<<

Appendix A: Statistical Tables

A.1 Binomial cdf

Px Table A.1 Cumulative binomial probabilities BxðÞ¼; n; p byðÞ; n; p y¼0 (a) n =5 p 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0 .774 .590 .328 .237 .168 .078 .031 .010 .002 .001 .000 .000 .000 1 .977 .919 .737 .633 .528 .337 .188 .087 .031 .016 .007 .000 .000 x 2 .999 .991 .942 .896 .837 .683 .500 .317 .163 .104 .058 .009 .001 3 1.000 1.000 .993 .984 .969 .913 .812 .663 .472 .367 .263 .081 .023 4 1.000 1.000 1.000 .999 .998 .990 .969 .922 .832 .763 .672 .410 .226

(b) n =10 p 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0 .599 .349 .107 .056 .028 .006 .001 .000 .000 .000 .000 .000 .000 1 .914 .736 .376 .244 .149 .046 .011 .002 .000 .000 .000 .000 .000 2 .988 .930 .678 .526 .383 .167 .055 .012 .002 .000 .000 .000 .000 3 .999 .987 .879 .776 .650 .382 .172 .055 .011 .004 .001 .000 .000 4 1.000 .998 .967 .922 .850 .633 .377 .166 .047 .020 .006 .000 .000 x 5 1.000 1.000 .994 .980 .953 .834 .623 .367 .150 .078 .033 .002 .000 6 1.000 1.000 .999 .996 .989 .945 .828 .618 .350 .224 .121 .013 .001 7 1.000 1.000 1.000 1.000 .998 .988 .945 .833 .617 .474 .322 .070 .012 8 1.000 1.000 1.000 1.000 1.000 .998 .989 .954 .851 .756 .624 .264 .086 9 1.000 1.000 1.000 1.000 1.000 1.000 .999 .994 .972 .944 .893 .651 .401 (continued)

# Springer International Publishing AG 2017 597 M.A. Carlton, J.L. Devore, Probability with Applications in , Science, and Technology, Springer Texts in , DOI 10.1007/978-3-319-52401-6 598 Appendix A: Statistical Tables

Table A.1 (continued) (c) n =15 p 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0 .463 .206 .035 .013 .005 .000 .000 .000 .000 .000 .000 .000 .000 1 .829 .549 .167 .080 .035 .005 .000 .000 .000 .000 .000 .000 .000 2 .964 .816 .398 .236 .127 .027 .004 .000 .000 .000 .000 .000 .000 3 .995 .944 .648 .461 .297 .091 .018 .002 .000 .000 .000 .000 .000 4 .999 .987 .836 .686 .515 .217 .059 .009 .001 .000 .000 .000 .000 5 1.000 .998 .939 .852 .722 .402 .151 .034 .004 .001 .000 .000 .000 6 1.000 1.000 .982 .943 .869 .610 .304 .095 .015 .004 .001 .000 .000 x 7 1.000 1.000 .996 .983 .950 .787 .500 .213 .050 .017 .004 .000 .000 8 1.000 1.000 .999 .996 .985 .905 .696 .390 .131 .057 .018 .000 .000 9 1.000 1.000 1.000 .999 .996 .966 .849 .597 .278 .148 .061 .002 .000 10 1.000 1.000 1.000 1.000 .999 .991 .941 .783 .485 .314 .164 .013 .001 11 1.000 1.000 1.000 1.000 1.000 .998 .982 .909 .703 .539 .352 .056 .005 12 1.000 1.000 1.000 1.000 1.000 1.000 .996 .973 .873 .764 .602 .184 .036 13 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .965 .920 .833 .451 .171 14 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .995 .987 .965 .794 .537

(d) n =20 p 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0 .358 .122 .012 .003 .001 .000 .000 .000 .000 .000 .000 .000 .000 1 .736 .392 .069 .024 .008 .001 .000 .000 .000 .000 .000 .000 .000 2 .925 .677 .206 .091 .035 .004 .000 .000 .000 .000 .000 .000 .000 3 .984 .867 .411 .225 .107 .016 .001 .000 .000 .000 .000 .000 .000 4 .997 .957 .630 .415 .238 .051 .006 .000 .000 .000 .000 .000 .000 5 1.000 .989 .804 .617 .416 .126 .021 .002 .000 .000 .000 .000 .000 6 1.000 .998 .913 .786 .608 .250 .058 .006 .000 .000 .000 .000 .000 7 1.000 1.000 .968 .898 .772 .416 .132 .021 .001 .000 .000 .000 .000 8 1.000 1.000 .990 .959 .887 .596 .252 .057 .005 .001 .000 .000 .000 x 9 1.000 1.000 .997 .986 .952 .755 .412 .128 .017 .004 .001 .000 .000 10 1.000 1.000 .999 .996 .983 .872 .588 .245 .048 .014 .003 .000 .000 11 1.000 1.000 1.000 .999 .995 .943 .748 .404 .113 .041 .010 .000 .000 12 1.000 1.000 1.000 1.000 .999 .979 .868 .584 .228 .102 .032 .000 .000 13 1.000 1.000 1.000 1.000 1.000 .994 .942 .750 .392 .214 .087 .002 .000 14 1.000 1.000 1.000 1.000 1.000 .998 .979 .874 .584 .383 .196 .011 .000 15 1.000 1.000 1.000 1.000 1.000 1.000 .994 .949 .762 .585 .370 .043 .003 16 1.000 1.000 1.000 1.000 1.000 1.000 .999 .984 .893 .775 .589 .133 .016 17 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .996 .965 .909 .794 .323 .075 18 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .992 .976 .931 .608 .264 19 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .997 .988 .878 .642 (continued) Appendix A: Statistical Tables 599

Table A.1 (continued) (e) n =25 p 0.05 0.10 0.20 0.25 0.30 0.40 0.50 0.60 0.70 0.75 0.80 0.90 0.95 0 .277 .072 .004 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 1 .642 .271 .027 .007 .002 .000 .000 .000 .000 .000 .000 .000 .000 2 .873 .537 .098 .032 .009 .000 .000 .000 .000 .000 .000 .000 .000 3 .966 .764 .234 .096 .033 .002 .000 .000 .000 .000 .000 .000 .000 4 .993 .902 .421 .214 .090 .009 .000 .000 .000 .000 .000 .000 .000 5 .999 .967 .617 .378 .193 .029 .002 .000 .000 .000 .000 .000 .000 6 1.000 .991 .780 .561 .341 .074 .007 .000 .000 .000 .000 .000 .000 7 1.000 .998 .891 .727 .512 .154 .022 .001 .000 .000 .000 .000 .000 8 1.000 1.000 .953 .851 .677 .274 .054 .004 .000 .000 .000 .000 .000 9 1.000 1.000 .983 .929 .811 .425 .115 .013 .000 .000 .000 .000 .000 10 1.000 1.000 .994 .970 .902 .586 .212 .034 .002 .000 .000 .000 .000 11 1.000 1.000 .998 .980 .956 .732 .345 .078 .006 .001 .000 .000 .000 x 12 1.000 1.000 1.000 .997 .983 .846 .500 .154 .017 .003 .000 .000 .000 13 1.000 1.000 1.000 .999 .994 .922 .655 .268 .044 .020 .002 .000 .000 14 1.000 1.000 1.000 1.000 .998 .966 .788 .414 .098 .030 .006 .000 .000 15 1.000 1.000 1.000 1.000 1.000 .987 .885 .575 .189 .071 .017 .000 .000 16 1.000 1.000 1.000 1.000 1.000 .996 .946 .726 .323 .149 .047 .000 .000 17 1.000 1.000 1.000 1.000 1.000 .999 .978 .846 .488 .273 .109 .002 .000 18 1.000 1.000 1.000 1.000 1.000 1.000 .993 .926 .659 .439 .220 .009 .000 19 1.000 1.000 1.000 1.000 1.000 1.000 .998 .971 .807 .622 .383 .033 .001 20 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .910 .786 .579 .098 .007 21 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .967 .904 .766 .236 .034 22 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .991 .968 .902 .463 .127 23 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .998 .993 .973 .729 .358 24 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 .999 .996 .928 .723 600 Appendix A: Statistical Tables

A.2 Poisson cdf

Px ; m eÀmmy Table A.2 Cumulative Poisson probabilities PxðÞ¼ y! y¼0 μ .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0 0 .905 .819 .741 .670 .607 .549 .497 .449 .407 .368 l .995 .982 .963 .938 .910 .878 .844 .809 .772 .736 2 1.000 .999 .996 .992 .986 .977 .966 .953 .937 .920 x 3 1.000 1.000 .999 .998 .997 .994 .991 .987 .981 4 1.000 1.000 1.000 .999 .999 .998 .996 5 1.000 1.000 1.000 .999 6 1.000 μ 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 15.0 20.0 0 .135 .050 .018 .007 .002 .001 .000 .000 .000 .000 .000 1 .406 .199 .092 .040 .017 .007 .003 .001 .000 .000 .000 2 .677 .423 .238 .125 .062 .030 .014 .006 .003 .000 .000 3 .857 .647 .433 .265 .151 .082 .042 .021 .010 .000 .000 4 .947 .815 .629 .440 .285 .173 .100 .055 .029 .001 .000 5 .983 .916 .785 .616 .446 .301 .191 .116 .067 .003 .000 6 .995 .966 .889 .762 .606 .450 .313 .207 .130 .008 .000 7 .999 .988 .949 .867 .744 .599 .453 .324 .220 .018 .001 8 1.000 .996 .979 .932 .847 .729 .593 .456 .333 .037 .002 9 .999 .992 .968 .916 .830 .717 .587 .458 .070 .005 10 1.000 .997 .986 .957 .901 .816 .706 .583 .118 .011 11 .999 .995 .980 .947 .888 .803 .697 .185 .021 12 1.000 .998 .991 .973 .936 .876 .792 .268 .039 13 .999 .996 .987 .966 .926 .864 .363 .066 14 1.000 .999 .994 .983 .959 .917 .466 .105 15 .999 .998 .992 .978 .951 .568 .157 x 16 1.000 .999 .996 .989 .973 .664 .221 17 1.000 .998 .995 .986 .749 .297 18 .999 .998 .993 .819 .381 19 1.000 .999 .997 .875 .470 20 1.000 .998 .917 .559 21 .999 .947 .644 22 1.000 .967 .721 23 .981 .787 24 .989 .843 25 .994 .888 26 .997 .922 27 .998 .948 28 .999 .966 29 1.000 .978 30 .987 Appendix A: Statistical Tables 601

A.3 Standard Normal cdf

Table A.3 Standard normal curve areas

z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 –3.4 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0002 –3.3 .0005 .0005 .0005 .0004 .0004 .0004 .0004 .0004 .0004 .0003 –3.2 .0007 .0007 .0006 .0006 .0006 .0006 .0006 .0005 .0005 .0005 –3.1 .0010 .0009 .0009 .0009 .0008 .0008 .0008 .0008 .0007 .0007 –3.0 .0013 .0013 .0013 .0012 .0012 .0011 .0011 .0011 .0010 .0010 –2.9 .0019 .0018 .0017 .0017 .0016 .0016 .0015 .0015 .0014 .0014 –2.8 .0026 .0025 .0024 .0023 .0023 .0022 .0021 .0021 .0020 .0019 –2.7 .0035 .0034 .0033 .0032 .0031 .0030 .0029 .0028 .0027 .0026 –2.6 .0047 .0045 .0044 .0043 .0041 .0040 .0039 .0038 .0037 .0036 –2.5 .0062 .0060 .0059 .0057 .0055 .0054 .0052 .0051 .0049 .0048 –2.4 .0082 .0080 .0078 .0075 .0073 .0071 .0069 .0068 .0066 .0064 –2.3 .0107 .0104 .0102 .0099 .0096 .0094 .0091 .0089 .0087 .0084 –2.2 .0139 .0136 .0132 .0129 .0125 .0122 .0119 .0116 .0113 .0110 –2.1 .0179 .0174 .0170 .0166 .0162 .0158 .0154 .0150 .0146 .0143 –2.0 .0228 .0222 .0217 .0212 .0207 .0202 .0197 .0192 .0188 .0183 –1.9 .0287 .0281 .0274 .0268 .0262 .0256 .0250 .0244 .0239 .0233 –1.8 .0359 .0352 .0344 .0336 .0329 .0322 .0314 .0307 .0301 .0294 –1.7 .0446 .0436 .0427 .0418 .0409 .0401 .0392 .0384 .0375 .0367 –1.6 .0548 .0537 .0526 .0516 .0505 .0495 .0485 .0475 .0465 .0455 –1.5 .0668 .0655 .0643 .0630 .0618 .0606 .0594 .0582 .0571 .0559 –1.4 .0808 .0793 .0778 .0764 .0749 .0735 .0722 .0708 .0694 .0681 –1.3 .0968 .0951 .0934 .0918 .0901 .0885 .0869 .0853 .0838 .0823 –1.2 .1151 .1131 .1112 .1093 .1075 .1056 .1038 .1020 .1003 .0985 –1.1 .1357 .1335 .1314 .1292 .1271 .1251 .1230 .1210 .1190 .1170 –1.0 .1587 .1562 .1539 .1515 .1492 .1469 .1446 .1423 .1401 .1379 –0.9 .1841 .1814 .1788 .1762 .1736 .1711 .1685 .1660 .1635 .1611 –0.8 .2119 .2090 .2061 .2033 .2005 .1977 .1949 .1922 .1894 .1867 –0.7 .2420 .2389 .2358 .2327 .2296 .2266 .2236 .2206 .2177 .2148 –0.6 .2743 .2709 .2676 .2643 .2611 .2578 .2546 .2514 .2483 .2451 –0.5 .3085 .3050 .3015 .2981 .2946 .2912 .2877 .2843 .2810 .2776 –0.4 .3446 .3409 .3372 .3336 .3300 .3264 .3228 .3192 .3156 .3121 –0.3 .3821 .3783 .3745 .3707 .3669 .3632 .3594 .3557 .3520 .3482 –0.2 .4207 .4168 .4129 .4090 .4052 .4013 .3974 .3936 .3897 .3859 –0.1 .4602 .4562 .4522 .4483 .4443 .4404 .4364 .4325 .4286 .4247 –0.0 .5000 .4960 .4920 .4880 .4840 .4801 .4761 .4721 .4681 .4641 (continued) 602 Appendix A: Statistical Tables

Table A.3 (continued) z .00 .01 .02 .03 .04 .05 .06 .07 .08 .09 0.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359 0.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753 0.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141 0.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517 0.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879 0.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224 0.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549 0.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852 0.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133 0.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389 1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621 1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830 1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015 1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177 1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9278 .9292 .9306 .9319 1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441 1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545 1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633 1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706 1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767 2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817 2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857 2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890 2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916 2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936 2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952 2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964 2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974 2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981 2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986 3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990 3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993 3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995 3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997 3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998 Appendix A: Statistical Tables 603

A.4 Incomplete Gamma Function

ð x ; a 1 aÀ1 Ày Table A.4 The incomplete gamma function GxðÞ¼G a y e dy 0 ðÞ α 12 3 4 5678910 1 .632 .264 .080 .019 .004 .001 .000 .000 .000 .000 2 .865 .594 .323 .143 .053 .017 .005 .001 .000 .000 3 .950 .801 .577 .353 .185 .084 .034 .012 .004 .001 4 .982 .908 .762 .567 .371 .215 .111 .051 .021 .008 5 .993 .960 .875 .735 .560 .384 .238 .133 .068 .032 6 .998 .983 .938 .849 .715 .554 .394 .256 .153 .084 7 .999 .993 .970 .918 .827 .699 .550 .401 .271 .170 8 1.000 .997 .986 .958 .900 .809 .687 .547 .407 .283 x 9 .999 .994 .979 .945 .884 .793 .676 .544 .413 10 1.000 .997 .990 .971 .933 .870 .780 .667 .542 11 .999 .995 .985 .962 .921 .857 .768 .659 12 1.000 .998 .992 .980 .954 .911 .845 .758 13 .999 .996 .989 .974 .946 .900 .834 14 1.000 .998 .994 .986 .968 .938 .891 15 .999 .997 .992 .982 .963 .930 604 Appendix A: Statistical Tables

A.5 Critical Values for t Distributions

Central area t density curve

Table A.5 Critical values for t distributions

0

−t critical value t critical value Central area ν 80% 90% 95% 98% 99% 99.8% 99.9% 1 3.078 6.314 12.706 31.821 63.657 318.31 636.62 2 1.886 2.920 4.303 6.965 9.925 22.326 31.598 3 1.638 2.353 3.182 4.541 5.841 10.213 12.924 4 1.533 2.132 2.776 3.747 4.604 7.173 8.610 5 1.476 2.015 2.571 3.365 4.032 5.893 6.869 6 1.440 1.943 2.447 3.143 3.707 5.208 5.959 7 1.415 1.895 2.365 2.998 3.499 4.785 5.408 8 1.397 1.860 2.306 2.896 3.355 4.501 5.041 9 1.383 1.833 2.262 2.821 3.250 4.297 4.781 10 1.372 1.812 2.228 2.764 3.169 4.144 4.587 11 1.363 1.796 2.201 2.718 3.106 4.025 4.437 12 1.356 1.782 2.179 2.681 3.055 3.930 4.318 13 1.350 1.771 2.160 2.650 3.012 3.852 4.221 14 1.345 1.761 2.145 2.624 2.977 3.787 4.140 15 1.341 1.753 2.131 2.602 2.947 3.733 4.073 16 1.337 1.746 2.120 2.583 2.921 3.686 4.015 17 1.333 1.740 2.110 2.567 2.898 3.646 3.965 18 1.330 1.734 2.101 2.552 2.878 3.610 3.922 19 1.328 1.729 2.093 2.539 2.861 3.579 3.883 20 1.325 1.725 2.086 2.528 2.845 3.552 3.850 21 1.323 1.721 2.080 2.518 2.831 3.527 3.819 22 1.321 1.717 2.074 2.508 2.819 3.505 3.792 23 1.319 1.714 2.069 2.500 2.807 3.485 3.767 24 1.318 1.711 2.064 2.492 2.797 3.467 3.745 25 1.316 1.708 2.060 2.485 2.787 3.450 3.725 26 1.315 1.706 2.056 2.479 2.779 3.435 3.707 27 1.314 1.703 2.052 2.473 2.771 3.421 3.690 28 1.313 1.701 2.048 2.467 2.763 3.408 3.674 29 1.311 1.699 2.045 2.462 2.756 3.396 3.659 30 1.310 1.697 2.042 2.457 2.750 3.385 3.646 32 1.309 1.694 2.037 2.449 2.738 3.365 3.622 34 1.307 1.691 2.032 2.441 2.728 3.348 3.601 36 1.306 1.688 2.028 2.434 2.719 3.333 3.582 38 1.304 1.686 2.024 2.429 2.712 3.319 3.566 40 1.303 1.684 2.021 2.423 2.704 3.307 3.551 50 1.299 1.676 2.009 2.403 2.678 3.262 3.496 60 1.296 1.671 2.000 2.390 2.660 3.232 3.460 120 1.289 1.658 1.980 2.358 2.617 3.160 3.373 1 1.282 1.645 1.960 2.326 2.576 3.090 3.291 Appendix A: Statistical Tables 605

A.6 Tail Areas of t Distributions

t curve Area to the right of t Table A.6 t curve tail areas 0 t Degrees of Freedom (ν) t 123456789101112 0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 0.1 .468 .465 .463 .463 .462. .462 .462 .461 .461 .461 .461 .461 0.2 .437 .430 .427 .426 .425 .424 .424 .423 .423 .423 .423 .422 0.3 .407 .396 .392 .390 .388 .387 .386 .386 .386 .385 .385 .385 0.4 .379 .364 .358 .355 .353 .352 .351 .350 .349 .349 .348 .348 0.5 .352 .333 .326 .322 .319 .317 .316 .315 .315 .314 .313 .313 0.6 .328 .305 .295 .290 .287 .285 .284 .283 .282 .281 .280 .280 0.7 .306 .278 .267 .261 .258 .255 .253 .252 .251 .250 .249 .249 0.8 .285 .254 .241 .234 .230 .227 .225 .223 .222 .221 .220 .220 0.9 .267 .232 .217 .210 .205 .201 .199 .197 .196 .195 .194 .193 1.0 .250 .211 .196 .187 .182 .178 .175 .173 .172 .170 .169 .169 1.1 .235 .193 .176 .167 .162 .157 .154 .152 .150 .149 .147 .146 1.2 .221 .177 .158 .148 .142 .138 .135 .132 .130 .129 .128 .127 1.3 .209 .162 .142 .132 .125 .121 .117 .115 .113 .111 .110 .109 1.4 .197 .148 .128 .117 .110 .106 .102 .100 .098 .096 .095 .093 1.5 .187 .136 .115 .104 .097 .092 .089 .086 .084 .082 .081 .080 1.6 .178 .125 .104 .092 .085 .080 .077 .074 .072 .070 .069 .068 1.7 .169 .116 .094 .082 .075 .070 .065 .064 .062 .060 .059 .057 1.8 .161 .107 .085 .073 .066 .061 .057 .055 .053 .051 .050 .049 1.9 .154 .099 .077 .065 .058 .053 .050 .047 .045 .043 .042 .041 2.0 .148 .092 .070 .058 .051 .046 .043 .040 .038 .037 .035 .034 2.1 .141 .085 .063 .052 .045 .040 .037 .034 .033 .031 .030 .029 2.2 .136 .079 .058 .046 .040 .035 .032 .029 .028 .026 .025 .024 2.3 .131 .074 .052 .041 .035 .031 .027 .025 .023 .022 .021 .020 2.4 .126 .069 .048 .037 .031 .027 .024 .022 .020 .019 .018 .017 2.5 .121 .065 .044 .033 .027 .023 .020 .018 .017 .016 .015 .014 2.6 .117 .061 .040 .030 .024 .020 .018 .016 .014 .013 .012 .012 2.7 .113 .057 .037 .027 .021 .018 .015 .014 .012 .011 .010 .010 2.8 .109 .054 .034 .024 .019 .016 .013 .012 .010 .009 .009 .008 2.9 .106 .051 .031 .022 .017 .014 .011 .010 .009 .008 .007 .007 3.0 .102 .048 .029 .020 .015 .012 .010 .009 .007 .007 .006 .006 3.1 .099 .045 .027 .018 .013 .011 .009 .007 .006 .006 .005 .005 3.2 .096 .043 .025 .016 .012 .009 .008 .006 .005 .005 .004 .004 3.3 .094 .040 .023 .015 .011 .008 .007 .005 .005 .004 .004 .003 3.4 .091 .038 .021 .014 .010 .007 .006 .005 .004 .003 .003 .003 3.5 .089 .036 .020 .012 .009 .006 .005 .004 .003 .003 .002 .002 3.6 .086 .035 .018 .011 .008 .006 .004 .004 .003 .002 .002 .002 3.7 .084 .033 .017 .010 .007 .005 .004 .003 .002 .002 .002 .002 3.8 .082 .031 .016 .010 .006 .004 .003 .003 .002 .002 .001 .001 3.9 .080 .030 .015 .009 .006 .004 .003 .002 .002 .001 .001 .001 4.0 .078 .029 .014 .008 .005 .004 .003 .002 .002 .001 .001 .001 606 Appendix A: Statistical Tables

Degrees of Freedom (ν) t 13 14 15 16 17 18 19 20 21 22 23 24 0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 0.1 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 .461 0.2 .422 .422 .422 .422 .422 .422 .422 .422 .422 .422 .422 .422 0.3 .384 .384 .384 .384 .384 .384 .384 .384 .384 .383 .383 .383 0.4 .348 .347 .347 .347 .347 .347 .347 .347 .347 .347 .346 .346 0.5 .313 .312 .312 .312 .312 .312 .311 .311 .311 .311 .311 .311 0.6 .279 .279 .279 .278 .278 .278 .278 .278 .278 .277 .277 .277 0.7 .248 .247 .247 .247 .247 .246 .246 .246 .246 .246 .245 .245 0.8 .219 .218 .218 .218 .217 .217 .217 .217 .216 .216 .216 .216 0.9 .192 .191 .191 .191 .190 .190 .190 .189 .189 .189 .189 .189 1.0 .168 .167 .167 .166 .166 .165 .165 .165 .164 .164 .164 .164 1.1 .146 .144 .144 .144 .143 .143 .143 .142 .142 .142 .141 .141 1.2 .126 .124 .124 .124 .123 .123 .122 .122 .122 .121 .121 .121 1.3 .108 .107 .107 .106 .105 .105 .105 .104 .104 .104 .103 .103 1.4 .092 .091 .091 .090 .090 .089 .089 .089 .088 .088 .087 .087 1.5 .079 .077 .077 .077 .076 .075 .075 .075 .074 .074 .074 .073 1.6 .067 .065 .065 .065 .064 .064 .063 .063 .062 .062 .062 .061 1.7 .056 .055 .055 .054 .054 .053 .053 .052 .052 .052 .051 .051 1.8 .048 .046 .046 .045 .045 .044 .044 .043 .043 .043 .042 .042 1.9 .040 .038 .038 .038 .037 .037 .036 .036 .036 .035 .035 .035 2.0 .033 .032 .032 .031 .031 .030 .030 .030 .029 .029 .029 .028 2.1 .028 .027 .027 .026 .025 .025 .025 .024 .024 .024 .023 .023 2.2 .023 .022 .022 .021 .021 .021 .020 .020 .020 .019 .019 .019 2.3 .019 .018 .018 .018 .017 .017 .016 .016 .016 .016 .015 .015 2.4 .016 .015 .015 .014 .014 .014 .013 .013 .013 .013 .012 .012 2.5 .013 .012 .012 .012 .011 .011 .011 .011 .010 .010 .010 .010 2.6 .011 .010 .010 .010 .009 .009 .009 .009 .008 .008 .008 .008 2.7 .009 .008 .008 .008 .008 .007 .007 .007 .007 .007 .006 .006 2.8 .008 .007 .007 .006 .006 .006 .006 .006 .005 .005 .005 .005 2.9 .006 .005 .005 .005 .005 .005 .005 .004 .004 .004 .004 .004 3.0 .005 .004 .004 .004 .004 .004 .004 .004 .003 .003 .003 .003 3.1 .004 .004 .004 .003 .003 .003 .003 .003 .003 .003 .003 .002 3.2 .003 .003 .003 .003 .003 .002 .002 .002 .002 .002 .002 .002 3.3 .003 .002 .002 .002 .002 .002 .002 .002 .002 .002 .002 .001 3.4 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001 3.5 .002 .002 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001 3.6 .002 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 3.7 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 3.8 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000 3.9 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 4.0 .001 .001 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 Appendix A: Statistical Tables 607

t 25 26 27 28 29 30 35 40 60 120 1(¼ z) 0.0 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 .500 0.1 .461 .461 .461 .461 .461 .461 .460 .460 .460 .460 .460 0.2 .422 .422 .421 .421 .421 .421 .421 .421 .421 .421 .421 0.3 .383 .383 .383 .383 .383 .383 .383 .383 .383 .382 .382 0.4 .346 .346 .346 .346 .346 .346 .346 .346 .345 .345 .345 0.5 .311 .311 .311 .310 .310 .310 .310 .310 .309 .309 .309 0.6 .277 .277 .277 .277 .277 .277 .276 .276 .275 .275 .274 0.7 .245 .245 .245 .245 .245 .245 .244 .244 .243 .243 .242 0.8 .216 .215 .215 .215 .215 .215 .215 .214 .213 .213 .212 0.9 .188 .188 .188 .188 .188 .188 .187 .187 .186 .185 .184 1.0 .163 .163 .163 .163 .163 .163 .162 .162 .161 .160 .159 1.1 .141 .141 .141 .140 .140 .140 .139 .139 .138 .137 .136 1.2 .121 .120 .120 .120 .120 .120 .119 .119 .117 .116 .115 1.3 .103 .103 .102 .102 .102 .102 .101 .101 .099 .098 .097 1.4 .087 .087 .086 .086 .086 .086 .085 .085 .083 .082 .081 1.5 .073 .073 .073 .072 .072 .072 .071 .071 .069 .068 .067 1.6 .061 .061 .061 .060 .060 .060 .059 .059 .057 .056 .055 1.7 .051 .051 .050 .050 .050 .050 .049 .048 .047 .046 .045 1.8 .042 .042 .042 .041 .041 .041 .040 .040 .038 .037 .036 1.9 .035 .034 .034 .034 .034 .034 .033 .032 .031 .030 .029 2.0 .028 .028 .028 .028 .027 .027 .027 .026 .025 .024 .023 2.1 .023 .023 .023 .022 .022 .022 .022 .021 .020 .019 .018 2.2 .019 .018 .018 .018 .018 .018 .017 .017 .016 .015 .014 2.3 .015 .015 .015 .015 .014 .014 .014 .013 .012 .012 .011 2.4 .012 .012 .012 .012 .012 .011 .011 .011 .010 .009 .008 2.5 .010 .010 .009 .009 .009 .009 .009 .008 .008 .007 .006 2.6 .008 .008 .007 .007 .007 .007 .007 .007 .006 .005 .005 2.7 .006 .006 .006 .006 .006 .006 .005 .005 .004 .004 .003 2.8 .005 .005 .005 .005 .005 .004 .004 .004 .003 .003 .003 2.9 .004 .004 .004 .004 .004 .003 .003 .003 .003 .002 .002 3.0 .003 .003 .003 .003 .003 .003 .002 .002 .002 .002 .001 3.1 .002 .002 .002 .002 .002 .002 .002 .002 .001 .001 .001 3.2 .002 .002 .002 .002 .002 .002 .001 .001 .001 .001 .001 3.3 .001 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 3.4 .001 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 3.5 .001 .001 .001 .001 .001 .001 .001 .001 .000 .000 .000 3.6 .001 .001 .001 .001 .001 .001 .000 .000 .000 .000 .000 3.7 .001 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 3.8 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 3.9 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 4.0 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 Appendix B: Background

B.1 Trigonometric Identities

cos ðÞ¼a þ b cos ðÞa cos ðÞÀb sin ðÞa sin ðÞb cos ðÞ¼a À b cos ðÞa cos ðÞþb sin ðÞa sin ðÞb sin ðÞ¼a þ b sin ðÞa cos ðÞþb cos ðÞa sin ðÞb sin ðÞ¼a À b sin ðÞa cos ðÞÀb cos ðÞa sin ðÞb cos ðÞa cos ðÞ¼b ½½Šcos ðÞþa þ b cos ðÞa À b sin ðÞa sin ðÞ¼b ½½Šcos ðÞÀa À b cos ðÞa þ b

B.2 Special Engineering Functions

 1 x  0 uxðÞ¼ 0 x < 0 1

x 0

 1 x  0:5 rectðÞ¼x 0 x > 0:5 1

x −1 −0.5 0 0.5 1 (continued)

# Springer International Publishing AG 2017 609 M.A. Carlton, J.L. Devore, Probability with Applications in Engineering, Science, and Technology, Springer Texts in Statistics, DOI 10.1007/978-3-319-52401-6 610 Appendix B: Background Mathematics

 1 À x x  1 triðÞ¼x 1 0 x > 1

x −10 1 8 < sin ðÞπx x 6¼ 0 π 1 sincðÞx ¼ : x 1 x ¼ 0

x −3 −2 −1 0123

B.3 o(h) Notation

The symbol o(h) denotes any function of h which has the property that

ohðÞ lim ¼ 0 h!0 h Informally, this property says that the value of the function approaches 0 even faster than h approaches 0. For example, consider the function f(h) ¼ h3. Then f(h)/h ¼ h2, which does indeed approach 0 as pffiffiffi pffiffiffi h ! 0. On the other hand, fhðÞ¼ h does not have the o(h) property, since fhðÞ=h ¼ 1= h, which approaches 1 as h ! 0+. Likewise, sin(h) does not have the o(h) property: from calculus, sin(h)/ h ! 1ash ! 0. Note that the sum or difference of two functions that have this property also has this property: o(h) Æ o(h) ¼ o(h). The two o(h) functions need not be the same as long as they both have the property. Similarly, the product of two such functions also has this property: o(h) Á o(h) ¼ o(h).

B.4 The Function

The , δ(x), also called an or impulse function, is such that δ(x) ¼ 0 for x 6¼ 0 and ð 1 δðÞx dx ¼ 1 À1

More generally, an impulse at location x0 with intensity a is a Á δ(x À x0). An impulse is often graphed as an arrow, with the intensity listed in parentheses, as in the accompanying figure. The height of the arrow is meaningless; in fact, the “height” of an impulse is +1. Appendix B: Background Mathematics 611

(a)

x x0

Properties of the delta function: ð ð Basic : 1 1 δðÞx dx ¼ 1, so aδðÞx À x0 dx ¼ a ðÀ1 À1 Antiderivative: x δðÞt dt ¼ uxðÞ À1 δ Rescaling: δðÞ¼cx ðÞx for c 6¼ 0 ð jjc Sifting: 1 gxðÞδðÞx À x0 dx ¼ gxðÞ0 À1 : g(x) ★ δ(x À x0) ¼ g(x À x0)

B.5 Fourier Transforms

The of a function g(t), denoted F fggtðÞ or G( f ), is defined by ð 1 π GfðÞ¼F fggtðÞ ¼ gtðÞeÀj2 ftdt À1 pffiffiffiffiffiffiffi where j ¼ À1.ð The Fourier transform of g(t) exists provided that the integral of g(t) is absolutely 1 convergent; i.e., gtðÞdt < 1. À1 The inverse Fourier transform of a function G( f ), denoted F À1fgGfðÞ or g(t), is defined by ð 1 π gtðÞ¼F À1fgGfðÞ ¼ GfðÞeþj2 ftdf À1 Properties of Fourier transforms:

F Linearity: fga1g1ðÞþt a2g2ðÞt ¼ a1G1ðÞþf a2G2ðÞf Rescaling: 1 f F fggatðÞ¼ G jja a Duality: F fggtðÞ ¼ GfðÞ)F fgGtðÞ ¼ gðÞÀf π Time shift: F Àj2 ft0 ÈÉfg¼gtðÞÀ t0 GfðÞe π F j2 f 0t Frequency shift: gtðÞe ¼ GfðÞÀ f 0 F ★ Time convolution: fgg1ðÞt g2ðÞt ¼ G1ðÞf G2ðÞf F ★ Frequency convolution: fg¼g1ðÞt g2ðÞt G1ðÞf G2ðÞf 612 Appendix B: Background Mathematics

Fourier transform pairs:

g(t) G( f ) 1 δ( f ) u(t) 1 1 δðÞþf 2 j2πf cos(2πf t) 1 0 ½ŠδðÞþf À f δðÞf þ f 2 0 0 sin(2πf t) 1 0 ½ŠδðÞÀf À f δðÞf þ f 2j 0 0 tkeÀatu(t), a > 0, k ¼ 0, 1, 2, ... k! ðÞa þ j2πf kþ1 eÀa|t|, a > 0 2a a2 þ ðÞ2πf 2 2 pffiffiffi 2 2 eÀt πeÀπ f rect(t) sinc( f ) tri(t) sinc2( f )

B.6 Discrete-Time Fourier Transforms

The discrete-time Fourier transform (DTFT) of a function g[n] is defined by

X1 π GFðÞ¼ gn½ŠeÀj2 Fn n¼À1

X1 The DTFT of g[n] exists provided that g[n] is absolutely summable; i.e., jjgn½Š< 1. n¼À1 The inverse DTFT of a function G(F) is defined by ð 1=2 π gn½Š¼ GFðÞeþj2 FndF À1=2

Properties of DTFTs: (an arrow indicates application of the DTFT)

Periodicity: G(F + m) ¼ G(F) for all integers m; i.e., G(F) has period 1

Linearity: a1g1[n]+a2g2[n] ! a1G1(F)+a2G2(F)

Àj2πFn0 Time shift: gn½Š!À n0 GFðÞe

j2πF0n Frequency shift: gn½Še ! GFðÞÀ F0 Time convolution: g [n] ★ g [n] ! G (F)G (F) 1 2 ð 1 2 Frequency convolution: 1=2 ϕ ϕ ϕ g1½Šn g2½Š!n G1ðÞG2ðÞF À d (periodic convolution of G1 and G2) À1=2 Appendix B: Background Mathematics 613

DTFT pairs:

g[n] G(F) 1 δ(F) δ[n]1 u[n] 1 1 δðÞþF 2 1 À eÀj2πF cos(2πF n) 1 0 ½ŠδðÞþF À F δðÞF þ F 2 0 0 sin(2πF n) 1 0 ½ŠδðÞÀF À F δðÞF þ F 2j 0 0 α|n|,|α| < 1 1 À α2 1 þ α2 À 2α cosðÞ 2πF αnu[n], |α| < 1 1 1 À αeÀj2πF Appendix C: Important Probability Distributions

C.1 Discrete Distributions

For discrete distributions, the specified pmf and cdf are valid on the range of the random variable. The cdf and mgf are only provided when simple expressions exist for those functions.

Binomial (n, p) X ~ Bin(n, p) range: {0, 1, ..., n} parameters: n, n ¼ 0, 1, 2, ...(number of trials) < < p,0 p 1 (success probability) pmf: n bxðÞ¼; n; p pxðÞ1 À p nÀx x cdf: B(x; n, p) (see Table A.1) mean: np : np(1 À p) mgf: (1 À p+pet)n Note:Then ¼ 1 case is called a .

Geometric (p) range: {1, 2, 3, ...} parameter: p,0< p < 1 (success probability) pmf: p(1 À p)xÀ1 cdf: 1 À (1 À p)x mean: 1 p variance: 1 À p p2 mgf: pet 1 À ðÞ1 À p et Note: Other sources defined a geometric rv to be the number of failures preceding the first success in independent and identical trials. See Sect. 2.6 for details.

# Springer International Publishing AG 2017 615 M.A. Carlton, J.L. Devore, Probability with Applications in Engineering, Science, and Technology, Springer Texts in Statistics, DOI 10.1007/978-3-319-52401-6 616 Appendix C: Important Probability Distributions

Hypergeometric X ~ Hyp(n, M, N) (n, M, N) range: {max(0, n À N+M), ..., min(n, M)} parameters: n, n ¼ 0, 1, ..., N (number of trials) M, M ¼ 0, 1, ..., N (population number of successes) ... N, N ¼ 1, 2, 3, (population size) M N À M x n À x hxðÞ¼; n; M; N  pmf: N n cdf: H(x; n, M, N) mean: M n Á N  variance: M M N À n n Á Á 1 À Á N N N À 1   a Note: With the understanding that ¼ 0 for a < b, the range of the hypergeometric distribu- b tion can be simplified to {0, ..., n}.

Negative Binomial (r, p) X ~ NB(r, p) range: {r, r +1,r +2,...} parameters: r, r ¼ 1, 2, ...(desired number of successes) < < p,0 p 1 (success probability) pmf: x À 1 nbðÞ¼ x; n; p prðÞ1 À p xÀr r À 1 mean: r p variance: rðÞ1 À p 2 p mgf: pet r 1 À ðÞ1 À p et

Notes:Ther ¼ 1 case corresponds to the . Other sources defined a negative binomial rv to be the number of failures preceding the rth success in independent and identical trials. See Sect. 2.6 for details.

Poisson (μ) range: {0, 1, 2, ...} parameter: μ, μ > 0 (expected number of events) μ pmf: eÀ μx pxðÞ¼; μ x! cdf: P(x; μ) (see Table A.2) mean: μ variance: μ mgf: eμðÞetÀ1 Appendix C: Important Probability Distributions 617

C.2 Continuous Distributions

For continuous distributions, the specified pdf and cdf are valid on the range of the random variable. The cdf and mgf are only provided when simple expressions exist for those functions.

Beta (α, β,A,B) range: [A, B] parameters: α, α > 0 (first shape parameter) β, β > 0 (second shape parameter) A, À1 < A < B (lower bound) B, A < B < 1 (upper bound) α β pdf: 1 ΓðÞα þ β x À A À1 B À x À1 Á B À A ΓðÞÁα ΓðÞβ B À A B À A α mean: A þ ðÞÁB À A α þ β variance: ðÞB À A 2αβ ðÞα þ β 2ðÞα þ β þ 1 Notes:TheA ¼ 0, B ¼ 1 case is called the standard . The α ¼ 1, β ¼ 1 case in the uniform distribution.

Exponential (λ) range: (0, 1) parameter: λ, λ > 0 (rate parameter) λ pdf: λeÀ x λ cdf: 1 À eÀ x mean: 1 λ variance: 1 λ2 mgf: λ t < λ λ À t Note: A second parameter γ, called a threshold parameter, can be introduced to shift the density curve away from x ¼ 0. In that case, X À γ has an .

Gamma (α, β) range: (0, 1) parameters: α, α > 0 (shape parameter) β, β > 0 (scale parameter)

pdf: 1 αÀ1 Àx=β Γ α βα x e ðÞ cdf: x; α G β (see Table A.4) mean: αβ variance: αβ2 α mgf: 1 t < 1/β 1 À βt Notes:Theα ¼ 1, β ¼ 1/λ case corresponds to the exponential distribution. The β ¼ 1 case is called the standard . The α ¼ n (an integer), β ¼ 1/λ case is called the . A third parameter γ, called a threshold parameter, can be introduced to shift the density curve away from x ¼ 0. In that case, X À γ has the two-parameter gamma distribution described above. 618 Appendix C: Important Probability Distributions

Lognormal (μ, σ) range: (0, 1) parameters: μ, À1 < μ < 1 (first shape parameter) σ, σ > 0 (second shape parameter) pdf: 1 μ 2= σ2 pffiffiffiffiffi eÀ½Šln ðÞÀx ðÞ2 πσ 2 x μ cdf: Φ ln ðÞÀx σ mean: μþσ2=2 e  2 2 variance: e2μþσ Á eσ À 1

Note: A third parameter γ, called a threshold parameter, can be introduced to shift the density curve away from x ¼ 0. In that case, X À γ has the two-parameter lognormal distribution described above.

Normal (μ, σ)[or Gaussian (μ, σ)] X ~ N(μ, σ) range: (À1, 1) parameters: μ, À1 < μ < 1 (mean) σ, σ > 0 (standard deviation)

1 μ 2= σ2 pdf: pffiffiffiffiffi eÀðÞxÀ ðÞ2 σ 2π μ Φ x À cdf: σ (see Table A.3) mean: μ variance: σ2 mgf: eμtþσ2t2=2 Note:Theμ ¼ 0, σ ¼ 1 case is called the standard normal or z distribution.

Uniform (A, B) X ~ Unif[A, B] range: [A, B] parameters: A, À1 < A < B (lower bound) B, A < B < 1 (upper bound) pdf: 1 B À A cdf: x À A B À A mean: A þ B 2 variance: ðÞB À A 2 12 mgf: eBt À eAt t 6¼ 0 ðÞB À A t Note:TheA ¼ 0, B ¼ 1 case is called the standard uniform distribution.

Weibull (α, β) range: (0, 1) parameters: α, α > 0 (shape parameter) β, β > 0 (scale parameter) α α pdf: αÀ1 ÀðÞx=β βα x e α cdf: 1 À eÀðÞx=β (continued) Appendix C: Important Probability Distributions 619

  mean: β Γ 1 Á 1 þ α () variance: 2 β2 Γ 2 Γ 1 1 þ α À 1 þ α

Note: A third parameter γ, called a threshold parameter, can be introduced to shift the density curve away from x ¼ 0. In that case, X À γ has the two-parameter described above.

C.3 Matlab and R Commands

Table C.1 indicates the template for Matlab and R commands related to the “named” probability distributions. In Table C.1, x ¼ input to the pmf, pdf, or cdf p ¼ left-tail probability (e.g., p ¼ .5 for the median, or .9 for the 90th percentile) N ¼ simulation size; i.e., the length of the vector of random numbers pars ¼ the set of parameters, in the order prescribed name ¼ a text string specifying the particular distribution

Table C.2 catalogs the names and parameters for a variety of distributions.

Table C.1 Matlab and R syntax for commands Matlab R pmf/pdf namepdf(x,pars) dname(x,pars) cdf namecdf(x,pars) pname(x,pars) Quantile nameinv(p,pars) qname(p,pars) Random #s namernd(pars,N,1) rname(N,pars)

Table C.2 Names and parameter sets for major distributions in Matlab and R Matlab R Distribution name pars name pars Binomial bino n, p binom n, p Geometrica geo p geom p Hypergeometric hyge N, M, n hyper M, N À M, n Negative binomiala nbin r, p nbinom r, p Poisson poiss μ pois μ Betab beta α, β beta α, β Exponential exp 1/λ exp λ Gamma gam α, β gamma α, 1/β Lognormal logn μ, σ lnorm μ, σ Normal norm μ, σ norm μ, σ Uniform unif A, B unif A, B Weibull wbl β, α weibull α, β aThe geometric and negative binomial commands in Matlab and R assume that the random variable counts only failures, and not the total number of trials. See Sect. 2.6 or the software documentation for details. bThe beta distribution commands in Matlab and R assume a standard beta distribution; i.e., with A ¼ 0 and B ¼ 1. Answers to Odd-Numbered Exercises

Chapter 1

1. (a) A \ B0 (b) A [ B (c) (A \ B0) [ (B \ A0) 3. (a) S ¼ {1324, 1342, 1423, 2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231} (b) A ¼ {1324, 1342, 1423, 1432} (c) B ¼ {2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231} (d) A [ B ¼ {1324, 1342, 1423, 1432, 2314, 2341, 2413, 2431, 3214, 3241, 4213, 4231} A \ B ¼ Ø A0 ¼ {2314, 2341, 2413, 2431, 3124, 3142, 4123, 4132, 3214, 3241, 4213, 4231} 5. (a) A ¼ {SSF, SFS, FSS} (b) B ¼ {SSS, SSF, SFS, SSS} (c) C ¼ {SSS, SSF, SFS} (d) C0 ¼ {SFF, FSS, FSF, FFS, FFF} A [ C ¼ {SSS, SSF, SFS, FSS} A \ C ¼ {SSF, SFS} B [ C ¼ {SSS, SSF, SFS, FSS} B \ C ¼ {SSS, SSF, SFS} 7. (a) {111, 112, 113, 121, 122, 123, 131, 132, 133, 211, 212, 213, 221, 222, 223, 231, 232, 233, 311, 312, 313, 321, 322, 323, 331, 332, 333} (b) {111, 222, 333} (c) {123, 132, 213, 231, 312, 321} (d) {111, 113, 131, 133, 311, 313, 331, 333} 9. (a) S ¼ {BBBAAAA, BBABAAA, BBAABAA, BBAAABA, BBAAAAB, BABBAAA, BABABAA, BABAABA, BABAAAB, BAABBAA, BAABABA, BAABAAB, BAAABBA, BAAABAB, BAAAABB, ABBBAAA, ABBABAA, ABBAABA, ABBAAAB, ABABBAA, ABABABA, ABABAAB, ABAABBA, ABAABAB, ABAAABB, AABBBAA, AABBABA, AABBAAB, AABABBA, AABABAB, AABAABB, AAABBBA, AAABBAB, AAABABB, AAAABBB} (b) {AAAABBB, AAABABB, AAABBAB, AABAABB, AABABAB} 13. (a) .07 (b) .30 (c) .57 15. (a) They are awarded at least one of the first two projects, .36 (b) They are awarded neither of the first two projects, .64 (c) They are awarded at least one of the projects, .53 (d) They are awarded none of the projects, .47 (e) They are awarded only the third project, .17 (f) Either they fail to get the first two or they are awarded the third, .75 17. (a) .572 (b) .879 (continued)

# Springer International Publishing AG 2017 621 M.A. Carlton, J.L. Devore, Probability with Applications in Engineering, Science, and Technology, Springer Texts in Statistics, DOI 10.1007/978-3-319-52401-6 622 Answers to Odd-Numbered Exercises

19. (a) SAS and SPSS are not the only packages (b) .7 (c) .8 (d) .2 21. (a) .8841 (b) .0435 23. (a) .10 (b) .18, .19 (c) .41 (d) .59 (e) .31 (f) .69 25. (a) 1/15 (b) 6/15 (c) 14/15 (d) 8/15 27. (a) .85 (b) .15 (c) .22 (d) .35 29. (a) 1/9 (b) 8/9 (c) 2/9 31. (a) 10,000 (b) .9876 (c) .03 (d) .0337 33. (a) 336 (b) 593,775 (c) 83,160 (d) .140 (e) .002 35. (a) 240 (b) 12 (c) 108 (d) 132 (e) .55, .413 37. (a) .0775 (b) .0082 39. (a) 8008 (b) 3300 (c) 5236 (d) .4121, .6538 41. .2 43. (a) .2967 (b) .0747 (c) .2637 (d) .042 45. (a) 369,600 (b) .00006494 47. (a) 1/15 (b) 1/3 (c) 2/3 51. P(A|B) > P(B|A) 53. (a) .50 (b) .0833 (c) .3571 (d) .8333 55. (a) .05 (b) .12 (c) .56, .44 (d) .49, .25 (e) .533 (f) .444, .556 57. .04 59. (a) .50 (b) .0455 (c) .682 (d) .0189 65. (a) 3/4 (b) 2/3 67. (a) .067 (b) .509 71. (a) .765 (b) .235 73. .087, .652, .261 75. .00329 77. .4657 for airline #1, .2877 for airline #2, .2466 for airline #3

81. A2 and A3 are independent 83. .1936, .3816 85. .1052 87. .99999969, .226 89. .9981 91. (a) Yes (b) No 93. (a) .343 (b) .657 (c) .189 (d) .216 (e) .3525 95. (a) P(A) ¼ P(B) ¼ .02, P(A \ B) ¼ .039984, A and B are not independent (b) .04, very little difference (c) P(A \ B) ¼ .0222, not close; P(A \ B) is close to P(A)P(B) when the sample size is very small relative to the population size 97. (a) Route #1 (b) .216 99. (a) 1 À (1 À 1/N)n (b) n ¼ 3: .4212, 1/2; n ¼ 6: .6651, 1; n ¼ 10: .8385, 10/6; the answers are not close (c) .1052, 1/9 ¼ .1111; much closer 101. (a) Exact answer ¼ .46 (b) se  .005 103. .8186 (answers will vary) 105.  .39,  .88 (answers will vary) 107.  .91 (answers will vary) 109.  .02 (answers will vary) 111. (b)  .37 (answers will vary) (c)  176,000,000 (answers will vary; exact ¼ 176,214,841) 113. (a)  .20 (b)  .56 (answers will vary) 115. (a)  .5177 (b)  .4914 (answers will vary) (continued) Answers to Odd-Numbered Exercises 623

117.  .2 (answers will vary) 119. (b) π  4 Á PA^ ðÞ(numerical answers will vary) 121. (a) 1140 (b) 969 (c) 1020 (d) .85 123. (a) .0762 (b) .143 125. (a) .512 (b) .608 (c) .7835 127. .1074 129. (a) 1014 (b) 7.3719 Â 10À9 131. (a) .974 (b) .9754 133. .926 135. (a) .018 (b) .601 137. .156 139. (a) .0625 (b) .15625 (c) .34375 (d) .014 141. (a) .12, .88 (b) .18, .38

143. 1/4 ¼ P(A1 \ A2 \ A3) 6¼ P(A1) Á P(A2) Á P(A3) ¼ 1/8

145. (a) a0 ¼ 0, a5 ¼ 1 (b) a2 ¼ (1/2)a1 + (1/2)a3 (c) ai ¼ i/5 for i ¼ 0, 1, 2, 3, 4, 5 149. (a) .6923 (b) .52

Chapter 2

1. x ¼ 0 for FFF; x ¼ 1 for SFF, FSF, and FFS; x ¼ 2 for SSF, SFS, and FSS; x ¼ 3 for SSS 3. Z ¼ average of the two numbers, with possible values 2/2, 3/2, ..., 12/2; W ¼ of the difference, with possible values 0, 1, 2, 3, 4, 5 5. No. In Example 2.4, let Y ¼ 1 if at most three batteries are examined and let Y ¼ 0 otherwise. Then Y has only two values 7. (a) {0, 1, 2..., 12}; discrete (c) {1, 2, 3, ...}; discrete (e) {0, c,2c, ..., 10000c} where c is the royalty per book; discrete (g) {x: m  x  M} where m and M are the minimum and maximum possible tension; continuous 9. (a) {2, 4, 6, 8, ...}, that is, {2(1), 2(2), 2(3), 2(4), ...}, an infinite ; discrete 11. (a) .10 (c) .45, .25 13. (a) .70 (b) .45 (c) .55 (d) .71 (e) .65 (f) .45 15. (a) (1,2), (1,3), (1,4), (1,5), (2,3), (2,4), (2,5), (3,4), (3,5), (4,5) (b) p(0) ¼ .3, p(1) ¼ .6, p(2) ¼ .1 (c) F(x) ¼ 0 for x < 0, ¼ .3 for 0  x < 1, ¼ .9 for 1  x < 2, and ¼ 1 for x  2 17. (a) .81 (b) .162 (c) it is A; AUUUA, UAUUA, UUAUA, UUUAA; .00324 19. p(0) ¼ .09, p(1) ¼ .40, p(2) ¼ .32, p(3) ¼ .19 21. (b) p(x) ¼ .301, .176, .125, .097, .079, .067, .058, .051, .046 for x ¼ 1, 2, ...,9 (c) F(x) ¼ 0 for x < 1, ¼ .301 for 1  x < 2, ¼ .477 for 2  x < 3, ..., ¼ .954 for 8  x < 9, and ¼ 1 for x  9 (d) .602, .301 23. (a) .20 (b) .33 (c) .78 (d) .53 25. (a) p( y) ¼ (1 À p)y Á p for y ¼ 0, 1, 2, 3, ... 27. (a) 1234, 1243, 1324, ..., 4321 (b) p(0) ¼ 9/24, p(1) ¼ 8/24, p(2) ¼ 6/24, p(3) ¼ 0, p(4) ¼ 1/24 29. (a) 6.45 GB (b) 15.6475 (c) 3.96 GB (d) 15.6475 31. 4.49, 2.12, .68 33. (a) p (b) p(1 À p) (c) p

35. E[h3(X)] ¼ $4.93, E[h4(X)] ¼ $5.33, so 4 copies is better 37. E(X) ¼ (n + 1)/2, E(X2) ¼ (n + 1)(2n + 1)/6, Var(X) ¼ (n2 À 1)/12 39. (b) .61 (c) .47 (d) $2598 (e) $4064 (continued) 624 Answers to Odd-Numbered Exercises

41. (a) μ ¼À$2/38 for both methods (c) single number: σ ¼ $5.76; square: σ ¼ $2.76 45. E(X À c) ¼ E(X) À c, E(X À μ) ¼ 0 47. (a) .25, .11, .06, .04, .01 (b) μ ¼ 2.64, σ ¼ 1.54; for k ¼ 2, the probability is .04, and the bound of .25 is much too conservative; for k ¼ 3, 4, 5, 10, the probability is 0, and the bounds are again conservative (c) μ ¼ $0, σ ¼ $d, 0 (d) 1/9, same as the Chebyshev bound (e) there are many, e.g., p(1) ¼ p(À1) ¼ .02 and p(0) ¼ .96 49. (a) Yes, n ¼ 10, p ¼ 1/6 (b) Yes, n ¼ 40, p ¼ 1/4 (c) No (d) No (e) No (f) Yes, assuming the population is very large; n ¼ 15, p ¼ P(a randomly selected apple weighs > 150 g) 51. (a) .515 (b) .218 (c) .011 (d) .480 (e) .965 (f) .000 (g) .595 53. (a) .354 (b) .115 (c) .918 55. (a) 5 (b) 1.94 (c) .017 57. (a) .403 (b) .787 (c) .774 59. .1478 61. .407, independence 63. (a) .010368 (c) the probability decreases, to .001970 (d) 1500, 259.2 65. (a) .017 (b) .811, .425 (c) .006, .902, .586 67. When p ¼ .9, the probability is .99 for A and .9963 for B.Ifp ¼ .5, the probabilities are .75 and .6875, respectively 69. (a) 20, 16 (b) 70, 21 71. (a) p ¼ 0 or 1 (b) p ¼ .5 73. P(|X À μ|  2σ) ¼ .042 when p ¼ .5 and ¼ .065 when p ¼ .75, compared to the upper bound of .25. Using k ¼ 3 in place of k ¼ 2, these probabilities are .002 and .004, respectively, whereas the upper bound is .11 75. (a) .932 (b) .065 (c) .068 (d) .492 (e) .251 77. (a) .011 (b) .441 (c) .554, .459 (d) .945 79. Poisson(5) (a) .492 (b) .133 81. .271, .857 83. (a) 2.9565, .948 (b) .726 85. (a) .122, .809, .283 (b) 12, 3.464 (c) .530, .011 87. (a) .221 (b) 6,800,000 (c) p(x; 20.106) θ 89. (a) 1/(1 À eÀ ) (b) θ ¼ 2; .981 (c) 1.26 91. (a) .114 (b) .879 (c) .121 (d) Use the with n ¼ 15, p ¼ .10 93. (a) h(x; 15, 10, 20) for x ¼ 5, ..., 10 (b) .0325 (c) .697 95. (a) h(x; 10, 10, 20) (b) .033 (c) h(x; n, n, 2n) 97. (a) .2817 (b) .7513 (c) .4912, .9123 99. (a) nb(x; 2, .5) (b) .188 (c) .688 (d) 2, 4 101. nb(x; 6, .5), 6 103. nb(x; 5, 6/36), 30, 12.2 105. (a) 160, 21.9 (b) .6756 107. (a) .01e9t+.05e10t+.16e11t+.78e12t (b) E(X) 11.71, SD(X) 0.605 ¼ffiffiffi ¼ t t p 109. MX(t) ¼ e /(2 À e ), E(X) ¼ 2, SDðÞ¼X 2 111. Skewness ¼À2.20 (Ex. 107), +0.54 (Ex. 108), +2.12 (Ex. 109), 0 (Ex. 110) 113. E(X) ¼ 0, Var(X) ¼ 2 115. p( y) ¼ (.25)yÀ1(.75) for y ¼ 1, 2, 3, ... t2=2 117. MY ðÞ¼t e , E(Y) ¼ 0, Var(Y) ¼ 1 121. E(X) ¼ 5, Var(X) ¼ 4 t n 123. Mn À X(t) ¼ ( p +(1À p)e ) r t À r 2 125. MY(t) ¼ p [1 À (1 À p)e ] , E(Y) ¼ r(1 À p)/p; Var(Y) ¼ r(1 À p)/p 129. mean  0.5968, sd  0.8548 (answers will vary) (continued) Answers to Odd-Numbered Exercises 625

131.  .9090 (answers will vary) 133. (a) μ  13.5888, σ  2.9381 (b)  .1562 (answers will vary) 135. mean  3.4152, variance  5.97 (answers will vary) 137. (b) 142 tickets 139. (a)  .2291 (b)  $8696 (c)  $7811 (d)  .2342,  $7,767,  $7,571 (answers will vary) 141. (b) probability  .9196, confidence interval ¼ (.9143, .9249) (answers will vary) 143. (b) 3.114, .405, .636 145. (a) b(x; 15, .75) (b) .686 (c) .313 (d) 11.25, 2.81 (e) .310 147. (a) .013 (b) 19 (c) .266 (d) Poisson with μ ¼ 500 149. (a) p(x; 2.5) (b) .067 (c) .109 151. 1.813, 3.05 153. p(2) ¼ p2, p(3) ¼ (1 À p)p2, p(4) ¼ (1 À p)p2, p(x) ¼ [1 À p(2) À ... À p(x À 3)](1 À p)p2 for x ¼ 5, 6, 7, ...; .99950841 155. (a) .0029 (b) .0767, .9702P 1 5 157. (a) .135 (b) .00144 (c) x¼0 [p(x; 2)] 159. 3.590 161. (a) No (b) .0273 2 163. (b) .5 μ1 +.5μ2 (c) .25(μ1 À μ2) + .5(μ1 + μ2) (d) .6 and .4 replace .5 and .5, respectively 165. μ .5 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 167. 500p + 750, 100 pðÞ1 À p 169. (a) 2.50 (b) 3.1

Chapter 3

1. (b) .4625; the same (c) .5, .278125 3. (b) .5 (c) .6875 (d) .6328 5. (a) k ¼ 3/8 (b) .125 (c) .296875 (d) .578125 7. (a) f(x) ¼ 1/4.05 for .20  x  4.25 (b) .3086 (c) .4938 (d) 1/4.05 9. (a) .562 (b) .438, .438 (c) .071 11. (a) .25 (b) .1875 (c) .4375 (d) 1.414 h (e) f(x) ¼ x/2 for 0  x < 2 13. (a) k ¼ 3 (b) F(x) ¼ 1 À 1/x3 for x  1 and ¼ 0 otherwise (c) .125, .088 15. (a) F(x) ¼ x3/8 for 0  x  2, ¼ 0 for x < 0, ¼ 1 for x > 2 (b) .015625 (c) .0137, .0137 (d) 1.817 min 17. (a) .597 (b) .369 (c) f(x) ¼ [ln(4) À ln(x)]/4 for 0 < x < 4 19. (a) 1.333 h (b) .471 h (c) $2 21. (a) .8182 ft3 (b) .3137 23. (a) A +(B À A)p (b) (A+B)/2 (c) (Bn+1 À An+1)/[(n + 1)(B À A)] 25. 314.79 m2 27. 248 F, 3.6 F 29. 1/4 min, 1/4 min 2 31. (c) μR  v/20, σR  v/800 (d) ~100π (e) ~80π 5t À5t 33. g(x) ¼ 10x À 5, MY(t) ¼ (e À e )/10t, Y ~ Unif[À5, 5] .5t 35. (a) MX(t) ¼ .15e /(.15 À t), μ ¼ 7.167, variance ¼ 44.444 (b) .15/(.15 À t), μ ¼ 6.67, variance ¼ 44.444 (c) MY(t) ¼ .15/(.15 À t) 39. (a) .4850 (b) .3413 (c) .4938 (d) .9876 (e) .9147 (f) .9599 (g) .9104 (h) .0791 (i) .0668 (j) .9876 41. (a) 1.34 (b) À1.34 (c) .675 (d) À.675 (e) À1.555 43. (a) .9664 (b) .2451 (c) .8664 45. (a) .4584 (b) 135.8 kph (c) .9265 (d) .3173 (e) .6844 47. (a) .9236 (b) .0021 (c) .1336 (continued) 626 Answers to Odd-Numbered Exercises

49. .6826 < .9987 ) the second machine 51. (a) .2514, ~0 (b) ~39.985 ksi 53. σ ¼ .0510 55. (a) .8664 (b) .0124 (c) .2718 57. (a) .7938 (b) 5.88 (c) 7.938 (d) .2651 59. (a) Φ(1.72) À Φ(.55) (b) Φ(.55) À [1 À Φ(1.72)] 61. (a) .7286 (b) .8643, .8159 63. (a) .9932 (b) .9875 (c) .8064 65. (a) .0392 (b) ~1 69. (a) .1587 (b) .0013 (c) .999937 (d) .00000029 71. (a) 1 (b) 1 (c) .982 (d) .129 73. (a) .1481 (b) .0183 pffiffiffi 75. (a) 120 (b)ðÞ 3=4 π (c) .371 (d) .735 (e) 0 77. (a) .424 (b) .567; median < 24 (c) 60 weeks (d) 66 weeks

79. ηp ¼Àln(1 À p)/λ, η ¼ .693/λ 81. (a) .5488 (b) .3119 (c) 7.667 s (d) 6.667 s 85. (a) .8257, .8257, .0636 (b) .6637 (c) 172.727 h 89. (a) .9295 (b) .2974 (c) 98.184 ksi 91. (a) μ ¼ 9.164, σ ¼ .38525 (b) .8790 (c) .4247 (d) no μ 93. η ¼ e ¼ 9547 kg/day/km 95. (a) 3.96, 1.99 months (b) .0375 (c) .7016 (d) 7.77 months (e) 13.75 months (f) 4.522 97. α ¼ β 99. (b) Γ(α + β)Γ(m + β)/[Γ(α + m + β)Γ(β)], β/(α + β) 101. Yes, since the pattern in the plot is quite linear 103. Yes 105. Yes 107. Plot ln(x) versus z percentile. The pattern is somewhat straight, so a lognormal distribution is plausible 109. It is plausible that strength is normally distributed, because the pattern is reasonably linear 111. There is substantial curvature in the plot. λ is a scale parameter (as is σ for the normal family) 3 113. fY( y) ¼ 2/y for y > 1 115. Ày2=2 > f Y ðÞ¼y ye for y 0 117. fY( y) ¼ 1/16 for 0 < y < 16 2 119. fY( y) ¼ 1/[π(1 + y )] for À1 < y < 1 121. Y ¼ g(X) ¼ X2/16 ÂÃffiffiffi = p < 123. f Y ðÞ¼y 1 2 y for 0 y  1 8 ÀÁpffiffiffi 125. <> 1= 4 y 0 < y  1 ÀÁpffiffiffi f ðÞ¼y 1= 8 y 1 < y  9 Y :> 0 otherwise pffiffiffi 129. (a) FxðÞ¼x2=4, FÀ1ðÞ¼u 2 u (c) μ ¼ 1.333, σ ¼ 0.4714, x and s will vary ÂÃpffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 131. The inverse cdf is FÀ1ðÞ¼u 1 þ 48u À 1 =3 θ 133. (a) The inverse cdf is FÀ1(u) ¼ τ Á [1 À (1 À u)1/ ] (b) E(X) ¼ 16, x will vary 135. (a) c 1.5 (c) 15,000 (d) μ 3/8, x will vary (e) PM^ <:1 :8760 (answers will vary) ¼ ¼ pffiffiffiffiffiffiffiffiffiffi ðÞ¼ 137. (a) x ¼ GÀ1(u) ¼Àln(1 À u) (b) 2e=π  1:3155 (c) ~13,155 141. (a) .4 (b) .6 (c) F(x) ¼ x/25 for 0  x  25, ¼ 0 for x < 0, ¼ 1 for x > 25 (d) 12.5, 7.22 143. (b) F(x) ¼ 1 À 16/(x +4)2 for x > 0, ¼ 0 for x  0 (c) .247 (d) 4 years (e) 16.67 145. (a) .6568 (b) 41.56 V (c) .3197 147. (a) .0003 (exact: .00086) (b) .0888 (exact: .0963) (continued) Answers to Odd-Numbered Exercises 627

149. (a) 68.03 dB, 122.09 dB (b) .3204 (c) .7642, because the lognormal distribution is not symmetric 151. (a) F(x) ¼ 1.5(1 À 1/x) for 1  x  3, ¼ 0 for x < 1, ¼ 1 for x > 3 (b) .9, .4 (c) 1.648 s (d) .553 s (e) .267 s 153. (a) 1.075, 1.075 (b) .0614, .333 (c) 2.476 mm 155. (b) $95,600, .3300 157. (b) F(x) ¼ .5e2x for x < 0, ¼ 1 À .5eÀ2x for x  0 (c) .5, .665, .256, .670 α α 159. (a) k ¼ (α À 1)5 À1, α > 1 (b) F(x) ¼ 1 À (5/x) À1 for x  5 (c) 5(α À 1)/(α À 2), α > 2 161. (b) .4602, .3636 (c) .5950 (d) 140.178 MPa pffiffiffi 163. (a) Weibull, with α ¼ 2 and β ¼ 2σ (b) .542 165. .5062 171. (a) 710, 84.423, .684 (b) .376

Chapter 4

1. (a) .20 (b) .42 (c) .70 (d) pX(x) ¼ .16, .34, .50 for x ¼ 0, 1, 2; pY( y) ¼ .24, .38, .38 for y ¼ 0, 1, 2; .50 (e) no

3. (a) .15 (b) .40 (c) .22 (d) .17, .46 (e) p1(x1) ¼ .19, .30, .25, .14, .12 for x1 ¼ 0, 1, 2, 3, 4 (f) p2(x2) ¼ .19, .30, .28, .23 for x2 ¼ 0, 1, 2, 3 (g) no 5. (a) .0305 (b) .1829 (c) .1073 7. (a) .054 (b) .00018 9. (a) .030 (b) .120 (c) .300 (d) .380 (e) no 2 11. (a) k ¼ 3/380,000 (b) .3024 (c) .3593 (d) fX(x) ¼ 10kx + .05 for 20  x  30 (e) no Àμ Àμ x y μ μ e 1 2 μ μ μ μ À 1À 2 m 13. ; 1 2 À 1À 2 μ μ e μ μ (a) pxðÞ¼y x!y! (b) e ½Š1 þ 1 þ 2 (c) m! ðÞ1 þ 2 15. (a) f(x, y) ¼ eÀxÀy for x, y  0 (b) .400 (c) .594 (d) .330 λ λ λ λ λ 17. (a) F( y) ¼ (1 À eÀ y)+(1À eÀ y)2 À (1 À eÀ y)3 for y > 0, f( y) ¼ 4λeÀ2 y À3λeÀ3 y for y > 0 (b) 2/3λ pffiffiffiffiffiffiffiffiffi 19. π π 2 r2Àx2 (a) .25 (b) 1/ (c) 2/ (d) f XðÞ¼x πr2 for Àr  x  r, fY( y) ¼ fX( y), no 21. 1/3

23. (a) .11 (b) pX(x) ¼ .78, .12, .07, .03 for x ¼ 0, 1, 2, 3; pY( y) ¼ .77, .14, .09 for y ¼ 0, 1, 2 (c) no (d) 0.35, 0.32 (e) 95.72 25. .15 27. L2 29. .25 h, or 15 min 31. À2/3 33. (a) À3.20 (b) À.207 35. (a) .238 (b) .51 ÐÐ ÐÐ 37. (a) Var(h(X, Y)) ¼ [h(x, y)]2 Á f(x, y)dA À [ h(x, y) Á f(x, y)dA]2 (b) 13.34 43. (a) 87,850, 4370.37 (b) mean yes, variance no (c) .0027 45. .2877, .3686 47. .0314 49. (a) 45 min (b) 68.33 (c) À1 min, 13.67 (d) À5 min, 68.33 51. (a) 50, 10.308 (b) .0075 (c) 50 (d) 111.5625 (e) 131.25 53. (a) .9616 (b) .0623

55. (a) E(Yi) ¼ 1/2, E(W) ¼ n(n + 1)/4 (b) Var(Yi) ¼ 1/4, Var(W) ¼ n(n + 1)(2n + 1)/24 57. 10:52.76 a.m. pffiffiffi 59. (a) mean ¼ 0, sd ¼ 2 61. (a) X ~ Bin(10, 18/38) (b) Y ~ Bin(15, 18/38) (c) X+Y~ Bin(25, 18/38) (f) no 65. (a) α ¼ 2, β ¼ 1/λ (c) gamma, α ¼ n, β ¼ 1/λ 67. (a) .5102 (b) .000000117 (continued) 628 Answers to Odd-Numbered Exercises

ffiffiffi 2 4 2 < < 2 < =p < < 69. (a) x /2, x /12 (b) f(x, y) ¼ 1/x for 0 y x 1 (c) f YðÞ¼y 1 y À1 for 0 y 1

71. (a) pX(x) ¼ 1/10 for x ¼ 0, 1, ...,9;p(y|x) ¼ 1/9 for y ¼ 0, ..., 9 and y 6¼ x; p(x, y) ¼ 1/90 for x, y ¼ 0, 1, ..., 9 and y 6¼ x (b) 5 À x/9 2 73. (a) fX(x) ¼ 2x,0< x < 1 (b) f(y|x) ¼ 1/x,0< y < x (c) .6 (d) no (e) x/2 (f) x /12 75. ; 2! : x : y : 2ÀxÀy (a) pxðÞ¼y x!y!ðÞ2ÀxÀy ! ðÞ3 ðÞ2 ðÞ5 (b) X ~ Bin(2, .3), Y ~ Bin(2, .2) (c) YjX ¼ x ~ Bin(2 À x, .2/.7) (d) no (e) (4 À 2x)/7 (f) 10(2 À x)/49 2 77. (a) x/2, x /12 (b) f(x, y) ¼ 1/x for 0 < y < x < 1 (c) fY( y) ¼Àln( y) for 0 < y < 1 79. (a) .6x, .24x (b) 60 (c) 60 81. 176 lbs, 12.68 lbs pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 83. (a) 1 + 4p,4p(1 À p) (b) $2598, 16,158,196 (c) 2598(1 + 4p), 16518196 þ 93071200p À 26998416p2 (d) $2598 and $4064 for p ¼ 0; $7794 and $7504 for p ¼ .5; $12,990 and $9088 for p ¼ 1 85. (a) 12 cm, .01 cm (b) 12 cm, .005 cm (c) the larger sample 87. (a) .9772, .4772 (b) 10 89. 43.29 h 91. .9332 93. (a) .8357 (b) no 95. (a) .1894 (b) .1894 (c) 621.5 gallons 97. (a) .0968 (b) .8882 99. .9616 101. 1=X 103. 1 À y2þy2 =4 1 Ày2=4 (a) fyðÞ¼; y e ðÞ1 2 (b) f ðÞ¼y pffiffiffiffi e 1 (c) yes 1 2 4π Y1 1 4π 105. (a) y2 for 0  y  1 and y(2 À y) for 1 < y  2 (b) 2(1 À w) for 0  w  1 2 107. 4y3[ln(y3)] for 0 < y3 < 1 111. (a) N(984, 197.45) (b) .1379 (c) 1237 113. (a) N(158, 8.72) (b) N(170, 8.72) (c) .4090 115. (a) .8875x + 5.2125 (b) 111.5775 (c) 10.563 (d) .0951 117. (a) 2x À 10 (b) 9 (c) 3 (d) .0228 119. (a) .1410 (b) .1165 2 121. (a) RtðÞ¼eÀt (b) .1054 (c) 2t (d) 0.886 thousand hours 123. (a) R(t) ¼ 1 À .125t3 for 0  t  2, ¼ 0 for t > 2 (b) 3t2/(8 À t3) (c) undefined ÀÁ  3 125. 4 Àt2 Àt2 Àt2 8te 1Àe (a) parallel (b) RtðÞ¼1 À 1 À e (c) htðÞ¼ 4 1ÀðÞ1ÀeÀt2 127. (a) [1 À (1 À R1(t))(1 À R2(t))][1 À (1 À R3(t))(1 À R4(t))][1 À(1 À R5(t))(1 À R6(t))] (b) 70 h 129. ÀαðÞtÀt2=½Š2β À αβ/2 t ÀαðÞtÀt2=½Š2β (a) RtðÞ¼e for t  β, ¼ e for t > β (b) ftðÞ¼α 1 À β e 133. (a) 5y4/105 for 0 < y < 10, 8.33 min (b) 6.67 min (c) 5 min (d) 1.409 min 135. (a) .0238 (b) $2,025  137. n!ΓðÞi þ 1=θ n!ΓðÞi þ 2=θ n!ΓðÞi þ 1=θ 2 , À ðÞi À 1 !ΓðÞn þ 1=θ þ 1 ðÞi À 1 !ΓðÞn þ 2=θ þ 1 ðÞi À 1 !ΓðÞn þ 1=θ þ 1

139. E(Yk+1) ¼ η 143. (b) PX^ ðÞ 1, Y  1 ¼ :4154 (answers will vary), exact ¼ .42 (c) mean  0.4866, sd  0.6438 (answers will vary) 145. (b) 60,000 (c) 7.0873, 1.0180 (answers will vary) (d) .2080 (answers will vary) 2 2 147. (a) fX(x) ¼ 12x(1 À x ) for 0  x  1, f(y|x) ¼ 2y/(1 À x) for 0  y  1 À x (c) we expect 16/9 candidates per accepted value, rather than 6

149. (a) pX(100) ¼ .5 and pX(250) ¼ .5 (b) p(y|100) ¼ .4, .2, .4 for y ¼ 0, 100, 200; p(y|250) ¼ .1, .3, .6 for y 0, 100, 200 ¼ pffiffiffiffiffiffiffiffiffiffiffiffiffi 2 151. (a) N(μ1, σ1), N(μ2 + ρσ2/σ1[(x À μ1)], σ2 1 À ρ ) 153. (b) μ^ ¼ 196:6193 h, standard error ¼ 1.045 h (answers will vary) (c) .9554, .0021 (answers will vary) (continued) Answers to Odd-Numbered Exercises 629

À t/2 À t 155. fT(t) ¼ e À e for t > 0 2 2 3 157. (a) k ¼ 3/81,250 (b) fX(x) ¼ k(250x À 10x ) for 0  x  20, ¼ k(450x À 30x +.5x ) for 20  x  30; fY( y) ¼ fX( y); not independent (c) .355 (d) 25.969 lb (e) À32.19, À.894 (f) 7.66 159. t ¼ E(X+Y) ¼ 1.167 163. (c) p ¼ 1, because μ < 1; p ¼ 2/3 < 1, because μ > 1 165. (a) F(b, d) À F(a, d) À F(b, c)+F(a, c) (b) F(10,6) À F(4,6) À F(10,1) + F(4,1); F(b, d) À F(a À 1,d) À F(b, c À 1) + F(a À 1,cÀ 1) (c) At each (x*, y*), F(x*, y*) is the sum of the probabilities at points (x, y) such that x  x* and y  y*. The table of F(x, y) values is x 100 250 200 :50 1 y 100 :30 :50 0 :20 :25

(d) FxðÞ¼; y :6x2y þ :4xy3,0 x  1; 0  y  1; FxðÞ¼; y 0, x  0; FxðÞ¼; y 0, y  0; FxðÞ¼; y :6x2 þ :4x,0 x  1, y > 1; FxðÞ¼; y :6y þ :4y3, x > 1, 0  y  1; FxðÞ¼; y 1, x > 1, y > 1 PðÞ¼:25  x  :75, :25  y  :75 :23125 (e) FxðÞ¼; y 6x2y2, x þ y  1, 0  x  1; 0  y  1, x  0, y  0 FxðÞ¼; y 3x4 À 8x3 þ 6x2 þ 3y4 À 8y3 þ 6y2 À 1, x þ y > 1, x  1, y  1 FxðÞ¼; y 0, x  0; FxðÞ¼; y 0, y  0; FxðÞ¼; y 3x4 À 8x3 þ 6x2,0 x  1, y > 1 FxðÞ¼; y 3y4 À 8y3 þ 6y2,0 y  1, x > 1 FxðÞ¼; y 1, x > 1, y > 1 167. (a) 2x, x (b) 40 (c) 100 169. Undefined,  0 171. 2 , 1500 h ðÞ1 À 1000t ðÞ2 À 1000t 173. Not valid for 75th percentile, but valid for 50th percentile; μ σ μ σ μ μ σ σ sum of percentiles ¼ ( 1 + z 1)+(p2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi+ z 2) ¼ 1 + 2 + z( 1 + 2), μ μ σ2 σ2 percentile of sums ¼ ðÞþ1 þ 2 z 1 þ 2 175. (a) 2360, 73.7 (b) .9713 177. .9686 179. .9099 181. .8340 183. σ2 (a) W (b) .9999 σ2 σ2 W þ E 185. 26, 1.64 n À 2 187. (a) g(y1, yn) ¼ n(n À 1)[F(yn) À F(y1)] f(y1)f(yn) for y1 < yn n À 2 (b) f(w1, w2) ¼ n(n ðÀ 1)[F(w1 + w2) À F(w1)] f(w1)f(w1 + w2), 1 nÀ2 f W2 ðÞ¼w2 nnðÞÀ 1 ½ŠFwðÞÀ1 þ w2 FwðÞ1 fwðÞ1 fwðÞ1 þ w2 dw1 À1 n À 2 (c) n(n À 1)w2 (1 À w2) for 0  w2  1

191. (a) 10/9 (b) 10/8 (c) 1 + Y2 + ... + Y10, 29.29 boxes (d) 11.2 boxes

Chapter 5

1. (a) x ¼ 113:73 (b) ex ¼ 113 (c) s ¼ 12.74 (d) .9091 (e) s=x ¼ 11:2 3. (a) x ¼ 1:3481 (b) x ¼ 1:3481 (c) xþ 1:28s ¼ 1:7814 (d) .6736 (continued) 630 Answers to Odd-Numbered Exercises

5. θ^  θ^ τ  θ^ τ X : 1 ¼ NX ¼ 1, 703, 000, 2 ¼ À ND ¼ 1, 591, 300, 3 ¼ Á Y ¼ 1, 601, 438 281 7. (a) 120.6 (b) 1,206,000 (c) .80 (d) 120 pffiffiffi pffiffiffi 9. (a) X; x ¼ 2:11 (b) μ= n, .119 11. (b) nλ/(n 1) (c) n2λ2/(n 1)2(n 2) pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiÀ À À pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 13. = = ^ = ^ = ^ ^ = ^ ^ = (b) p1q1 n1 þ p2q2 n2 (c) with p 1 ¼ x1 n1 and p 2 ¼ x2 n2, p 1q 1 n1 þ p 2q 2 n2 (d) À.245 (e) .041 2 17. (a) ∑ Xi /2n (b) 74.505 19. (b) .444 21. (a) p^ ¼ 2Y=n À :3; .2 (c) (10/7)Y/n À 9/70 pffiffi npþ1=2 pðÞ1Àp 1 23. (a) pffiffi , pffiffi , pffiffi ; the MSE does not depend on p (b) when p is near .5, the MSE from part (a) is nþ1 ðÞnþ1 2 4ðÞnþ1 2 smaller; when p is near 0 or 1, the usual has lower MSE 25. (a) p^ ¼ x=n ¼ :15 (b) yes (c) .4437 27. x, y, xÀ y 29. p^ ¼ r=x ¼ :15, yes X qffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 31. θ^ 2= : ^η : θ^ : (a) ¼ Xi 2n ¼ 74 505, yes (b) ¼ À2lnðÞ5 ¼ 10 163 33. Xn ^ n xi (a) θ ¼ Σ =τ (b) ðÞθ À 1 ¼ n, subject to τ > max(xi) À lnðÞ 1Àxi τ i¼1 À xi ^ X n 35. λ ¼ n ðÞYi=ti i¼1 37. (a) 2.228 (b) 2.131 (c) 2.947 (d) 4.604 (e) 2.492 (f) ~2.715 39. (a) A normal probability plot of these 20 values is quite linear. (b) (23.79, 26.31) (c) yes 41. (a) (357.38, 384.01) (b) narrower 43. (a) Based on a normal probability plot, it is reasonable to assume the sample observations came from a . (b) (430.51, 446.08); 440 is plausible, 450 is not 45. Interval (c) 47. 26.14 49. (c) (12.10, 31.70) 51. (a) yes (b) no (c) no (d) yes (e) no (f) yes

53. Using Ha: μ < 100 results in the welds being believed in conformance unless proved otherwise, so the burden of proof is on the nonconformance claim

55. (a) reject H0 (b) reject H0 (c) don’t reject H0 (d) reject H0 (e) don’t reject H0 57. (a) .040 (b) .018 (c) .130 (d) .653 (e) <.005 (f) ~.000 59. (a) .0778 (b) .1841 (c) .0250 (d) .0066 (e) .5438

61. (a) H0: μ ¼ 10 versus Ha: μ < 10 (b) reject H0 (c) don’t reject H0 (d) reject H0

63. (a) no; no, because n ¼ 49 (b) H0: μ ¼ 1.0 versus Ha: μ < 1.0, z ¼À5.79, reject H0, yes

65. H0: μ ¼ 200 versus Ha: μ > 200, t ¼ 1.19 at ll df, P-value ¼ .128, do not reject H0

67. H0: μ ¼ 3 versus Ha: μ 6¼ 3, t ¼À1.759, P-value ¼ .082, reject H0 at α ¼ .10 but not at α ¼ .05

69. H0: μ ¼ 360 versus Ha: μ > 360, t ¼ 2.24 at 25 df, P-value ¼ .018, reject H0, yes

71. H0: μ ¼ 15 versus Ha: μ < 15, z ¼À6.17, P-value  0, reject H0, yes

73. H0: σ ¼ .05 versus Ha: σ < .05. Type I error: Conclude that the standard deviation is <.05 mm when it is really equal to .05 mm. Type II error: Conclude that the standard deviation is .05 mm when it is really <.05 75. Type I: saying that the plant is not in compliance when in fact it is. Type II: conclude that the plant is in compliance when in fact it isn’t 77. (.224, .278) 79. (.496, .631) 81. (.225, .275) 83. (b) 342 (c) 385

85. H0: p ¼ .15 versus Ha: p > .15, z ¼ 0.69, P-value ¼ .2451, fail to reject H0 (continued) Answers to Odd-Numbered Exercises 631

87. (a) H0: p ¼ .25 versus Ha: p < .25, z ¼À1.01, P-value ¼ .1562, fail to reject H0: the winery should switch to screw tops (b) Type I: conclude that less than 25% of all customers find screw tops acceptable, when the true percentage is 25%. Type II: fail to recognize that less than 25% of all customers find screw tops acceptable when that’s actually true. Type II

89. (a) H0: p ¼ .2 versus Ha: p > .2, z ¼ 1.27, P-value ¼ .1020, fail to reject H0 (b) Type I: conclude that more than 20% of the population of female workers is obese, when the true percentage is 20%. Type II: fail to recognize that more than 20% of the population of female workers is obese when that’s actually true

91. H0: p ¼ .1, Ha: p > .1, z ¼ 0.74, P-value  .23, fail to reject H0

93. H0: p ¼ .1 versus Ha: p > .1, z ¼ 1.33, P-value ¼ .0918, fail to reject H0; Type II

95. H0: p ¼ .25 versus Ha: p < .25, z ¼À6.09, P-value  0, reject H0

97. (a) H0: p ¼ .2 versus Ha: p > .2, z ¼ 0.97, P-value ¼ .166, fail to reject H0, so no modification appears necessary (b) .9974 99. (a) Gamma(9, 5/3) (b) Gamma(145, 5/53) (c) (11.54, 15.99) 101. B(490, 455), the same posterior distribution found in the example

103. Gamma(α + Σ xi, 1/(n +1/β)) 105. Beta(α +x, β +nÀ x)

107. n/∑kxk ¼ .0436 109. No: EðÞ¼σ^ 2 σ2=2 Σ 111. (a) expected payoff ¼ 0 (b) θ^ ¼ xiþ2y Σxiþ2n 113. (a) The pattern of points in a normal probability plot (not shown) is reasonably linear, so, yes, normality is plausible. (b) (33.53, 43.79) 115. (.1295, .2986) 117. (a) A normal probability plot lends to the assumption that pulmonary compliance is normally distributed. (b) (196.88, 222.62) 119. (a) (.539, .581) (b) 2401 pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi 121. : 2 2 : 2 x1x2Æ1 96 x1þx2ÀðÞ1 96 2 2 2 (a) N(0, 1) (b) 2 : 2 provided x1 + x2  (1.96) x2ÀðÞ1 96 123. (a) 90.25% (b) at least 90% (c) at least 100(1 À kα)% pffiffiffi 125. (a) H0: μ ¼ 2150 versus Ha: μ > 2150 (b) t ¼ ðÞxÀ 2150 =ðÞs= n (c) 1.33 (d) .107 (e) fail to reject H0

127. H0: μ ¼ 29.0 versus Ha: μ > 29.0, t ¼ .7742, P-value ¼ .232, fail to reject H0

129. H0: μ ¼ 9.75 versus Ha: μ > 9.75, t ¼ 4.75, P-value  0. The condition is not met.

131. H0: μ ¼ 1.75 versus Ha: μ 6¼ 1.75, t ¼ 1.70, P-value ¼ .102, do not reject H0; the data does not contradict prior research

133. H0: p ¼ .75 versus Ha: p < .75, z ¼À3.28, P-value ¼ .0005, reject H0 À7 135. (a) H0: p  .02 versus Ha: p > .02; with X ~ Bin(200, .02), P-value ¼ P(X  17) ¼ 7.5  10 ; reject H0 here and conclude that the NIST benchmark is not satisfied (b) .2133

137. H0: μ ¼ 4 versus Ha: μ > 4, z ¼ 1.33, P-value ¼ .0918 > .02, fail to reject H0

Chapter 6

1. {cooperative, competitive}; with 1 ¼ cooperative and 2 ¼ competitive, p11 ¼ .6, p12 ¼ .4, p22 ¼ .7, p21 ¼ .3

3. (a) {full, part, broken} (b) with 1 ¼ fill, 2 ¼ part, 3 ¼ broken, p11 ¼ .7, p12 ¼ .2, p13 ¼ .1, p21 ¼ 0, p22 ¼ .6, p23 ¼ .4, p31 ¼ .8, p32 ¼ 0, p33 ¼ .2 5. (a) X1 ¼ 2 with prob. p and ¼ 0 with prob. 1 À p (b) 0, 2, 4 ÀÁ x xÀy (c) PX ¼ 2y X ¼ x ¼ pyðÞ1 À p for y ¼ 0, 1, ..., x nþ1 n y (continued) 632 Answers to Odd-Numbered Exercises

7. (a) A son’s social status, given his father’s social status, has the same probability distribution as his social status conditional on all family history; no (b) The probabilities of social status changes (e.g., poor to middle class) are the same in every generation; no 9. (a) no (b) define a state space by pairs; probabilities from each pair into the next state 11. :90 :10 (a) (b) .8210, .5460 (c) .8031, .5006 :11 :89 > 13. (a) Willow City: P(S ! S) ¼ .988 .776 (b) .9776, .9685 (c) .9529 15. :6 :4 (a) (b) .52 (c) .524 (d) .606 :3 :7 17. (a) .2740,2 .7747 (b) .0380 (c) 2.1, 2.2 3 19. :1439 :2790 :2704 :1747 :1320 6 7 6 :2201 :3332 :2522 :1272 :0674 7 6 7 (a) 6 :1481 :2829 :2701 :1719 :1269 7 (b) .0730 (c) .1719 4 :0874 :2129 :2596 :2109 :2292 5 :0319 :1099 :1893 :2174 :4516 21. (a) .0608, .0646, .0658 (b) .0523, .0664, .0709, .0725 (c) they increase to .2710, .1320, .0926, .0798 23. (a) .525 (b) .4372 25. :96 :04 (a) (b) .778 0’s, .222 1’s (c) .7081 0’s, .2919 1’s :05 :95

27. (a) π ¼ [.80 .20] (b) P(X1 ¼ G) ¼ .816, P(X1 ¼ S) ¼ .184 (c) .8541 29. (a) π ¼ [0 1] (b) P(cooperative) ¼ .3, P(competitive) ¼ .7 (c) .39, .61 31. (a) no (b) yes 33. (a) (.3681, .2153, .4167) (b) .4167 (c) 2.72 2 3 35. :7 :2 :1 6 7 (a) 4 0 :6 :4 5 (b) P2 has all nonzero entries (c) (8/15, 4/15, 1/5) :80:2 (d) 8/15 (e) 5

39. (a) π0 ¼ β/(α + β), π1 ¼ α/(α + β) (b) α ¼ β ¼ 0 ) the chain is constant; α ¼ β ¼ 1 ) the chain alternates perfectly; α ¼ 0, β ¼ 1 ) the chain is always 0; α ¼ 1, β ¼ 0 ) the chain is always 1; α ¼ 0, 0 < β < 1 ) the chain eventually gets stuck at 0; 0 < α < 1, β ¼ 0 ) the chain eventually gets stuck at 1; 0 < α < 1 and β ¼ 1orα ¼ 1 and 0 < β < 1 ) the chain is regular, and the answers to (a) still hold 2 3 41. ðÞ1 À α 2 αðÞ1 À α αðÞ1 À α α2 00 6 À Á 7 6 β α α β αβ α β 7 01 6 ðÞ1 À ðÞ1 À 1 À ðÞ1 À 7 (a) 6 À Á 7 10 4 βðÞ1 À α αβ ðÞ1 À α 1 À β αðÞ1 À β 5 11 β2 βðÞ1 À β βðÞ1 À β ðÞ1 À β 2 β2 αβ αβ α2 α2 (b) , , , (c) α β 2 α β 2 α β 2 α β 2 α β 2 2ðÞþ ðÞþ ðÞ3þ ðÞþ ðÞþ 45. :25 :75 0 0 6 7 6 : : 7 6 0 25 75 0 7 (a) 6 7 (b) .4219, .7383, .8965 (c) 4 (d) 1; no 4 00:25 :75 5 0001 47. (a) states 4 and 5 k 12345678910 (b) P(T1 £ k) 0 .46 .7108 .8302 .9089 .9474 .9713 .9837 .9910 .9949 k 12345678910 (c) P(T1 = k) 0 .46 .2508 .1194 .0787 .0385 .0239 .0124 .0073 .0039 μ  3.1457 (d) 3.2084 (e) .3814, .6186 (continued) Answers to Odd-Numbered Exercises 633

2 3 49. :5 :5000 6 7 6 :50:5007 6 7 (a) 6 :500:507, 4 is an absorbing state 4 :5000:5 5 00001 (b) P(T0  k) ¼ 0 for k ¼ 1, 2, 3; the probabilities for k ¼ 4, ..., 15 are .0625, .0938, .1250, .1563, .1875, .2168, .2451, .2725, .2988, .3242, .3487, .3723 (c) .2451 (d) P(T0 ¼ k) ¼ 0 for k ¼ 1, 2, 3; the probabilities for k ¼ 4, ..., 15 are .0625, .03125, .03125, .03125, .03125, .0293, .0283, .0273, .0264, .0254, .0245, .0236; μ  3.2531, σ  3.9897 (e) 30 μ μ 51. coop 2¼ 4.44, comp ¼ 3.89; cooperative3 53. 0 10000 6 7 1 6 1 À p 0 p 007 6 7 (a) 2 6 01À p 0 p 0 7 3 4 001À p 0 p 5 4 00001 2p2 þ 1 2 2p2 À 4p þ 3 (b) for x ¼ $1, $2, $3: , , 0 2p2 À 2p þ 1 2p2 À 2p þ 1 2p2 À 2p þ 1 p3 p2 p3 À p2 þ p (c) for x ¼ $1, $2, $3: , , 0 2p2 À 2p þ 1 2p2 À 2p þ 1 2p2 À 2p þ 1 55. 3.4825 generations 59. (c) (2069,0, 2079.8) (d) (.5993, .6185) (answers will vary)

61. (a) P(Xn+1 ¼ 10 | Xn ¼ x) ¼ .4, P(Xn+1 ¼ 2x | Xn ¼ x) ¼ .6 (b) mean  $47.2 billion, sd  $2.07 trillion (c) ($6.53 billion, $87.7 billion) (d) ($618.32 million, $627.90 million); easier 63. (a) ($5586.60, $5632.3) (b) ($6695.50, $6773.80) (answers will vary) 65. (b)2 .9224 (answers will vary)3 (c) (6.89, 7.11) (answers will vary) 67. 0 :500 0:5 6 7 6 :50:50 0 07 6 7 ÂÃ 6 0 :50:5007 (a) 6 7 (b) no (c) π¼ 1 1 1 1 1 1 (d) 6 (e) 9 6 00:50:507 6 6 6 6 6 6 4 000:50:5 5 :50 0 0:50 2 3 69. 010000 6 7 6 1 1 1 7 6 0 007 6 3 3 3 7 6 1 1 1 7 6 0 0 0 7 6 3 3 3 7 6 (a) 6 7 (b) all entries of P are positive 6 0 1 1 0007 6 2 2 7 6 7 4 001 001 5 2 2 000010 (c) 1/12,2 1/4, 1/4, 1/6, 1/6, 1/123 (d) 1/4 (e) 12 71. 0 000001 6 7 1 6 :3 :70 0 0 07 6 7 2 6 0 :3 :700 07 (a) 6 7 (b) .0566, .1887, .1887, .1887, .1887, .1887 3 6 00:3 :70 07 4 4 000:3 :705 5 0000:3 :7 (c) 17.67 weeks (including the one week of shipping) 73. (a) 2 seasons (b) .3613 (c) 15 seasons (d) 6.25 seasons

75. (a) p1 ¼ [0.3168 0.1812 0.2761 0.1413 0.0846]; p2 ¼ [0.3035 0.1266 0.2880 0.1643 0.1176]; p3 ¼ [0.2908 0.0918 0.2770 0.1843 0.1561] (b) 35.7 years, 11.9 years, 9.2 years, 4.3 years (c) 16.6 years (continued) 634 Answers to Odd-Numbered Exercises

2 3 77. 0 010000 6 7 1 6 00:959 0 :041 0 7 6 7 2 6 00 0 :987 :013 0 7 (a) 6 7 (c) 3.9055 weeks (d) .8145 3 6 00 0 0 :804 :196 7 pd 4 0000105 tbr 000001 (e) payments are always at least 1 week late; most payments are made at the end of 3 weeks 79. :98 :02 :97 :03 :99 :01 (a) P ¼ P ¼ , P ¼ , P ¼ P ¼ (b) .916 1 3 :02 :98 2 :03 :97 4 5 :01 :99 81. (a) [3259 22,533 19,469 26,066 81,227 16,701 1511 211,486 171,820 56,916] (b) [2683 24,119 21,980 27,015 86,100 15,117 1518 223,783 149,277 59,395]; [2261 25,213 24,221 27,526 89,397 13,926 1524 233,533 131,752 61,636]; À44%, +24%, +46%, +12%, +20%, À26%, +1.3%, +19%, +34%, +13.4% (c) [920 23,202 51,593 21,697 78,402 8988 1445 266,505 65,073 93,160]

Chapter 7

1. (a) Continuous-time, continuous-space (b) continuous-time, discrete-space (c) discrete-time, continuous- space (d) discrete-time, discrete-space

7. (b) No: at time t ¼ .25, x0(.25) ¼Àcos(π/2) ¼ 0 and x1(.25) ¼ cos(π/2) ¼ 0 (c) X(0) ¼À1 with probability .8 and +1 with probability .2; X(.5) ¼ +1 with probability .8 and À1 with probability .2

9. (a) discrete-space (c) Xn ~ Bin(n, 18/38) 11. (a) 0 (b) 1/2 2 13. CXX(t, s) ¼ Var(A)cos(ω0t + θ0)cos(ω0s + θ0), RXX(t, s) ¼ v0 + v0E[A][cos(ω0t + θ0) + cos 2 (ω0s + θ0)] + E[A ]cos(ω0t + θ0)cos(ω0s + θ0) 15. (b) N(s) > 0, because covariance > 0 (c) ρ ¼ eÀ2 (d) Gaussian, mean 0, variance 1.73

19. (a) μS(t)+μN(t) (b) RSS(t, s)+μS(t)μN(s)+μN(t)μS(s)+RNN(t, s) σ2 σ2 (c) CSS(t, s)+CNN(t, s) (d) SðÞþt NðÞt 23. (a) (1/2)sin(ω0(s À t)) (b) not orthogonal, not uncorrelated, not independent 2 2 25. (a) μV (b) E[V ]+(A0 /2)cos(ω0τ) (c) yes 27. (a) yes (b) no (c) yes (d) yes 29. no

31. μA + μB, CAA(τ)+CAB(τ)+CBA(τ)+CBB(τ), yes 33. (a) yes, because its autocovariance has periodic components (b) À42 (c) 50cos(100πτ) + 8cos(600πτ)+49 (d) 107 (e) 58 35. yes: both the time average and ensemble average are 0 τ 37. CXX( )/CXX(0) ÀÁ 41. 2π δ (a) .0062 (b) 75 þ 25 sin 365 ðÞ59 À 150 (c) 16 [n À m] (d) no, and it shouldn’t be 43. (a) 18n/38, 360n/1444, 360 min(m, n)/1444, (360 min(m, n) + 324mn)/1444 (b) À10n/38, 36,000n/1444, 36,000 min(m, n)/1444, (36,000 min(n, m) + 100mn)/1444 (c) .3141 47. μ 1 (a) X (b) 4 ðÞ2CXX½Šþm À n CXX½Šþm À n þ 1 CXX½Šm À n À 1 (c) yes (d) (CXX[0] + CXX[1])/2 49. μ αmÀnσ2 αk (c) 1Àα (d) 1Àα2 (e) yes (f) 53. (a) .0993 (b) .1353 (c) 2 ∑ 75 À 50 x 55. (a) .0516 (b) 1 À x ¼ 0 e 50 /x ! (c) .9179 (d) 6 s (e) .8679 57. k/λ 59. e3ðÞtÀs ½Š3ðÞtÀs nÀm (a) .0911 (b) ðÞnÀm ! λ 61. eÀ p t À λy À λy 63. fY( y) ¼ 2λe (1 À e ) for y > 0 67. (a) .0492 (b) .00255 (continued) Answers to Odd-Numbered Exercises 635

À2λ|τ| 71. pmf: N(t) ¼ 0 or 1 with probability 1/2 each for all t; mean ¼ .5, variance ¼ .25, CNN(τ) ¼ .25e , À2λ|τ| RNN(τ) ¼ .25 + .25e 73. (a) .0038 (b) .9535 75. (a) yes (b) .3174 (c) .3174ÀÁ (d) .4778 77. π (a) EX½Š¼ðÞ t 80 þ 20 cos 12ðÞt À 15 , Var(X(t)) ¼ .2t (b) .1251 (c) .3372 (d) .1818 79. (a) .3078 (b) .1074 81. (a) .1171 (b) .6376 (c) .0181, .7410

83. (a) yes (b) E[X(t)] ¼ 0, RXX(t, s) ¼ (N0/2)min(t, s), no

87. (a) 0 ¼ empty, 1 ¼ a person in stage 1, and 2 ¼ a person in stage 2; q0 ¼ λ, q1 ¼ λ1, q2 ¼ λ2; q02 ¼ q21 ¼ q10 ¼ 0; q01 ¼ λ, q12 ¼ λ1, q20 ¼ λ2 (b) π ¼ (6/11, 2/11, 3/11) (c) π ¼ (6/11, 3/11, 2/11) (d) π ¼ (1/7, 2/7, 4/7)

89. (a) q0 ¼ λ, q1 ¼ λ1, q2 ¼ λ2; q02 ¼ q10 ¼ 0; q01 ¼ λ, q12 ¼ λ1, q20 ¼ .8λ2, q21 ¼ .2λ2 (b) π ¼ (24/49, 10/49, 15/49) (c) π ¼ (24/49, 15/49, 10/49) (d) π ¼ (2/17, 5/17, 10/17) (e) 1.25(1/λ1 +1/λ2)

91. qi ¼ iβ, qi,i+1 ¼ iβ for i ¼ 1, ..., N À 1 λ β λ β 93. qi,i+1 ¼ for i  0, qi,iÀ1 ¼ i for i  1, qi ¼ + i for i  1 α β α β α β α β 95. π 1 1 π 1 0 π 0 1 π 0 0 Σ α β α β α β α β 00 ¼ Σ , 01 ¼ Σ , 10 ¼ Σ , 11 ¼ Σ , where ¼ 1 1 + 1 0 + 0 1 + 0 0; α β π 0 0 1 À 11 ¼ 1 À α β α β α β α β 1 1 þ 1 0 þ 0 1 þ 0 0 99. (a) 0 (b) CXX(t, s) ¼ 1 if floor(t) ¼ floor(s), ¼ 0 otherwise 101. Xn ω τ 1 ω τ (a) 0, (1/3)cos( k ) (b) 0, 3 cos ðÞk , yes k¼1 103. Xn 1 ω τ (a) 0 (b) 2 cos ðÞÁk pk (c) yes k¼1

105. (a) Sn denotes the total lifetime of the machine through its use of the first n rotors. μ σ2 (b) S[n] ¼ 125n; S [n] ¼ 15, 625n; CSS[n, m] ¼ 15,625 min(n, m); RSS[n, m] ¼ 15,625[min(n, m)+nm] (c) .5040 107. Yes λ λ λε 109. (a) eÀ t (b) eÀ t(1 + λt) (c) eÀ Àαt 111. 10ðÞ 1 À e 0 2λ α (a) (b) ðÞ1 À eÀ t0 αt0 α

Chapter 8

1. F {RXX(τ)} ¼ sinc( f ), which is not  0 for all f pffiffi  3. δ π π2f 2 (a) 250 ðÞþf exp À 6 (b) 240.37 W (c) 593.17 W 2 4Â10 ÀÁ τ 200,ffiffi000 12τ2 5. (a) 112,838 W (b) 108,839 W (c) RXXðÞ¼ pπ exp À10

7. (a) N0B (b) N0Bsinc(2Bτ) λ τ 2λA2 2A2 9. (a) A 2eÀ 2 | | (b) 0 (c) A 2 (d) 0 arctanðÞ 2π 0 λ2þðÞ2πf 2 0 π 11. (a) 100(1 + eÀ1)  136.8 W (b) 200 ½Š1 þ cosðÞ 2πf (c) 126.34 W 1þðÞ2πf 2

13. μW(t) ¼ 0, RWW(τ) ¼ 2RXX(τ) À RXX(τ À d) À RXX(τ + d), SWW( f ) ¼ 2SXX( f )[1 À cos(2πfd)]

15. (a) Yes (b) Yes (c) SZZ( f ) ¼ SXX( f )+SYY( f )

17. (b) SZZ( f ) ¼ SXX( f ) ★ SYY( f )

19. No, because PN ¼1 2 cc 2 μ 2δ 21. (a) SXX( f ) ¼ E[A ]SYY( f ) (b) SXX( f ) ¼ E[A ]SYY( f ) À (E[A] Y) ( f ) (c) Yes; our “engineering interpretation” of the elements of a psd are not valid for non-ergodic processes 23. (a) 2400sin(120,000τ) (b) 2400 W (c) 40/(40 + j2πf ) (d) 32/(1600 + (2πf )2) for |f|  60 kHz (e) 0.399997 W (continued) 636 Answers to Odd-Numbered Exercises

Àj2πf 2 25. (a) 0 (b) (1 À e )/( j2πf ) (c) (N0/2)sinc ( f ) (d) N0/2 27. δ 50 1 1 (a) 100 ðÞþf π 2 (b) 125 W (c) π 2 , 2 2 hi1þðÞ2 f ðÞ4þj2 f ðÞ16þðÞ2πf 50 1 (d) 100δðÞþf 2 Á 2 (e) 0.461 W 1þðÞ2πf ðÞ16þðÞ2πf 2 α α 29. (a) (N /2)eÀ2 |f| (b) 2N0 (c) N /2α 0 4α2þ4π2τ2 ÂÃ0 π2 2 N0 π2 2τ2 π τ π τ π τ π τ 33. (a) 2N0 f rect( f/2B) (b) πτ3 2 B sinðÞþ 2 B 2 B cosðÞÀ 2 B sinðÞ 2 B 2 3 (c) 4N0π B /3

35. (a) RXX(τ) À RXX(τ) ★ h(τ) À RXX(τ) ★ h(Àτ)+RXX(τ) ★ h(τ) ★ h(Àτ) 2 (b) SXX( f )|1 À H( f )|  37. δ δ δ f (a) 1.17 MW (b) 250, 000 ðÞþf 60, 000½ŠþðÞþf À 35, 000 ðÞf þ 35, 000 8rect 100, 000 (c) same as part (b) (d) 1.17 MW (e) 5000 W (f) 3000 W (g) SNRin ¼ 234, SNRout ¼ 390 41. 1 À α2 1 þ α2 À 2α cosðÞ 2πF 43. 1 À eÀ20λ 1 þ eÀ20λ À 2eÀ10λ cosðÞ 2πF 45. π2 π2 1 À þ triðÞ 2F 8 4 47. (b) Psinc(k/2) π 49. 1 À eÀj2 FM M À k (a) Y ¼ (X + ... + X )/M (b) (c) σ2 for |k| ¼ 0, 1, ..., M À1 and zero n n À M +1 n MðÞ1 À eÀj2πF M2 otherwise References

Ambardar, Ashok, Analog and Digital Processing (2nd ed.), Brooks/Cole Publishing, Pacific Grove, CA, 1999. A thorough treatment of the mathematics of and systems, including both discrete- and continuous-time structures. Bury, Karl, Statistical Distributions in Engineering, Cambridge University Press, Cambridge, England, 1999. A readable and informative survey of distributions and their properties. Crawley, Michael, The R Book (2nd ed.), Wiley, Hoboken, NJ, 2012. At more than 1000 pages, carrying it may give you lower back pain, but it obviously contains a great deal of information about the R software. Gorroochurn, Prakash, Classic Problems of Probability, Wiley, Hoboken, NJ, 2012. An entertaining excursion through 33 famous probability problems. Davis, Timothy A., Matlab Primer (8th ed.), CRC Press, Boca Raton, FL, 2010. A good reference for basic Matlab syntax, along with extensive catalogs of Matlab commands. DeGroot, Morris and Mark Schervish, Probability and Statistics (4th ed.), Addison-Wesley, Upper Saddle River, NJ, 2012. Contains a nice exposition of subjective probability and an introduction to Bayesian methods of inference. Devore, Jay and Ken Berk, Modern Mathematical Statistics with Applications (2nd ed.), Springer, New York, 2011. A comprehensive text on statistical methodology designed for upper-level students. Durrett, Richard, Elementary Probability for Applications, Cambridge Univ. Press, London, England, 2009. A very brief (254 pp.) introduction that still finds room for some interesting examples. Johnson, Norman, Samuel Kotz, and Adrienne Kemp, Univariate Discrete Distributions (3rd ed.), Wiley-Interscience, New York, 2005. An encyclopedia of information on discrete distributions. Johnson, Norman, Samuel Kotz, and N. Balakrishnan, Continuous Univariate Distributions, vols. 1–2, Wiley, New York, 1993. These two volumes together present an exhaustive survey of various continuous distributions. Law, Averill, Simulation Modeling and Analysis (4th ed.), McGraw-Hill, New York, 2006. An accessible and comprehensive guide to many aspects of simulation. Meys, Joris, and Andrie de Vries, R for Dummies, For Dummies (Wiley), New York, 2012. Need we say more? Mosteller, Frederick, Robert Rourke, and George Thomas, Probability with Statistical Applications (2nd ed.), Addison- Wesley, Reading, MA, 1970. A very good precalculus introduction to probability, with many entertaining examples; especially good on counting rules and their application. Nelson, Wayne, Applied Life Data Analysis, Wiley, New York, 1982. Gives a comprehensive discussion of distributions and methods that are used in the analysis of lifetime data. Olofsson, Peter, Probabilities: The Little Numbers That Rule Our Lives, Wiley, Hoboken, NJ, 2007. A very non-technical and thoroughly charming introduction to the quantitative assessment of uncertainty. Peebles, Peyton, Probability, Random Variables, and Random Signal Principles (4th ed.), McGraw-Hill, New York, 2001. Provides a short introduction to probability and distributions, then moves quickly into with an emphasis on practical considerations. Includes some Matlab code. Ross, Sheldon, Introduction to Probability Models (9th ed.), Academic Press, San Diego, CA, 2006. A good source of material on the Poisson process and generalizations, Markov chains, and other topics in applied probability. Ross, Sheldon, Simulation (5th ed.), Academic Press, San Diego, CA, 2012. A tight presentation of modern simulation techniques and applications. Taylor, Howard M. and Samuel Karlin, An Introduction to Stochastic Modeling (3rd ed.), Academic Press, San Diego, CA, 1999. More sophisticated than our book, but with a wealth of information about discrete and continuous time Markov chains, Poisson processes, Brownian , and queueing systems. Winkler, Robert, Introduction to Bayesian Inference and Decision (2nd ed.), Probabilistic Publishing, Sugar Land, Texas, 2003. A very good introduction to subjective probability.

# Springer International Publishing AG 2017 637 M.A. Carlton, J.L. Devore, Probability with Applications in Engineering, Science, and Technology, Springer Texts in Statistics, DOI 10.1007/978-3-319-52401-6 Index

A C Accept–reject method, 224–227, 334 Carlton, Matthew, xxiv Ambardar, Ashok, 576, 583 CDF See Cumulative distribution function (CDF) /autocovariance functions, 499–502 Central limit theorem (CLT), 293–297 applications of, 297–298 B definition, 293 Band-limited , 571 Chambers, John, 212 Bandpass filter, 581 Chapman–Kolmogorov Equations, 431–436 Bandstop filter, 581 Chebyshev, Pafnuty, 89–90 Bayesian inference Chebyshev’s inequality, 89–90 comments on, 413–414 CI See Confidence interval (CI) conjugation, 414 CLT See Central limit theorem (CLT) credibility interval, 413 Combinations, 22–25 posterior distribution Conditional distributions, 277–279 inferences from, 413 bivariate normal distribution, 311 of parameter, 410–412 and independence, 279–280 prior distribution, 409–410 , 277–281 Bayes’ theorem, 35 Conditional mean, 280 Berk, Ken, 293, 381, 405, 414 Conditional probability, 29–30 Bernoulli random sequence, 518 Bayes’ theorem, 35–36 Bernoulli random variable, 68 definition, 30–32 Beta distributions, 201–202 density/mass function, 277 Binomial CDF, 597–601 Law of Total Probability, 34–35 Binomial distribution, 95–97 Markov chains, 427 approximating, 180–182 multiplication rule, 32–34 computing, 99–101 Confidence interval (CI) mean and variance of, 101–102 bootstrap confidence interval, 381 negative, 117–120 large-sample for μ, 380–381 comparing with, 108 for μ with confidence level, 379 random variable, 97–99 for normal population mean, 376–380 with software, 102 for population mean, 375–376 standard error, 102 population proportion, 401–405 Bivariate normal distribution, 309–311 score, 401 conditional distributions, 311 software for calculation, 381–382 multivariate normal distribution, 312 statistical inference, 351 regression to mean, 312 t distributions simulating, 336–338 family, 377 with software, 313 properties, 377 process, 493, 536–538 Continuous distribution, 619 with drift, 541 beta distributions, 201–202 geometric, 541 lognormal distributions, 199–201 as limit, 538 mean value, 162 properties of, 538–540 percentiles of, 156–157 variations, 540 variance, 164

# Springer International Publishing AG 2017 639 M.A. Carlton, J.L. Devore, Probability with Applications in Engineering, Science, and Technology, Springer Texts in Statistics, DOI 10.1007/978-3-319-52401-6 640 Index

Continuous distribution (cont.) Type II, 393–395 Weibull distributions, 196–199 Estimated standard error, 357 Continuous random variables, 221 , 354–356 accept–reject method, 224–226 Event(s) built-in simulation packages for Matlab and R, 227 complement, 4 inverse CDF method, 221–224 compound, 3 PDF for, 148–152 definition, 3 precision of simulation results, 227 De Morgan’s laws, 4 Correlation, 255–259 dependent, 43 vs. causation, 262 disjoint, 5 coefficient, 260 independent, 43 Counting processes, 603 intersection, 4 Covariance, 255–259 mutually exclusive, 5 matrix, 313 probability of, 7 Crawley, Michael J., xviii relations from set theory, 4–5 Credibility interval, 413 relative frequency, 10 Cross-correlation/covariance function, 502 simple, 3 Cumulative distribution function (CDF), 75–79, 152–154 simulation, 50 binomial, 597–602 estimated/standard error, 55 inverse method, 133–134, 221–224 precision, 55–56 PDF and, 147–148 RNG, 51–55 poisson, 602–603 union, 4 probability density functions and, 147–148 venn diagrams, 6 standard normal, 603–604 Expected value, 83–85, 162–166, 255–256 step function, 76 of function, 86–87 Cuthbert, Daniel, 211 linearity of, 87 properties, 256–257 D Experiment Davis, Timothy A., xviii definition, 1 De Morgan, Augustus, 5 sample space of, 2–3 DeGroot, Morris, 486 Exponential distribution, 187–190 Delta function, 610–611 and gamma distribution, 524–527 De Morgan’s laws, 5 Devore, Jay L., xxiv, 293, 377, 381, 405, 414, 482 F Diaconis, Persi, xxiv Fermat, Pierre de, xvii Dirac delta function, 610 Finite population correction factor, 117 Discrete distributions, 615–616 Fisher, R.A., 366 Discrete random variable, 147 Fourier transform, 611–612 probability distributions for, 71–74 discrete-time, 589, 612–613 simulation of, 131–134 Discrete , 518–519 G Discrete-time Fourier transform (DTFT), 612–613 Galton, Francis, 311 Discrete-time random processes, 516–519 Gamma distribution, 190–192 Discrete-time signal processing calculations with software, 193 discrete-time Fourier transform, 612 exponential and, 524–526 random sequences incomplete, 191 and LTI systems, 591–593 MGF, 193 and sampling, 593–594 standard, 191 Gates, Bill, 352 E Gaussian/normal distribution, 172 Engineering functions, 609–610 binomial distribution, approximating, 183 Error(s) calculations with software, 182 estimated standard, 357 and discrete populations, 179–180 in hypothesis testing, 392–395 non-standardized, 175–178 simulation of random events, 55 normal MGF, 178–180 standard, 101 standard, 173–175 of mean, 69, 291 Gaussian processes, 535–536 estimation, 357 Gaussian white noise, 570 Type I, 393–395 Geometric distributions, 75 Index 641

negative, 117––120 independent random variables, 245–246 Geometric random variable, 119 joint PDF, 241–245 Gosset, William Sealy, 378 joint PMF, 240–241 Gosset’s theorem, 378 joint probability table, 240 Law of Large Numbers, 299–300 H Laws of Total Expectation and Variance, 281–286 Highpass filter, 581 limit theorems (see Limit theorems) Hoaglin, David, 373 linear combinations, properties, 264–277 Hypergeometric distribution, 114–117 convolution, 268 Hypothesis testing generating functions, 270–272 about population mean, 386 PDF of sum, 268–270 alternative, 387 theorem, 265 errors in, 392–395 marginal probability density functions, 243 null, 387 marginal probability mass functions, 241 population proportion, 403–405 , 247 power of test, 392–395 multinomial experiment, 247 P-values and one-sample t test, 387–391 order statistics, 326 significance level, distributions of Yn and Y1, 326–328 software for, 395–396 ith order statistic distribution, 328–329 statistical, 386 joint distribution of n order statistics, 329–331 test procedures, 386–388 of random variables, 246–249 about population mean μ, 388–389 reliability (see Reliability) test statistic, 389 simulations methods (see Simulations methods) Type I error, 392–395 transformations of variables, 302–307 Type II error, 392–395 Joint probability mass function, 240–241

I K Ideal filters, 580–583 Kahneman, Daniel, xxiii Impulse function, 610 Karlin, Samuel, 449, 450 Inclusion-exclusion principle, 13 Incomplete gamma function, 603 L Independence, 43–44 Law of Large Numbers, 299–300 events, 44–47 Law of Total Probability, 34–35 mutually, 46 Laws of Total Expectation, 281–286 Interval estimate, 376 Laws of Variance, 281–286 Inverse CDF method, 221–224 Likelihood function, 368 Inverse DTFT, 612 Limit theorems Inverse Fourier transform, 611 CLT, 293–297 applications of, 297–298 J independent and identically distributed, 290 Jointly wide-sense stationary, 508 random samples, 290–293 Joint probability density function, 241–245 standard error of mean, 291 Joint probability distributions, 239 Linear combinations, properties, 264–277 bivariate normal distribution, 309–311 convolution, 268 conditional distributions, 311–312 moment generating functions, 270–272 multivariate normal distribution, 312 PDF of sum, 268–270 regression to mean, 312 theorem, 265 with software, 313 Linear, time-invariant (LTI) system, 576–577 conditional distributions, 277–279 butterworth filters, 583 and independence, 279–280 ideal filters, 580–583 conditional expectation, 277–279 , 576 and variance, 280–281 power signal-to-noise ratio, 584 correlation, 255–256, 259–262 random sequences and, 591–593 vs. causation, 262 signal plus noise, 583–586 coefficient, 260 statistical properties of, 577–580 covariance, 255–259 transfer function, 576 dependent, 245 Lognormal distributions, 199–201 expected values, 255–256 Lowpass filter, 581, 582 properties, 256–257 LTI system See Linear, time-invariant (LTI) system 642 Index

M Mendel, Gregor, 442 Marginal probability density functions, 243 Minimum variance unbiased estimator (MVUE), 359 Marginal probability mass functions, 241 Moment generating functions (MGF), 125–126, 166–168 Markov, Andrey A., 423 of common distributions, 128–129 Markov chains, 423 gamma distributions, 193 with absorbing states, 457–458 normal, 178–179 canonical form, 467 obtaining moments from, 127–128 Chapman–Kolmogorov Equations, 431–436 Moments, 123–125 conditional probabilities, 426 from MGF, 127–128 continuous-time, 425 skewness coefficient, 124 discrete-space, 424 MTTA See Mean time to absorption (MTTA) discrete-time, 425 Multinomial distribution, 247 eventual absorption probabilities, 466–469 Multinomial experiment, 247 finite-state, 424 Multiplication rule, 32–34 initial distribution, specifying, 440–443 Multivariate normal distribution, 312 initial state, 424 irreducible chains, 453–454 N mean first passage times, 465–466 Negative binomial distributions mean time to absorption, 461–465 alternative definition, 120 one-step transition probabilities, 426 and geometric distributions, 117–120 periodic chains, 453–454 Notch filter See Bandstop filter process of, 544 Nyquist rate, 594 birth and death process, 551 Nyquist sampling theorem, 594 continuous-time, 544–546 explicit form of transition matrix, 554–555 O generator matrix, 552 Olofsson, Peter, xxv infinitesimal parameters, 548 o(h) notation, 610 instantaneous transition rates, 547 Order statistics, 326 long-run behavior, 552–554 distributions of Yn and Y1, 326–328 sojourn times, transition and, 548–551 ith order statistic distribution, 328–329 time homogeneous, 544 joint distribution of the n order statistics, 329–331 transition probabilities, 546 property, 423–428 P regular, 446–448 Pascal, Blaise, xvii simulation, 472–480 PDF See Probability density function (PDF) states, 424 Peebles, Peyton, 583 state space, 424 Periodic chains, 453–454 steady-state distribution and, 450–451 Permutations, 20–22 Steady-State Theorem, 448–449 PMF See Probability mass function (PMF) time-homogeneous, 425 Point estimation, 352 time to absorption, 458–461 accuracy and precision, 357–359 transition estimated standard error, 357 matrix, 431–432 estimates and estimators, 354–356 probabilities, 426, 432–436 parameter, 352 Matlab sample mean, 353 probability plots in, 213 sample median, 353 and R commands, xviii, 619 sample range, 353 simulation implemented in, 134–135 sample standard deviation, 353 Maximum likelihood estimation (MLE), 366–373 sample variance, 353 Mean standard error, 357 and autocorrelation functions, 496–504 statistic, 352 first passage times, 465–466 unbiased estimator, 357 recurrence time, 450 Poisson cumulative distribution function, 600 and variance functions, 496–499 Poisson distribution, 107 Mean square with binomial distributions, 108 sense, 512 as limit, 107–110 value, 509 mean and variance, 110 Mean time to absorption (MTTA), 461–465 poisson process, 110–111 Mean value See Expected value with software, 111 Memoryless property, 189 Poisson process, 110–111, 522–524 Index 643

alternative definition, 528–530 interpretations, 7–11 combining and decomposing, 526–528 outcomes, 14 exponential and gamma distributions, 524–526 properties, 7–9, 11–13 independent increments, 522 relations from set theory, 4–5 intensity function, 530 sample spaces, 1–2 non-homogeneous, 530–531 simulation of random events, 51 rate, 522 estimated/standard error, 55 spatial, 530 precision, 55–56 stationary increments, 522 RNG, 51–55 telegraphic process, 531–532 software in, xviii Population proportion transition, 432–436 confidence intervals, 401–403 vectorization, 54 hypothesis testing, 403–405 Probability density function (PDF) score confidence interval, 401 continuous distribution, percentiles of, 156–157 software for inferences, 405 for continuous variables, 148–152 Power (PSD), 563 and cumulative distribution functions, 147–148 average/expected power, 564 joint, 241–245, 334–336 cross-power spectral density, 572 marginal PDF, 243 in frequency band, 569–570 median of, 156 partitioning, 567–569 obtaining f(x) from F(x), 155–156 properties, 566–569 symmetric, 157 for two processes, 572–573 uniform distribution, 150 white noise processes, 570–572 using F(x) to compute probabilities, 154–155 Wiener–Khinchin Theorem, 565 Probability distributions Precision, 135–137 continuous distributions, 617–619 Principle of Unbiased Estimation, 359 cumulative, 75–78 Probability discrete distributions, 615–616 Addition Rule, 12–13 for discrete random variables, 71–74 application, xviii family of, 74 to business, xix geometric distribution, 75 to engineering and operations research, xx–xxii Matlab and R commands, 619 to finance, xxii–xxiii parameter of, 74–75 to life sciences, xix–xx Probability histogram, 74 axioms, 7–9 Probability mass function (PMF), 72, 240–241 Complement Rule, 11–12 joint, 332–334 conditional, 29–30 marginal PMF, 241 Bayes’ theorem, 35–37 view of, 78–79 definition, 30–32 Probability plots, 205–209 Law of Total Probability, 34–35 beyond normality, 211–212 multiplication rule, 32–34 departures from normality, 209–211 counting methods location and scale parameters, 211 combinations, 22–25 in Matlab and R, 213 fundamental principle, 18–19 normal, 208 k-tuple, 19 sample percentiles, 205–206 permutations, 20–22 shape parameter, 211 tree diagrams, 19–20 PSD See Power spectral density (PSD) coupon collector problem, xviii P-values, 389–392 definition, 1 De Morgan’s laws, 4 R determining systematically, 13 Random noise, 489 development of, xvii Random number generator (RNG), 51–55 events, 3, 7 Random process, 489 of eventual absorption, 466–469 autocovariance/autocorrelation functions, 499–502 in everyday life, xxiii–xxvii classification, 493 experiment, 1 continuous-space process, 493 game theory, xvii continuous-time processes, 493 inclusion–exclusion principle, 13 discrete sequences, 518–519 independence, 43–44 discrete-space process, 493 events, 44–47 discrete-time, 493, 516–519 mutually, 46 ensemble, 490 644 Index

Random process (cont.) power in frequency band, 569–570 independent, 502 for processes, 572–573 joint distribution of, 502 properties, 566–569 mean and variance functions, 496–499 white noise processes, 570–572 orthogonal, 502 Simulation poisson process (see Poisson process) bivariate normal distribution, 336–338 random sequence, 493 of discrete random variables, 131–134 regarded as random variables, 493–494 implemented in R and Matlab, 134–135 sample function, 490 of joint probability distributions/system reliability, stationary processes, 504–508 332–339 types, 489–492 mean, standard deviation, and precision, 135–137 uncorrelated, 502 for reliability, 338–339 WSS (see Wide-sense stationary (WSS) processes) standard error of mean, 136 Random variable (RV), 67 values from joint PDF, 334–336 Bernoulli, 68 values from joint PMF, 332–334 binomial distribution, 97–99 Standard deviation (SD), 135–137, 164 continuous, 70 Chebyshev’s inequality, 89–90 definition, 68 definition, 88 discrete, 70 function, 496 transformations of, 216–220 Standard error, 102 types, 69–70 of mean, 136, 291 Random walk, 518 point estimation, 357 R commands Standard normal CDF, 601–602 Matlab and, xviii, 619 Standard normal random variable, 173–175 probability plots in, 213 Stationary processes, 504–508 simulation implemented in, 134–135 definition, 505 Regular Markov chains, 446–448 ergodic processes, 511–513 Reliability, 315 Statistical inference function, 315–317 Bayesian inference (see Bayesian inference) hazard functions, 321–323 Bayesian method, 352 mean time to failure, 320 CI (see Confidence interval (CI)) and parallel designs, 317–319 hypothesis testing (see Hypothesis testing) simulations methods for, 338–339 maximum likelihood estimation, 366–373 RNG See Random number generator (RNG) point estimation (see Point estimation) Ross, Sheldon, 227, 428 population proportion, inferences for RV See Random variable (RV) confidence intervals, 401–403 hypothesis testing, 403–405 S score confidence interval, 401 Sample mean software for inferences, 405 definition, 136 Steady-state distribution, 449–451 point estimation, 353 Steady-state probabilities, 451–453 Sample median, 205, 326, 353 Steady-State Theorem, 448–449 Sample space, 1–2 Step function, 76 Sample standard deviation, 166, 353 Stochastic processes See Random process Sample variance, 353 Sampling T interval, 593 Taylor, Howard M., 449, 450 random sequences and, 593–594 t distribution rate, 594 critical values for, 604 Score confidence interval, 401 family, 377 SD See Standard deviation (SD) properties, 377 Set theory, 4–5 tail areas of, 605–607 Signal processing Thorp, Edward O., xvii, xxii discrete-time (see Discrete-time signal processing) Transformations of random variable, 216–220 LTI systems, random processes and, 576–577 Transition matrix, 431–432 ideal filters, 580–583 Transition probability signal plus noise, 583–586 multi-step, 432–436 statistical properties of, 577–580 one-step, 426 power spectral density, 563–566 Tree diagrams, 19–20 Index 645

Trigonometric identities, 609 White noise processes, 570–572 t test, one-sample, 389–392 Wide-sense stationary (WSS) processes, 504–508 Tversky, Amos, xxiii autocorrelation ergodic, 513 dc power offset, 511 U definition, 506 Uncorrelated random processes, 502 ergodic processes, 511–513 Uniform distribution, 150 mean ergodic, 512 mean square V sense, 512 Variance value, 508 Chebyshev’s inequality, 89–90 properties, 508–511 conditional expectation and, 280–281 time autocorrelation, 513 definition, 88 time average, 512–513 functions, 496–499 Wiener–Khinchin Theorem, 565, 572–573 Laws of Total Expectation and, 281–286 See Brownian motion process mean-square value, 90 Winkler, Robert, 11 properties, 90–91 Wood, Fred, 211 shortcut formula, 90–91 WSS processes See Wide-sense stationary (WSS) Venn diagram, 5 processes Volcker, Paul, xxiii Z W z interval, one-proportion, 401 Weibull, Waloddi, 196 z test, one-proportion, 403 Weibull distributions, 196–199