Characterization of Arsenic Resistant Bacteria and a Novel Gene Cluster in 'Bacillus' Sp

Total Page:16

File Type:pdf, Size:1020Kb

Characterization of Arsenic Resistant Bacteria and a Novel Gene Cluster in 'Bacillus' Sp University of Wollongong Research Online University of Wollongong Thesis Collection University of Wollongong Thesis Collections 2007 Characterization of arsenic resistant bacteria and a novel gene cluster in 'Bacillus' sp. CDB3 N. Somanath Bhat University of Wollongong Recommended Citation Bhat, N. Somanath, Characterization of arsenic resistant bacteria and a novel gene cluster in bacillus sp. CDB3, PhD thesis, School of Biological Sciences, University of Wollongong, 2007. http://ro.uow.edu.au/theses/66 Research Online is the open access institutional repository for the University of Wollongong. For further information contact Manager Repository Services: [email protected]. Characterization of Arsenic Resistant Bacteria and A Novel Gene Cluster in Bacillus sp. CDB3 A thesis submitted in (partial) fulfillment of the requirements for the award of the degree of DOCTOR OF PHILOSOPHY (PhD) From THE UNIVERSITY OF WOLLONGONG by N. SOMANATH BHAT Master of Science {Microbiology), University of Bangalore, India Master of Science {Biotechnology), University of Wollongong, Australia. SCHOOL OF BIOLOGICAL SCIENCES -2007- I CERTIFICATION I, N. Somanath Bhat, declare that this thesis, submitted in fulfillment of the requirements for the award of Doctor of Philosophy, in the School of Biological Sciences, University of Wollongong, is wholly my own work unless otherwise referenced or acknowledged. The document has not been submitted for qualifications at any other academic institution. N. Somanath Bhat July 2007 II TABLE OF CONTENTS TITLE PAGE I CERTIFICATION II TABLE OF CONTENTS Ill LIST OF PUBLICATIONS VIII LIST OF FIGURES IX LIST OF TABLES XIV ABBREVIATIONS XV ABSTRACT XVIII ACKNOWLEDGEMENTS XXI Chapter 1: Introduction (Literature review) 1.1 History and Chemical Forms of Arsenic 2 1.2 Ecology of Arsenic 4 1.3 Microbial Transformations of Arsenic 6 1.4 Uses of Arsenic 7 1.5 Toxicity of Arsenic 9 1.6 Arsenic Resistance in Micro organisms 11 1.6.1 Mechanism of Arsenic resistance 11 1.6.1.1 Oxidation 11 1.6.1.2 Uptake Minimization 11 1.6.1.3 Extrusion 12 1.6.2 Arsenic Resistant Species Characterized at Molecular Level 15 1.7 Proteins Encoded by the ars Operons 22 1.7.1 ArsR: Trans-acting repressor protein 22 1.7.2 ArsD: Secondary regulator protein and Chaperone 25 1.7.3 ArsB: Integral membrane protein 28 1.7.3.1 Efflux mechanisms of arsenic resistance in micro organisms... 31 1.7.4 ArsA: Oxyanion-stimulated ATPase 33 1.7.5 ArsC: Arsenate Reductase 36 1.8 ArsR-ArsD Metalloregulatory Circuit Model 40 1.9 Background and Aims of This Thesis 41 III Chapter 2: Characterization and Identification of Arsenic Resistant Bacterial Strains Isolated from Cattle Dip Sites 2.1 Introduction 48 2.2 Material and Methods 50 2.2.1 Bacterial strains 50 2.2.2 Identification of bacteria 50 2.2.3 16S rDNA sequencing 51 2.2.3.1 Nucleic acid preparation 51 2.2.3.2 PCR amplification and purification of the product 51 2.2.3.3 Sequencing methods 53 2.2.3.4 Sequence analysis , 53 2.2.4 Phylogenetic analysis 54 2.2.5 Taxonomy tree 54 2.2.6 Measurement of minimum inhibitory concentration 54 2.2.7 Growth inhibition 55 2.3 Results 56 2.3.1 Morhology and Gram stain of the CDB strains 56 2.3.2 Extraction of genomic DNA and PCR amplification products of 16SrDNA 57 2.3.3 Sequences of 16S rDNA 58 2.3.4 Homologous identity and multiple sequence alignments 60 2.3.5 Phylogenetic analysis and identification of the strains 75 2.3.6 Taxonomy tree 76 2.3.7 Antibiotic resistance profile of the isolated bacterial strains 77 2.3.8 Arsenic and antimony resistance profiles of isolated bacterial strains 78 2.4 Discussion 81 Chapter 3: Genetic Characterization and Sequence Analysis of CDB3 ars Gene Cluster 1 3.1 Introduction 86 3.2 Materials and Methods 90 3.2.1 Bacterial strains and plasmids 90 3.2.2 Preparation of DIG labeled DNA probe by PCR 90 3.2.3 DNA extraction and restriction digestion 91 3.2.4 Localization ofCDB3ars cluster 1 91 3.2.5 Southern blot hybridization 92 3.2.6 Computational sequence analysis 93 3.3 Results 94 3.3.1 Probe preparation 94 3.3.2 Southern blot analysis 94 TV 3.3.3 Cluster localization 95 3.3.4 Homology analysis of CDB3 Ars proteins 97 3.3.4.1 ArsR 97 3.3.4.2 ArsD 98 3.3.4.3 ArsA 103 3.3.4.4 YqcL 108 3.3.4.5 ArsC 110 3.3.5 Phylogenetic analysis of CDB3 ArsR, ArsD, YqcL, ArsC and ArsA protiens 112 3.4 Discussion 117 Chapter 4: Phylogenetic and Protein Property Studies of Arsenite Efflux Pumps in Bacteria 4.1 Introduction 122 4.2 Materials and Methods 125 4.2.1 Sequence search and alignments 125 4.2.2 Sequence homology values 125 4.2.3 Phylogenetic analysis 125 4.2.4 Prediction of transmembrane domains 126 4.2.5 Membrane topology 126 4.3 Results 127 4.3.1 Multiple sequence alignments of arsenite membrane transporters and their sequence homology 127 4.3.2 Phylogenetic analysis 136 4.3.3 Other protein properties 138 4.3.4 Membrane topology of arsenic pump proteins 141 4.4 Discussion 145 Chapter 5: Functionality of the CDB3 ars A Gene 5.1 Introduction 149 5.2 Materials and Methods 151 5.2.1 Bacterial strains and plasmids 151 5.2.2 Plasmid mini-prep and restriction digestion 152 5.2.3 Ligation and electro transformation.......... 153 5.2.4 Arsenic resistance assays 154 5.3 Results 155 5.3.1 Construction of plasmid pSB 14 155 5.3.2 Effects of CDB3 ArsA on arsenite resistance of arsRBC bearing and ars knock-out E. coli cells 157 5.4 Discussion 159 V Chapter 6: Functionality of the CDB3 arsD Gene 6.1 Introduction 162 6.2 Materials and Methods 164 6.2.1 Bacterial strains and plasmids 164 6.2.2 Deletion mutagenesis of arsD 165 6.2.3 Arsenic resistance assays 165 6.2.4 PCR amplification of arsD gene 166 6.2.5 Plasmid construction and transformation of E. coli 167 6.2.6 DNA sequencing 167 6.2.7 Expression and purification of ArsD 168 6.2.8 Preparation of DNA fragments and DIG labelling 169 6.2.9 Gel mobility shift assay 169 6.3 Results 171 6.3.1 Functional involvement of the CDB3 arsD gene in arsenic resistance 171 6.3.2 Construction of N and C terminal ArsD constructs 180 6.3.3 ArsD expression 189 6.3.4 Purification of His tagged ArsD proteins 191 6.3.5 DNA-Protein interaction studies 194 6.4 Discussion 196 Chapter 7: Transcriptional Regulation of CDB3 ars Gene Cluster 1 7.1 Introduction 200 7.2 Materials and Methods 202 7.2.1 Bacterial strains and plasmids 202 7.2.2 RNA extraction 203 7.2.3 Preparation of DIG labeled DNA probes by PCR 203 7.2.4 Northern-blot analysis 204 7.2.5 P-Galactosidase assay 206 7.3 Results 208 7.3.1 RNA extraction 208 7.3.2 Probe preparation 209 7.3.3 mRNA analysis 213 7.3.4 Reporter gene assay 214 7.4 Discussion 217 7.4.1 CDB3 ars cluster 1 can be transcribed as a single mRNA 217 7.4.2 Sub operons may exist 219 Chapter 8: Concluding Remarks 223 VI BIBLIOGRAPHY 229 APPENDICES 250 APPENDIX 1: BACTERIAL MEDIA 251 APPENDIX 2: BUFFERS AND SOLUTIONS 252 APPENDIX 3: Multiple sequence alignments of the 16S rDNA sequence of CDB1, CDB2, CDB3, CDB4 and CDB5 with those of related bacteria 256 APPENDIX 4: Nucleotide and protein sequences of the ars gene cluster 1 arsRYCDATIP from CDB3 266 APPENDIX 5: Multiple sequence alignment of the arsenite membrane transporter proteins belonging to E. coli type ArsB and a sub-group 268 Appendix 5.1: Multiple sequence alignments of ArsB- like proteins from different strains compared with related species acquired from Genbank through blastx 268 Appendix 5.2: Kyte Doolittle hydropathy plots generated by Pep Window showing the three groups of arsenite membrane transporter proteins 271 APPENDIX 6: Multiple sequence alignments of CDB3 ArsT, ArsI and ArsP with those of related bacteria 274 Appendix 6.1: Multiple alignment of the amino acid sequences of bacterial TrxB proteins 274 Appendix 6.2a: Structural multiple alignment of the amino acid sequence of HesB-like domain proteins 275 Appendix 6.2b: Structural multiple alignment of the amino acid sequences of IscA 275 Appendix 6.3: Structural multiple alignment of the amino acid sequences of CDB3 Orf8 and homologous protein phosphatases 276 APPENDIX 7: Flow chart showing the steps followed in assessing the p- galactosidase activity of lacZ fusion constructs 277 VII LIST OF PUBLICATIONS • Baldeo. K. Chopra*, Somanath Bhat*, Irina P. Mikheenko, Zhiqiang Xu, Ying Yang, Xi Luo, Hancai Chen, Lukas van Zwieten, Ross McC. Lilley and Ren Zhang (2007). "The Characteristics of Rhizosphere Microbes and their Interaction with Plants in Arsenic contaminated Soils from Cattle dip-sites" Science of the Total Environment. 378:331-342. • Somanath Bhat et. al., "A novel ars operon of Bacillus sp. (CDB3) isolated from cattle dip-sites confers increased resistance to arsenate and arsenite in Escherichia coli" (in preparation) • Somanath Bhat et. al., "Metalloregulation of repressor protein ArsD of Bacillus sp. CDB3 isolated from cattle dip sites" (in preparation) • Somanath Bhat et. al., "Phylogenetic study of arsenite efflux pumps among prokaryotes and eukaryotes" (in preparation) * Equal first authors VIII LIST OF FIGURES Figure 1.1: Periodic table showing the Arsenic metalloid as As 2 Figure 1.2: The chemical structure of some common arsenic compounds arsenate, arsenite, MMA and DMA 4 Figure 1.3: Schematic illustration of the genes of the ars operon from E.
Recommended publications
  • Arsinothricin, an Arsenic-Containing Non-Proteinogenic Amino Acid Analog of Glutamate, Is a Broad-Spectrum Antibiotic
    ARTICLE https://doi.org/10.1038/s42003-019-0365-y OPEN Arsinothricin, an arsenic-containing non-proteinogenic amino acid analog of glutamate, is a broad-spectrum antibiotic Venkadesh Sarkarai Nadar1,7, Jian Chen1,7, Dharmendra S. Dheeman 1,6,7, Adriana Emilce Galván1,2, 1234567890():,; Kunie Yoshinaga-Sakurai1, Palani Kandavelu3, Banumathi Sankaran4, Masato Kuramata5, Satoru Ishikawa5, Barry P. Rosen1 & Masafumi Yoshinaga1 The emergence and spread of antimicrobial resistance highlights the urgent need for new antibiotics. Organoarsenicals have been used as antimicrobials since Paul Ehrlich’s salvarsan. Recently a soil bacterium was shown to produce the organoarsenical arsinothricin. We demonstrate that arsinothricin, a non-proteinogenic analog of glutamate that inhibits gluta- mine synthetase, is an effective broad-spectrum antibiotic against both Gram-positive and Gram-negative bacteria, suggesting that bacteria have evolved the ability to utilize the per- vasive environmental toxic metalloid arsenic to produce a potent antimicrobial. With every new antibiotic, resistance inevitably arises. The arsN1 gene, widely distributed in bacterial arsenic resistance (ars) operons, selectively confers resistance to arsinothricin by acetylation of the α-amino group. Crystal structures of ArsN1 N-acetyltransferase, with or without arsinothricin, shed light on the mechanism of its substrate selectivity. These findings have the potential for development of a new class of organoarsenical antimicrobials and ArsN1 inhibitors. 1 Department of Cellular Biology and Pharmacology, Florida International University, Herbert Wertheim College of Medicine, Miami, FL 33199, USA. 2 Planta Piloto de Procesos Industriales Microbiológicos (PROIMI-CONICET), Tucumán T4001MVB, Argentina. 3 SER-CAT and Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA.
    [Show full text]
  • Discerning Role of a Functional Arsenic Resistance Cassette in Evolution and Adaptation Of
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.422644; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Discerning role of a functional arsenic resistance cassette in evolution and adaptation of a rice pathogen Amandeep Kaur1, Rekha Rana1, Tanu Saroha1, Prabhu B. Patil1,* Affiliation 1Bacterial Genomics and Evolution Laboratory, CSIR-Institute of Microbial Technology, Chandigarh, India. *Corresponding author Running Title: Acquisition of a functional arsenic resistance cassette in Xoo Correspondence: Prabhu B Patil, PhD Principal Scientist CSIR-Institute of Microbial Technology Sector 39-A, Chandigarh, India-160036 Email: [email protected] https://scholar.google.co.in/citations?user=8_gxcp0AAAAJ&hl=en https://orcid.org/0000-0003-2720-1059 bioRxiv preprint doi: https://doi.org/10.1101/2020.12.16.422644; this version posted December 16, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract Arsenic (As) is highly toxic element to all forms of life and is a major environmental contaminant. Understanding acquisition, detoxification, and adaptation mechanisms in bacteria that are associated with host in arsenic-rich conditions can provide novel insights into dynamics of host-microbe-microenvironment interactions. In the present study, we have investigated an arsenic resistance mechanism acquired during the evolution of a particular lineage in the population of Xanthomonas oryzae pv. oryzae (Xoo), which is a serious plant pathogen infecting rice. Our study revealed the horizontal acquisition of a novel chromosomal 12kb ars cassette in Xoo IXO1088 that confers high resistance to arsenate/arsenite.
    [Show full text]
  • The Diversity of Membrane Transporters Encoded in Bacterial Arsenic-Resistance Operons Yiren Yang University of Wollongong, [email protected]
    University of Wollongong Research Online Faculty of Science, Medicine and Health - Papers Faculty of Science, Medicine and Health 2015 The diversity of membrane transporters encoded in bacterial arsenic-resistance operons Yiren Yang University of Wollongong, [email protected] Shiyang Wu University of Wollongong, [email protected] Ross M. Lilley University of Wollongong, [email protected] Ren Zhang University of Wollongong, [email protected] Publication Details Yang, Y., Wu, S., Lilley, R. McCausland. & Zhang, R. (2015). The diversity of membrane transporters encoded in bacterial arsenic- resistance operons. Peerj, 3 (May), e943. Research Online is the open access institutional repository for the University of Wollongong. For further information contact the UOW Library: [email protected] The diversity of membrane transporters encoded in bacterial arsenic- resistance operons Abstract Transporter-facilitated arsenite extrusion is the major pathway of arsenic resistance within bacteria. So far only two types of membrane-bound transporter proteins, ArsB and ArsY (ACR3), have been well studied, although the arsenic transporters in bacteria display considerable diversity. Utilizing accumulated genome sequence data, we searched arsenic resistance (ars) operons in about 2,500 bacterial strains and located over 700 membrane-bound transporters which are encoded in these operons. Sequence analysis revealed at least five distinct transporter families, with ArsY being the most dominant, followed by ArsB, ArsP (a recently reported permease family), Major Facilitator protein Superfamily (MFS) and Major Intrinsic Protein (MIP). In addition, other types of transporters encoded in the ars operons were found, but in much lower frequencies. The diversity and evolutionary relationships of these transporters with regard to arsenic resistance will be discussed.
    [Show full text]
  • The Diversity of Membrane Transporters Encoded in Bacterial Arsenic-Resistance Operons
    The diversity of membrane transporters encoded in bacterial arsenic-resistance operons Yiren Yang, Shiyang Wu, Ross McCausland Lilley and Ren Zhang School of Biological Sciences, University of Wollongong, NSW, Australia ABSTRACT Transporter-facilitated arsenite extrusion is the major pathway of arsenic resistance within bacteria. So far only two types of membrane-bound transporter proteins, ArsB and ArsY (ACR3), have been well studied, although the arsenic transporters in bacteria display considerable diversity. Utilizing accumulated genome sequence data, we searched arsenic resistance (ars) operons in about 2,500 bacterial strains and located over 700 membrane-bound transporters which are encoded in these operons. Sequence analysis revealed at least five distinct transporter families, with ArsY being the most dominant, followed by ArsB, ArsP (a recently reported permease family), Major Facilitator protein Superfamily (MFS) and Major Intrinsic Protein (MIP). In addition, other types of transporters encoded in the ars operons were found, but in much lower frequencies. The diversity and evolutionary relationships of these transporters with regard to arsenic resistance will be discussed. Subjects Biochemistry, Bioinformatics, Genetics, Genomics Keywords Prokaryotes, Arsenic resistance, Membrane transporters INTRODUCTION Arsenic (As) is the 53rd most abundant element in the earth’s crust, but is the most ubiquitous environmental toxin and carcinogen (Zhuet al., 2014 ). Capable of inhibiting Submitted 27 January 2015 protein function and cell metabolism through disturbing disulfide bonds and ATP Accepted 17 April 2015 Published 12 May 2015 synthesis, arsenic presents hazards to all forms of life. To survive in arsenic environments, Corresponding author organisms have developed a range of arsenic resistance pathways (Tawfik& Viola, 2011 ).
    [Show full text]
  • Novel Heavy Metal Resistance Gene Clusters Are Present in the Genome
    Klonowska et al. BMC Genomics (2020) 21:214 https://doi.org/10.1186/s12864-020-6623-z RESEARCH ARTICLE Open Access Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil Agnieszka Klonowska1, Lionel Moulin1, Julie Kaye Ardley2, Florence Braun3, Margaret Mary Gollagher4, Jaco Daniel Zandberg2, Dora Vasileva Marinova4, Marcel Huntemann5, T. B. K. Reddy5, Neha Jacob Varghese5, Tanja Woyke5, Natalia Ivanova5, Rekha Seshadri5, Nikos Kyrpides5 and Wayne Gerald Reeve2* Abstract Background: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica. Here we have provided an updated taxonomy for STM 6070 and described salient features of the annotated genome, focusing on heavy metal resistance (HMR) loci and heavy metal efflux (HME) systems. Results: The 6,771,773 bp high-quality-draft genome consists of 107 scaffolds containing 6118 protein-coding genes. ANI values show that STM 6070 is a new species of Cupriavidus. The STM 6070 symbiotic region was syntenic with that of the M. pudica-nodulating Cupriavidus taiwanensis LMG 19424T. In contrast to the nickel and zinc sensitivity of C. taiwanensis strains, STM 6070 grew at high Ni2+ and Zn2+ concentrations. The STM 6070 genome contains 55 genes, located in 12 clusters, that encode HMR structural proteins belonging to the RND, MFS, CHR, ARC3, CDF and P-ATPase protein superfamilies.
    [Show full text]
  • Novel Heavy Metal Resistance Gene Clusters Are Present
    Lawrence Berkeley National Laboratory Recent Work Title Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil. Permalink https://escholarship.org/uc/item/05w5p8xs Journal BMC genomics, 21(1) ISSN 1471-2164 Authors Klonowska, Agnieszka Moulin, Lionel Ardley, Julie Kaye et al. Publication Date 2020-03-06 DOI 10.1186/s12864-020-6623-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Klonowska et al. BMC Genomics (2020) 21:214 https://doi.org/10.1186/s12864-020-6623-z RESEARCH ARTICLE Open Access Novel heavy metal resistance gene clusters are present in the genome of Cupriavidus neocaledonicus STM 6070, a new species of Mimosa pudica microsymbiont isolated from heavy-metal-rich mining site soil Agnieszka Klonowska1, Lionel Moulin1, Julie Kaye Ardley2, Florence Braun3, Margaret Mary Gollagher4, Jaco Daniel Zandberg2, Dora Vasileva Marinova4, Marcel Huntemann5, T. B. K. Reddy5, Neha Jacob Varghese5, Tanja Woyke5, Natalia Ivanova5, Rekha Seshadri5, Nikos Kyrpides5 and Wayne Gerald Reeve2* Abstract Background: Cupriavidus strain STM 6070 was isolated from nickel-rich soil collected near Koniambo massif, New Caledonia, using the invasive legume trap host Mimosa pudica. STM 6070 is a heavy metal-tolerant strain that is highly effective at fixing nitrogen with M. pudica. Here we have provided an updated taxonomy for STM 6070 and described salient features of the annotated genome, focusing on heavy metal resistance (HMR) loci and heavy metal efflux (HME) systems. Results: The 6,771,773 bp high-quality-draft genome consists of 107 scaffolds containing 6118 protein-coding genes.
    [Show full text]
  • A C·As Lyase for Degradation of Environmental Organoarsenical
    AC·As lyase for degradation of environmental organoarsenical herbicides and animal husbandry growth promoters Masafumi Yoshinaga1 and Barry P. Rosen Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199 Edited by Jerome Nriagu, University of Michigan, Ann Arbor, MI, and accepted by the Editorial Board April 16, 2014 (received for review February 18, 2014) Arsenic is the most widespread environmental toxin. Substantial More complex pentavalent aromatic arsenicals such as roxarsone amounts of pentavalent organoarsenicals have been used as herbi- [4-hydroxy-3-nitrophenylarsonic acid, Rox(V)] have been largely cides, such as monosodium methylarsonic acid (MSMA), and as used since the middle of the 1940s as antimicrobial growth pro- growth enhancers for animal husbandry, such as roxarsone moters for poultry and swine to control Coccidioides infections (4-hydroxy-3-nitrophenylarsonic acid) [Rox(V)]. These undergo envi- and improve weight gain, feed efficiency, and meat pigmentation ronmental degradation to more toxic inorganic arsenite [As(III)]. We (8, 9). These aromatic arsenicals are largely excreted unchanged previously demonstrated a two-step pathway of degradation of and introduced into the environment when chicken litter is ap- MSMA to As(III) by microbial communities involving sequential reduc- plied to farmland as fertilizer (8). Pentavalent organoarsenicals tion to methylarsonous acid [MAs(III)] by one bacterial species and are relatively benign and less toxic than inorganic arsenicals; demethylation from MAs(III) to As(III) by another. In this study, however, aromatic (8–10) and methyl (11, 12) arsenicals are de- the gene responsible for MAs(III) demethylation was identified from graded into more toxic inorganic forms in the environment, which Bacillus an environmental MAs(III)-demethylating isolate, sp.
    [Show full text]
  • Identification of an Arsenic Resistance and Arsenic-Sensing System in Campylobacter Jejuni
    Veterinary Microbiology and Preventive Medicine Veterinary Microbiology and Preventive Medicine Publications 8-2009 Identification of an Arsenic Resistance and Arsenic- Sensing System in Campylobacter jejuni Liping Wang Iowa State University Byeonghwa Jeon Iowa State University Orhan Sahin Iowa State University, [email protected] Qijing Zhang Iowa State University, [email protected] Follow this and additional works at: http://lib.dr.iastate.edu/vmpm_pubs Part of the Molecular Genetics Commons, Veterinary Microbiology and Immunobiology Commons, and the Veterinary Preventive Medicine, Epidemiology, and Public Health Commons The ompc lete bibliographic information for this item can be found at http://lib.dr.iastate.edu/ vmpm_pubs/165. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Veterinary Microbiology and Preventive Medicine at Iowa State University Digital Repository. It has been accepted for inclusion in Veterinary Microbiology and Preventive Medicine Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. Identification of an Arsenic Resistance and Arsenic-Sensing System in Campylobacter jejuni Abstract Arsenic is commonly present in the natural environment and is also used as a feed additive for animal production. Poultry is a major reservoir for Campylobacter jejuni, a major food-borne human pathogen causing gastroenteritis. It has been shown that Campylobacter isolates from poultry are highly resistant to arsenic compounds, but the molecular mechanisms responsible for the resistance have not been determined, and it is unclear if the acquired arsenic resistance affects the susceptibility of Campylobacter spp.
    [Show full text]
  • Metal-Resistance Genetically Engineered Bacteria Digital Object Identifier
    University of Kentucky UKnowledge KWRRI Research Reports Kentucky Water Resources Research Institute 6-1996 Metal-Resistance Genetically Engineered Bacteria Digital Object Identifier: https://doi.org/10.13023/kwrri.rr.198 Sylvia Daunert University of Kentucky, [email protected] Donna Scott University of Kentucky Sridhar Ramanathan University of Kentucky Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/kwrri_reports Part of the Bacteria Commons, Biotechnology Commons, Genetics and Genomics Commons, and the Water Resource Management Commons Repository Citation Daunert, Sylvia; Scott, Donna; and Ramanathan, Sridhar, "Metal-Resistance Genetically Engineered Bacteria" (1996). KWRRI Research Reports. 10. https://uknowledge.uky.edu/kwrri_reports/10 This Report is brought to you for free and open access by the Kentucky Water Resources Research Institute at UKnowledge. It has been accepted for inclusion in KWRRI Research Reports by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Research Report No. 198 Metal-Resistance Genetically Enginered Bacteria By Sylvia Daunert Principal Investigator Donna Scott Postdoctoral Scholar Sridhar Ramanathan Graduate Assistant Project Number: 94-15 (A-133) Agreement Number: 14-08-0001-02021 Period of Project: July 1994 to June 1996 Kentucky Water Resources Research Institute University of Kentucky Lexington, KY The work on which this report is based was supported in part by the United States Department of the Interior, Washington, D.C. as authorized by the Water Resources Research Act of P.L. 101-397 June 1996 Research Report No.
    [Show full text]
  • Functional Promiscuity of Homologues of the Bacterial Arsa Atpases
    Hindawi Publishing Corporation International Journal of Microbiology Volume 2010, Article ID 187373, 21 pages doi:10.1155/2010/187373 Research Article Functional Promiscuity of Homologues of the Bacterial ArsA ATPases Rostislav Castillo and Milton H. Saier Jr. Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA Correspondence should be addressed to Milton H. Saier Jr., [email protected] Received 3 July 2010; Accepted 7 September 2010 Academic Editor: Ingolf Figved Nes Copyright © 2010 R. Castillo and M. H. Saier Jr. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. TheArsAATPaseofE. coli plays an essential role in arsenic detoxification. Published evidence implicates ArsA in the energization of As(III) efflux via the formation of an oxyanion-translocating complex with ArsB. In addition, eukaryotic ArsA homologues have several recognized functions unrelated to arsenic resistance. By aligning ArsA homologues, constructing phylogenetic trees, examining ArsA encoding operons, and estimating the probable coevolution of these homologues with putative transporters and auxiliary proteins unrelated to ArsB, we provide evidence for new functions for ArsA homologues. They may play roles in carbon starvation, gas vesicle biogenesis, and arsenic resistance. The results lead to the proposal that ArsA homologues energize four distinct and nonhomologous transporters, ArsB, ArsP, CstA, and Acr3. 1. Introduction ArsB is a 12 α-helix transmembrane spanning (TMS) pump extruding As(III) and Sb(III) [6]. Transport via ArsB Arsenical species present threats to all organisms. The can be energized by the pmf or by forming an oxyanion- two predominant states of inorganic arsenic are arsenate translocating complex with the catalytic ArsA subunit, [As(V)] and arsenite [As(III)].
    [Show full text]
  • Whole-Cell Bacterial Biosensors and the Detection of Bioavailable Arsenic
    Whole-Cell Bacterial Biosensors and the Detection of Bioavailable Arsenic August 2003 Prepared by Heather Strosnider National Network of Environmental Management Studies Fellow for U.S. Environmental Protection Agency Office of Solid Waste and Emergency Response Technology Innovation Office Washington, DC www.clu-in.org Whole-Cell Bacterial Biosensors and the Detection of Bioavailable Arsenic NOTICE This document was prepared by a National Network of Environmental Management Studies grantee under a fellowship from the U.S. Environmental Protection Agency. This report was not subject to EPA peer review or technical review. EPA makes no warranties, expressed or implied, including without limitation, warranties for completeness, accuracy, usefulness of the information, merchantability, or fitness for a particular purpose. Moreover, the listing of any technology, corporation, company, person, or facility in this report does not constitute endorse- ment, approval, or recommendation by EPA. i Whole-Cell Bacterial Biosensors and the Detection of Bioavailable Arsenic FOREWORD Arsenic can be found at most sites on the National Priority List and at the top of the Agency for Toxic Substances and Drug Registry’s (ATSDR) 2001 CERCLA Priority List of Hazardous Substances based on its toxicity to human health and potential for human exposure (ATSDR 1993). Current risk assessments for arsenic are calculated based upon the total arsenic present. However, toxicity, solubility, and mobility can all vary depending upon which species of arsenic is present, thus affecting the bioavailability of the arsenic contamination. The bioavailable fraction is the portion of arsenic that is available for biological uptake. Risk assessments could be over or under-estimating the potential risk to the environment and human health by not considering the bioavailability of the arsenic at a contaminated site.
    [Show full text]
  • The Chromobacterium Violaceum Arsr Arsenite Repressor Exerts Tighter Control on Its Cognate Promoter Than the Escherichia Coli System
    fmicb-07-01851 November 17, 2016 Time: 15:41 # 1 ORIGINAL RESEARCH published: 21 November 2016 doi: 10.3389/fmicb.2016.01851 The Chromobacterium violaceum ArsR Arsenite Repressor Exerts Tighter Control on Its Cognate Promoter Than the Escherichia coli System Letícia M. Arruda, Lummy M. O. Monteiro and Rafael Silva-Rocha* Systems and Synthetic Biology Lab, Department of Cell and Molecular Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil Environmental bacteria are endowed with several regulatory systems that have potential applications in biotechnology. In this report, we characterize the arsenic biosensing features of the ars response system from Chromobacterium violaceum in the heterologous host Escherichia coli. We show that the native Pars/arsR system of C. violaceum outperforms the chromosomal ars copy of E. coli when exposed Edited by: Michael Benedik, to micromolar concentrations of arsenite. To understand the molecular basis of Texas A&M University, USA this phenomenon, we analyzed the interaction between ArsR regulators and their Reviewed by: promoter target sites as well as induction of the system at saturating concentrations Jan Roelof Van Der Meer, University of Lausanne, Switzerland of the regulators. In vivo titration experiments indicate that ArsR from C. violaceum Jun-Jie Zhang, has stronger binding affinity for its target promoter than the regulator from E. coli Indiana University School of Medicine, does. Additionally, arsenite induction experiments at saturating regulator concentration USA demonstrates that although the Pars/arsR system from E. coli displays a gradual *Correspondence: Rafael Silva-Rocha response to increasing concentration of the inducer, the system from C. violaceum has [email protected] a steeper response with a stronger promoter induction after a given arsenite threshold.
    [Show full text]