsis General: The Sevier/Toroweap fault zone is a long, north- to northeast-trending structure near the western margin of the Colorado Plateaus that has had substantial Cenozoic normal displacement. It extends from south of the Grand Canyon to north of Panguitch, Utah. The fault has generated a west-facing bedrock escarpment along the east side of Toroweap and Prospect Valleys, Ariz., and Long Valley, Utah. Detailed studies indicate that about 50 km of the fault, centered approximately on the Colorado River, ruptured during the middle to late Holocene. There is clear evidence for recurrent late Quaternary displacement events on this evidence for recurrent late Quaternary displacement events on this section of the fault. The high, relatively linear fault escarpment continues about 10 km south of the young rupture, suggesting that the southern section of the fault zone has also been quite active during the Quaternary.
    [Show full text]