Zootaxa, Architectonicidae

Total Page:16

File Type:pdf, Size:1020Kb

Zootaxa, Architectonicidae ZOOTAXA 1101 Catalogue of Recent and fossil taxa of the family Architectonicidae Gray, 1850 (Mollusca: Gastropoda) RÜDIGER BIELER & RICHARD E. PETIT Magnolia Press Auckland, New Zealand RÜDIGER BIELER & RICHARD E. PETIT Catalogue of Recent and fossil taxa of the family Architectonicidae Gray, 1850 (Mollusca: Gastro- poda) (Zootaxa 1101) 119 pp.; 30 cm. 19 Dec. 2005 ISBN 1-877407-30-5 (paperback) ISBN 1-877407-31-3 (Online edition) FIRST PUBLISHED IN 2005 BY Magnolia Press P.O. Box 41383 Auckland 1030 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2005 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) Zootaxa 1101: 1–119 (2005) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA 1101 Copyright © 2005 Magnolia Press ISSN 1175-5334 (online edition) Catalogue of Recent and fossil taxa of the family Architectonicidae Gray, 1850 (Mollusca: Gastropoda) RÜDIGER BIELER1 & RICHARD E. PETIT2 1 Department of Zoology, Field Museum of Natural History, 1400 Lake Shore Drive, Chicago, Illinois 60605, U.S.A.; email: [email protected] 2 806 St. Charles Road, North Myrtle Beach, South Carolina 29582, U.S.A.; email: [email protected] Table of contents Abstract. 3 Introduction. 4 Scope . 5 Authors’ names, authorship and synonymies/chresonymies . 6 Dating . 7 Conventions employed in the genus group list . 7 Conventions employed in the species group list. 7 Acknowledgements . 8 FAMILY group names . 9 GENUS group names . 9 SPECIES group names . 18 Appendix . 75 References. 80 Abstract The marine gastropod family Architectonicidae (= Solariidae), commonly known as sundials, comprises about 140 worldwide extant species classified in 11 genera. More than ten times as many names are used in the literature for both Recent and fossil taxa, the latter dating from the Mesozoic (Paleozoic taxa were misinterpreted). Herein we catalog more than 1550 names that have appeared in print at the family-group (10), genus-group (137), and species-group levels (1408). Of the last, nearly 1100 are found to be nomenclatorially available or potentially available. An Appendix is included in which nomenclatural changes are made and/or commented upon. It is demonstrated that Solarium maculatum Link, 1807 was validly introduced and, as Architectonica maculata (Link, 1807), becomes the valid name for the species usually cited as A. picta (Philippi, 1849). The invalid introduction of Heliacus messanensis Bertolaso & Palazzi, 2000 is discussed. The emended spelling of the specific name in the binomen Solatisonax alleryi (G. Seguenza, 1876) is shown to be correctly accepted. Philippia lepida Bayer, 1942, Torinia gyrus depressiuscula Accepted by D. Geiger: 15 Sept. 2005; published: 19 Dec. 2005 3 ZOOTAXA Bayer, 1848, Solarium subconcolor von Martens, 1880, Solarium conulus Weinkauff, 1868 and 1101 Solarium submoniliferum d’Orbigny, 1852 were proposed as replacement names for multiple preoccupied names and/or misidentifications. These are here restricted to avoid possible confusion. The history and current status of the similarly spelled and inconsistently used nomina Fluxiella and Fluxinella (as placed in Architectonicidae and/or Seguenziidae) are discussed. Key words: Nomenclature, taxonomy, biodiversity, lower Heterogastropoda, Solariidae, marine Introduction The marine gastropod family Architectonicidae Gray, 1850 (of which Solariidae Carpenter, 1857 is a synonym) belongs to the “lower heterobranchs,” a still poorly resolved clade or grade that together with the Opisthobranchia and Pulmonata form the Heterobranchia within the Gastropoda. The systematic position, known anatomical characters, and complicated taxonomic history of Architectonicidae have been discussed by Haszprunar (1985, 1988) and Bieler (1988, 1992). Commonly known as "sundials," members of this group possess discoidal to broadly conical shells. Among the features of their dextrally coiling shells is a strongly pronounced heterostrophy, an abrupt difference in shell growth translation between the larval protoconch and the postlarval teleoconch. In architectonicids this leads to an extreme case of hyperstrophy (termed “anastrophy”) in which the larval shell umbilicus (not its apex) is visible on the apex of the shell, while the actual protoconch apex is pointing toward the umbilicus of the adult shell. Architectonicid opercula share a construction of spirally arranged horny lamellae, with a peg-like process on the body side by which it is anchored to the foot muscle. The group shows various buccal and radular specializations for feeding on hexacorallian coelenterates such as stony corals, sea anemones, and zoanthids. In the Recent fauna architectonicids have worldwide distribution, mainly in subtropical and tropical waters. Architectonicids occur at all depths, from the intertidal (e.g., species of Heliacus) to abyssal depths (e.g., Solatisonax). Today’s distributional limits are approximately 40° N and S for most taxa and seem to be defined by the range of suitable coelenterate prey species. Only a few species, especially of Basisulcata and Philippia, occur also outside this area, for instance southwest of Ireland (warmed by the Gulf Stream, at 50° and 51° N) and off Tasmania (Bieler 1993). Recent monographic treatments of the extant fauna (e.g., Bieler 1993) recognize about 140 worldwide species in 11 genera. As will be noted from the following lists, this is a small fraction of the available species-group and genus-group names that have been introduced in this family. Architectonicids have long-lived free-swimming larval stages, and many nominal species that were introduced as “local endemics” were subsequently shown to be members of a widely distributed species (an example is the type species of Architectonica itself, which has at least 12 junior synonyms). In addition, many names were introduced for fossil species. Of these, most of the Neogene taxa placed in the 4 © 2005 Magnolia Press BIELER & PETIT Architectonicidae are indubitably closely related to extant forms of this family. A large ZOOTAXA number of Mesozoic species and genera were introduced as architectonicids (particularly 1101 in the genus Solarium, a junior synonym of Architectonica), but were subsequently recognized to belong elsewhere. It is practically impossible to determine whether or not a trochoid-shaped internal mold is of an architectonicid. A few genera based on Paleozoic species were introduced in Architectonicidae, all of which have been moved to other families. Scope Genus group taxa. Three categories of generic names are listed herein: (1) genus group taxa (regardless of original placement) that are now placed in the Architectonicidae, (2) genus group taxa originally proposed in the family (regardless of current placement), and (3) genus group taxa having a type species that was originally described in an architectonicid genus (regardless of original or current placement of that type speies). Genera that were not originally in the Architectonicidae but placed therein at one time and later removed are not listed. Species group taxa. Listed herein are all species group taxa now considered to belong in the family Architectonicidae. Also listed are taxa originally described in a genus now placed in Architectonicidae but later placed elsewhere. Taxa that were originally described in a non-architectonicid genus and later incorrectly transferred to the Architectonicidae but not now considered to belong in the family are not listed. A few exceptions have been made for cases that may cause confusion. A main purpose of this catalogue is to provide access to the widely scattered literature in which available architectonicid names have been introduced. Although we have attempted to list misspellings in use, some compilations with no scientific value have been intentionally omitted as containing a large number of misspellings, misattributed names, and nude names (e.g., Santos Galindo 1977). On the other hand, such listings of Paetel (1869, 1887–88) are included as errors in his works were perpetuated for many years. Incorrect subsequent spellings that merely involve a missing, or erroneously doubled, genitive “i” are not listed except when there is the possibility that the change was an intentional emendation although such change is no longer permitted under Article 33.4 (I.C.Z.N. 1999). Species are listed under the genus in which they were originally described. As the list is non-critical, there are few subjective changes beyond the cited literature, and those are made only in cases of universal acceptance or when it is obvious that the original placement was wrong (e.g., some Mesozoic Vetigastropoda originally described as Solarium). Nomina herein are entirely from printed works. A surprising amount of architectonicid-related taxonomic misinformation (misspellings, nude names and incorrect citations) is to be found on the World Wide Web, even on supposedly authoritative sites. ARCHITECTONICIDAE © 2005 Magnolia Press 5 ZOOTAXA Considerable time and effort has been expended in an attempt to make this list, which 1101 now covers more than 1,550 nomina (both
Recommended publications
  • References Please Help Making This Preliminary List As Complete As Possible!
    Cypraeidae - important references Please help making this preliminary list as complete as possible! ABBOTT, R.T. (1965) Cypraea arenosa Gray, 1825. Hawaiian Shell News 14(2):8 ABREA, N.S. (1980) Strange goings on among the Cypraea ziczac. Hawaiian Shell News 28 (5):4 ADEGOKE, O.S. (1973) Paleocene mollusks from Ewekoro, southern Nigeria. Malacologia 14:19-27, figs. 1-2, pls. 1-2. ADEGOKE, O.S. (1977) Stratigraphy and paleontology of the Ewekoro Formation (Paleocene) of southeastern Nigeria. Bulletins of American Paleontology 71(295):1-379, figs. 1-6, pls. 1-50. AIKEN, R. P. (2016) Description of two undescribed subspecies and one fossil species of the Genus Cypraeovula Gray, 1824 from South Africa. Beautifulcowries Magazine 8: 14-22 AIKEN, R., JOOSTE, P. & ELS, M. (2010) Cypraeovula capensis - A specie of Diversity and Beauty. Strandloper 287 p. 16 ff AIKEN, R., JOOSTE, P. & ELS, M. (2014) Cypraeovula capensis. A species of diversity and beauty. Beautifulcowries Magazine 5: 38–44 ALLAN, J. (1956) Cowry Shells of World Seas. Georgian House, Melbourne, Australia, 170 p., pls. 1-15. AMANO, K. (1992) Cypraea ohiroi and its associated molluscan species from the Miocene Kadonosawa Formation, northeast Japan. Bulletin of the Mizunami Fossil Museum 19:405-411, figs. 1-2, pl. 57. ANCEY, C.F. (1901) Cypraea citrina Gray. The Nautilus 15(7):83. ANONOMOUS. (1971) Malacological news. La Conchiglia 13(146-147):19-20, 5 unnumbered figs. ANONYMOUS. (1925) Index and errata. The Zoological Journal. 1: [593]-[603] January. ANONYMOUS. (1889) Cypraea venusta Sowb. The Nautilus 3(5):60. ANONYMOUS. (1893) Remarks on a new species of Cypraea.
    [Show full text]
  • WMSDB - Worldwide Mollusc Species Data Base
    WMSDB - Worldwide Mollusc Species Data Base Family: TURBINIDAE Author: Claudio Galli - [email protected] (updated 07/set/2015) Class: GASTROPODA --- Clade: VETIGASTROPODA-TROCHOIDEA ------ Family: TURBINIDAE Rafinesque, 1815 (Sea) - Alphabetic order - when first name is in bold the species has images Taxa=681, Genus=26, Subgenus=17, Species=203, Subspecies=23, Synonyms=411, Images=168 abyssorum , Bolma henica abyssorum M.M. Schepman, 1908 aculeata , Guildfordia aculeata S. Kosuge, 1979 aculeatus , Turbo aculeatus T. Allan, 1818 - syn of: Epitonium muricatum (A. Risso, 1826) acutangulus, Turbo acutangulus C. Linnaeus, 1758 acutus , Turbo acutus E. Donovan, 1804 - syn of: Turbonilla acuta (E. Donovan, 1804) aegyptius , Turbo aegyptius J.F. Gmelin, 1791 - syn of: Rubritrochus declivis (P. Forsskål in C. Niebuhr, 1775) aereus , Turbo aereus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) aethiops , Turbo aethiops J.F. Gmelin, 1791 - syn of: Diloma aethiops (J.F. Gmelin, 1791) agonistes , Turbo agonistes W.H. Dall & W.H. Ochsner, 1928 - syn of: Turbo scitulus (W.H. Dall, 1919) albidus , Turbo albidus F. Kanmacher, 1798 - syn of: Graphis albida (F. Kanmacher, 1798) albocinctus , Turbo albocinctus J.H.F. Link, 1807 - syn of: Littorina saxatilis (A.G. Olivi, 1792) albofasciatus , Turbo albofasciatus L. Bozzetti, 1994 albofasciatus , Marmarostoma albofasciatus L. Bozzetti, 1994 - syn of: Turbo albofasciatus L. Bozzetti, 1994 albulus , Turbo albulus O. Fabricius, 1780 - syn of: Menestho albula (O. Fabricius, 1780) albus , Turbo albus J. Adams, 1797 - syn of: Rissoa parva (E.M. Da Costa, 1778) albus, Turbo albus T. Pennant, 1777 amabilis , Turbo amabilis H. Ozaki, 1954 - syn of: Bolma guttata (A. Adams, 1863) americanum , Lithopoma americanum (J.F.
    [Show full text]
  • DEEP SEA LEBANON RESULTS of the 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project
    DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project March 2018 DEEP SEA LEBANON RESULTS OF THE 2016 EXPEDITION EXPLORING SUBMARINE CANYONS Towards Deep-Sea Conservation in Lebanon Project Citation: Aguilar, R., García, S., Perry, A.L., Alvarez, H., Blanco, J., Bitar, G. 2018. 2016 Deep-sea Lebanon Expedition: Exploring Submarine Canyons. Oceana, Madrid. 94 p. DOI: 10.31230/osf.io/34cb9 Based on an official request from Lebanon’s Ministry of Environment back in 2013, Oceana has planned and carried out an expedition to survey Lebanese deep-sea canyons and escarpments. Cover: Cerianthus membranaceus © OCEANA All photos are © OCEANA Index 06 Introduction 11 Methods 16 Results 44 Areas 12 Rov surveys 16 Habitat types 44 Tarablus/Batroun 14 Infaunal surveys 16 Coralligenous habitat 44 Jounieh 14 Oceanographic and rhodolith/maërl 45 St. George beds measurements 46 Beirut 19 Sandy bottoms 15 Data analyses 46 Sayniq 15 Collaborations 20 Sandy-muddy bottoms 20 Rocky bottoms 22 Canyon heads 22 Bathyal muds 24 Species 27 Fishes 29 Crustaceans 30 Echinoderms 31 Cnidarians 36 Sponges 38 Molluscs 40 Bryozoans 40 Brachiopods 42 Tunicates 42 Annelids 42 Foraminifera 42 Algae | Deep sea Lebanon OCEANA 47 Human 50 Discussion and 68 Annex 1 85 Annex 2 impacts conclusions 68 Table A1. List of 85 Methodology for 47 Marine litter 51 Main expedition species identified assesing relative 49 Fisheries findings 84 Table A2. List conservation interest of 49 Other observations 52 Key community of threatened types and their species identified survey areas ecological importanc 84 Figure A1.
    [Show full text]
  • Homeomorphic Gastropods from the Silurian of Norway, Estonia and Bohemia
    Homeomorphic gastropods from the Silurian of Norway, Estonia and Bohemia MARE ISAKAR, JAN OVE R. EBBESTAD & JOHN S. PEEL Isakar, M,. Ebbestad, J. O. R. & Peel, J. S.: Homeomorphic gastropods from the Silurian of Norway, Estonia and Bohemia. Norsk Geologisk Tidsskrift, Vol. 79, pp. 281-288. Oslo 1999. ISSN 0029-196X. Redescription of the gastropodEuomphalus undiferus Schmidt, 1858 fromthe Upper Llandovery Rumba Formation of Estonia requires reinvestigation of the hitherto monotypic genus Kiaeromphalus Peel & Y ochelson, 1976, originally described from the Rytteråker Formation of the Oslo Region. The Estonian K. undiferus and the Norwegian type species occur in similar depositional facies of Early Silurian age within the sedgwickii Graptolite Zone. The redescribed type specimen of Horologium kokeni Perner, 1907 from the late Silurian (Ludlow) of Bohemia shows strong morphological convergence with the two Baltic species, but Kiaeromphalus is distinguished by its lower rate of whorl expansion and less oblique aperture. Both genera were adapted to a sessile life, possibly on a soft substratum. Mare lsakar, Museum ofGeology, University ofTartu, Vanemuise 46, 51014 Tartu, Estonia. E-mail: [email protected]; Jan OveR. Ebbestad & JohnS. Peel, Department of Earth Sciences (Historical Geology and Palaeontology), Uppsala University, Norbyviigen 22, S-752 36 Uppsala, Sweden. E-mail: [email protected]; [email protected]. Introduction morphic, genera; Schmidt's (1858) species from Estonia is ascribed to the latter genus. Thus, Kiaeromphalus occurs In 1976, Peel & Yochelson reviewed Early Silurian from southem Norway to Estonia in the Lower Silurian (Llandovery) gastropods from the Oslo Region and rocks, although it remains unreported from the Silurian of proposed two new genera, Kiaeromphalus and Kjerulfo­ Sweden.
    [Show full text]
  • (Approx) Mixed Micro Shells (22G Bags) Philippines € 10,00 £8,64 $11,69 Each 22G Bag Provides Hours of Fun; Some Interesting Foraminifera Also Included
    Special Price £ US$ Family Genus, species Country Quality Size Remarks w/o Photo Date added Category characteristic (€) (approx) (approx) Mixed micro shells (22g bags) Philippines € 10,00 £8,64 $11,69 Each 22g bag provides hours of fun; some interesting Foraminifera also included. 17/06/21 Mixed micro shells Ischnochitonidae Callistochiton pulchrior Panama F+++ 89mm € 1,80 £1,55 $2,10 21/12/16 Polyplacophora Ischnochitonidae Chaetopleura lurida Panama F+++ 2022mm € 3,00 £2,59 $3,51 Hairy girdles, beautifully preserved. Web 24/12/16 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 30mm+ € 4,00 £3,45 $4,68 30/04/21 Polyplacophora Ischnochitonidae Ischnochiton textilis South Africa F+++ 27.9mm € 2,80 £2,42 $3,27 30/04/21 Polyplacophora Ischnochitonidae Stenoplax limaciformis Panama F+++ 16mm+ € 6,50 £5,61 $7,60 Uncommon. 24/12/16 Polyplacophora Chitonidae Acanthopleura gemmata Philippines F+++ 25mm+ € 2,50 £2,16 $2,92 Hairy margins, beautifully preserved. 04/08/17 Polyplacophora Chitonidae Acanthopleura gemmata Australia F+++ 25mm+ € 2,60 £2,25 $3,04 02/06/18 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 41mm+ € 4,00 £3,45 $4,68 West Indian 'fuzzy' chiton. Web 24/12/16 Polyplacophora Chitonidae Acanthopleura granulata Panama F+++ 32mm+ € 3,00 £2,59 $3,51 West Indian 'fuzzy' chiton. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 44mm+ € 5,00 £4,32 $5,85 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F++ 35mm € 2,50 £2,16 $2,92 Caribbean. 24/12/16 Polyplacophora Chitonidae Chiton tuberculatus Panama F+++ 29mm+ € 3,00 £2,59 $3,51 Caribbean.
    [Show full text]
  • The Ultrastructure of Spermatozoa and Spermiogenesis in Pyramidellid Gastropods, and Its Systematic Importance John M
    HELGOLANDER MEERESUNTERSUCHUNGEN Helgol~inder Meeresunters. 42,303-318 (1988) The ultrastructure of spermatozoa and spermiogenesis in pyramidellid gastropods, and its systematic importance John M. Healy School of Biological Sciences (Zoology, A08), University of Sydney; 2006, New South Wales, Australia ABSTRACT: Ultrastructural observations on spermiogenesis and spermatozoa of selected pyramidellid gastropods (species of Turbonilla, ~gulina, Cingufina and Hinemoa) are presented. During spermatid development, the condensing nucleus becomes initially anterio-posteriorly com- pressed or sometimes cup-shaped. Concurrently, the acrosomal complex attaches to an electron- dense layer at the presumptive anterior pole of the nucleus, while at the opposite (posterior) pole of the nucleus a shallow invagination is formed to accommodate the centriolar derivative. Midpiece formation begins soon after these events have taken place, and involves the following processes: (1) the wrapping of individual mitochondria around the axoneme/coarse fibre complex; (2) later internal metamorphosis resulting in replacement of cristae by paracrystalline layers which envelope the matrix material; and (3) formation of a glycogen-filled helix within the mitochondrial derivative (via a secondary wrapping of mitochondria). Advanced stages of nuclear condensation {elongation, transformation of fibres into lamellae, subsequent compaction) and midpiece formation proceed within a microtubular sheath ('manchette'). Pyramidellid spermatozoa consist of an acrosomal complex (round
    [Show full text]
  • Cosmopolitan Early Jurassic Marine Gastropods from West−Central Patagonia, Argentina
    Cosmopolitan Early Jurassic marine gastropods from west−central Patagonia, Argentina S. MARIEL FERRARI Ferrari, S.M. 2009. Cosmopolitan Early Jurassic marine gastropods from west−central Patagonia, Argentina. Acta Palaeontologica Polonica 54 (3): 449–461. DOI: 10.4202/app.2008.0070. A new, relatively diverse gastropod fauna is reported from the Chubut province of west−central Patagonia. The gastro− pod association at the “El Córdoba” fossiliferous locality (Lower Toarcian of Osta Arena Formation) consists of three new species: the eucyclid Amberleya? espinosa sp. nov. and two procerithiids Cryptaulax damboreneae sp. nov. and Cryptaulax nulloi sp. nov. Other members of the association are the ataphrid Striatoconulus sp., discohelicid Colpom− phalus? sp., and an undetermined zygopleurid. Knowledge on Early Jurassic gastropods from South America and other southern continents is reviewed to show that the taxonomic composition of the El Cordoba association strongly resem− bles other gastropod associations of this age (even those from Europe), suggesting a wide distribution of cosmopolitan genera. Key words: Gastropoda, Osta Arena Formation, Toarcian, Jurassic, Chubut, Patagonia, Argentina. S. Mariel Ferrari [[email protected]], Museo Paleontológico “Egidio Feruglio”, CONICET, Av. Fontana 140, U9100GYO, Trelew−Chubut, Argentina. Received 16 September 2008, accepted 6 April 2009, available online 16 July 2009. Introduction Institutional abbreviations.—ALUAR, Aluminio Argentino, Pto. Madryn− Chubut, Argentina; MLP, División Paleonto− Early Jurassic gastropods from South America have been logía Invertebrados of Museo de Ciencias Naturales de La studied for a long time (Bayle and Coquand 1851; Gottsche Plata, La Plata, Argentina; MPEF−PI, Museo Paleontológico 1878, 1925; Behrendsen 1891, 1922; Möricke 1894; Burck− “Egidio Feruglio”, Trelew−Chubut, Argentina.
    [Show full text]
  • ABSTRACT Title of Dissertation: PATTERNS IN
    ABSTRACT Title of Dissertation: PATTERNS IN DIVERSITY AND DISTRIBUTION OF BENTHIC MOLLUSCS ALONG A DEPTH GRADIENT IN THE BAHAMAS Michael Joseph Dowgiallo, Doctor of Philosophy, 2004 Dissertation directed by: Professor Marjorie L. Reaka-Kudla Department of Biology, UMCP Species richness and abundance of benthic bivalve and gastropod molluscs was determined over a depth gradient of 5 - 244 m at Lee Stocking Island, Bahamas by deploying replicate benthic collectors at five sites at 5 m, 14 m, 46 m, 153 m, and 244 m for six months beginning in December 1993. A total of 773 individual molluscs comprising at least 72 taxa were retrieved from the collectors. Analysis of the molluscan fauna that colonized the collectors showed overwhelmingly higher abundance and diversity at the 5 m, 14 m, and 46 m sites as compared to the deeper sites at 153 m and 244 m. Irradiance, temperature, and habitat heterogeneity all declined with depth, coincident with declines in the abundance and diversity of the molluscs. Herbivorous modes of feeding predominated (52%) and carnivorous modes of feeding were common (44%) over the range of depths studied at Lee Stocking Island, but mode of feeding did not change significantly over depth. One bivalve and one gastropod species showed a significant decline in body size with increasing depth. Analysis of data for 960 species of gastropod molluscs from the Western Atlantic Gastropod Database of the Academy of Natural Sciences (ANS) that have ranges including the Bahamas showed a positive correlation between body size of species of gastropods and their geographic ranges. There was also a positive correlation between depth range and the size of the geographic range.
    [Show full text]
  • Abhandlungen Der Geologischen Bundesanstalt in Wien
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Abhandlungen der Geologischen Bundesanstalt in Wien Jahr/Year: 2010 Band/Volume: 65 Autor(en)/Author(s): Mandl Gerhard W., Dulai Alfred, Schlögl Jan, Siblik M., Szabo Janos, Szent-Istvanyi Szentistvanyi Gyula, Vörös Attila Artikel/Article: First Results on Stratigraphy and Faunal Content of the Jurassic between Bad Mitterndorf and Toplitzsee (Salzkammergut, Austria) 77-134 ©Geol. Bundesanstalt, Wien; download unter www.geologie.ac.at ABHANDLUNGEN DER GEOLOGISCHEN BUNDESANSTALT Abh. Geol. B.-A. ISSN 0378-0864 ISBN 978-3-85316-058-9 Band 65 S. 77–134 Wien, 10. 11. 2010 Fifty Years of Geological Cooperation between Austria, the Czech Republic and the Slovak Republic First Results on Stratigraphy and Faunal Content of the Jurassic between Bad Mitterndorf and Toplitzsee (Salzkammergut, Austria) Gerhard W. Mandl1, alFréd dulai2, jan schlöGl3, MiloŠ siblík4, jános szabó2, istván szente5 & attila vörös2 4 Text-Figures, 17 Plates Österreichische Karte 1:50.000 Northern Calcareous Alps Blatt 97 Bad Mitterndorf Jurassic Olistolith Ammonoidea Brachiopoda Gastropoda Bivalvia Contents Zusammenfassung . 77 Abstract . 78 Introduction . 78 Geological Setting . 78 Stratigraphy . 80 Upper Triassic . 80 Lower Jurassic . 80 Upper Jurassic . 81 Remarks on the Fauna of Olistolith Plk 1 . 84 Ammonoidea (J. Schlögl) . 84 Brachiopoda (A. Dulai) . 85 Gastropoda (J. Szabó) . 85 Bivalvia (I. Szente) . 87 Fossil Sites and Faunal Content . 88 Plates . 98 Conclusions . 132 Acknowledgements . 132 References . 133 Erste Ergebnisse zu Stratigraphie und Faunen-Inhalt der Jura-Gesteine zwischen Bad Mitterndorf und Toplitzsee (Salzkammergut, Österreich) Zusammenfassung Die südwestlichen Ausläufer des Toten Gebirges zeigen eine Schichtfolge aus rhätischem Dachsteinkalk und jurassischen Beckensedimenten, die bis in das Kimmeridgium reichen.
    [Show full text]
  • Fossil Flora and Fauna of Bosnia and Herzegovina D Ela
    FOSSIL FLORA AND FAUNA OF BOSNIA AND HERZEGOVINA D ELA Odjeljenje tehničkih nauka Knjiga 10/1 FOSILNA FLORA I FAUNA BOSNE I HERCEGOVINE Ivan Soklić DOI: 10.5644/D2019.89 MONOGRAPHS VOLUME LXXXIX Department of Technical Sciences Volume 10/1 FOSSIL FLORA AND FAUNA OF BOSNIA AND HERZEGOVINA Ivan Soklić Ivan Soklić – Fossil Flora and Fauna of Bosnia and Herzegovina Original title: Fosilna flora i fauna Bosne i Hercegovine, Sarajevo, Akademija nauka i umjetnosti Bosne i Hercegovine, 2001. Publisher Academy of Sciences and Arts of Bosnia and Herzegovina For the Publisher Academician Miloš Trifković Reviewers Dragoljub B. Đorđević Ivan Markešić Editor Enver Mandžić Translation Amra Gadžo Proofreading Amra Gadžo Correction Sabina Vejzagić DTP Zoran Buletić Print Dobra knjiga Sarajevo Circulation 200 Sarajevo 2019 CIP - Katalogizacija u publikaciji Nacionalna i univerzitetska biblioteka Bosne i Hercegovine, Sarajevo 57.07(497.6) SOKLIĆ, Ivan Fossil flora and fauna of Bosnia and Herzegovina / Ivan Soklić ; [translation Amra Gadžo]. - Sarajevo : Academy of Sciences and Arts of Bosnia and Herzegovina = Akademija nauka i umjetnosti Bosne i Hercegovine, 2019. - 861 str. : ilustr. ; 25 cm. - (Monographs / Academy of Sciences and Arts of Bosnia and Herzegovina ; vol. 89. Department of Technical Sciences ; vol. 10/1) Prijevod djela: Fosilna flora i fauna Bosne i Hercegovine. - Na spor. nasl. str.: Fosilna flora i fauna Bosne i Hercegovine. - Bibliografija: str. 711-740. - Registri. ISBN 9958-501-11-2 COBISS/BIH-ID 8839174 CONTENTS FOREWORD ...........................................................................................................
    [Show full text]
  • A Revision of Australian Architectonicidae (Gastropoda
    A REVISION OF AUSTRALIAN ARCHITECTONICIDAE 506 (GASTROPODA: MOLLUSCA) T. A. GARRARD Associate, The Australian Museum, Sydney SUMMARY The family Architectonicidae consists of three subfamilies, Architectonicinae, Heliacinae and Pseudomalaxinae. In the subfamily Architectonicinae five Recent species are included in the subgenus Architectonica (Architectonica); two Recent, three fossil (one new but unnamed) in the subgenus A. (Discotectonica); two Recent species in the subgenus A. (So/atisonax); one Recent species in the subgenus Philippia (Phi/ippia); two Recent and one new fossil species (Philippia (Psi/axis) mitchellana Garrard) in the subgenus Phi/ippia (Psi/axis); one Recent species is included as Architectonicinae sp. In the subfamily Heliacinae, six Recent species, one of which (He/iacus (Heliacus) hed/eyi Garrard) is new, and one new Recent subspecies (He/iacus (He/iacus) cerda/eus ponderi Garrard) are included in the subgenus He/iacus (Heliacus); 10 Recent species, one of which (Heliacus (Torinista) corallin us Garrard) is new, and one new fossil species (He/iacus (Torinista) darraghi Garrard) are included in the subgenus H. (Torinista); one Recent and two fossil species, one of which (He/iacus (Awarua) otwayanus Garrard) is described as new, and the other un-named, are included in the subgenus H. (Awarua); seven Recent species, one of which (Heliacus (C/araxis) colmani Garrard) is new, two unnamed and three fossil species, one of which (He/iacus (C1araxis) morningtonensis Garrard) is new and one unnamed, are included in the subgenus H. (C1araxis). In the subfamily Pseudomalaxinae, two Recent species, including one new species (Pseudoma/axis (Pseudoma/axis) thetidis Garrard) and two fossil species are included in the subgenus P.
    [Show full text]
  • Abstract Volume
    ABSTRACT VOLUME August 11-16, 2019 1 2 Table of Contents Pages Acknowledgements……………………………………………………………………………………………...1 Abstracts Symposia and Contributed talks……………………….……………………………………………3-225 Poster Presentations…………………………………………………………………………………226-291 3 Venom Evolution of West African Cone Snails (Gastropoda: Conidae) Samuel Abalde*1, Manuel J. Tenorio2, Carlos M. L. Afonso3, and Rafael Zardoya1 1Museo Nacional de Ciencias Naturales (MNCN-CSIC), Departamento de Biodiversidad y Biologia Evolutiva 2Universidad de Cadiz, Departamento CMIM y Química Inorgánica – Instituto de Biomoléculas (INBIO) 3Universidade do Algarve, Centre of Marine Sciences (CCMAR) Cone snails form one of the most diverse families of marine animals, including more than 900 species classified into almost ninety different (sub)genera. Conids are well known for being active predators on worms, fishes, and even other snails. Cones are venomous gastropods, meaning that they use a sophisticated cocktail of hundreds of toxins, named conotoxins, to subdue their prey. Although this venom has been studied for decades, most of the effort has been focused on Indo-Pacific species. Thus far, Atlantic species have received little attention despite recent radiations have led to a hotspot of diversity in West Africa, with high levels of endemic species. In fact, the Atlantic Chelyconus ermineus is thought to represent an adaptation to piscivory independent from the Indo-Pacific species and is, therefore, key to understanding the basis of this diet specialization. We studied the transcriptomes of the venom gland of three individuals of C. ermineus. The venom repertoire of this species included more than 300 conotoxin precursors, which could be ascribed to 33 known and 22 new (unassigned) protein superfamilies, respectively. Most abundant superfamilies were T, W, O1, M, O2, and Z, accounting for 57% of all detected diversity.
    [Show full text]