Genomic Analysis of the Potential for Aromatic Compounds

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Analysis of the Potential for Aromatic Compounds bs_bs_banner Environmental Microbiology (2012) 14(5), 1091–1117 doi:10.1111/j.1462-2920.2011.02613.x Minireview Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderialesemi_2613 1091..1117 Danilo Pérez-Pantoja,1 Raúl Donoso,1,2 in the catabolic clusters of these pathways indicating Loreine Agulló,3 Macarena Córdova,3 recent events in its evolutionary history. In addition, a Michael Seeger,3 Dietmar H. Pieper4 and significant bias towards secondary chromosomes, Bernardo González1,2* now termed chromids, is observed in the distribution 1Center for Advanced Studies in Ecology and of catabolic genes across multipartite genomes, Biodiversity. Millennium Nucleus in Plant Functional which is consistent with a genus-specific character. Genomics. Facultad de Ciencias Biológicas, P. Strains isolated from environmental sources such as Universidad Católica de Chile. Santiago, Chile. soil, rhizosphere, sediment or sludge show a higher 2Facultad de Ingeniería y Ciencias, Universidad Adolfo content of catabolic genes in their genomes com- Ibáñez. Santiago, Chile. pared with strains isolated from human, animal or 3Laboratorio de Microbiología Molecular y Biotecnología plant hosts, but no significant difference is found Ambiental, Departamento de Química, Center for among Alcaligenaceae, Burkholderiaceae and Coma- Nanotechnology and Systems Biology, Universidad monadaceae families, indicating that habitat is more Técnica Federico Santa María, Valparaíso, Chile. of a determinant than phylogenetic origin in shaping 4Microbial Interactions and Processes Research Group, aromatic catabolic versatility. Department of Medical Microbiology, HZI – Helmholtz Centre for Infection Research. Braunschweig, Germany. Introduction Aromatic compounds are widespread in nature, being Summary found as lignin and petroleum components, xenobiotic The relevance of the b-proteobacterial Burkholderi- chemicals, aromatic amino acids and constituents of plant ales order in the degradation of a vast array of exudates, among other sources. The aerobic degradation aromatic compounds, including several priority pol- of aromatic compounds and their halogenated derivatives lutants, has been largely assumed. In this review, the by bacteria has been well studied (Pieper et al., 2010; presence and organization of genes encoding oxyge- Pérez-Pantoja et al., 2010a). The general principle of aro- nases involved in aromatics biodegradation in 80 matics degradation indicates that a broad range of periph- Burkholderiales genomes is analysed. This genomic eral reactions transforms a huge variety of compounds to analysis underscores the impressive catabolic poten- a restricted set of central intermediates, which are subject tial of this bacterial lineage, comprising nearly all of to ring-cleavage and subsequent funnelling into the Krebs the central ring-cleavage pathways reported so far in cycle. Typically, peripheral reactions consist in activation bacteria and most of the peripheral pathways of the aromatic ring through oxygenases and/or CoA involved in channelling of a broad diversity of aro- ligases generating di- or trihydroxylated intermediates matic compounds. The more widespread pathways and/or dearomatized CoA derivatives (Fig. 1) (Pérez- in Burkholderiales include protocatechuate ortho Pantoja et al., 2010a; Pieper et al., 2010). The activation ring-cleavage, catechol ortho ring-cleavage, homo- of the aromatic ring through hydroxylation (Fig. 1, outer gentisate ring-cleavage and phenylacetyl-CoA ring- circle) is commonly catalysed by members of one of three cleavage pathways found in at least 60% of genomes oxygenase families: the Rieske non-haem iron oxygena- analysed. In general, a genus-specific pattern of posi- ses which frequently catalyse the incorporation of two tional ordering of biodegradative genes is observed oxygen atoms (Gibson and Parales, 2000), the flavopro- tein monooxygenases (van Berkel et al., 2006) and the soluble diiron multicomponent oxygenases (Leahy et al., Received 20 May, 2011; accepted 11 September, 2011. *For corre- spondence. E-mail [email protected]; Tel. (+56) 2 3311619; 2003). The subsequent ring-cleavage of di- or trihydroxy- Fax (+56) 2 3311906. lated intermediates (Fig. 1, inner circle) can be catalysed © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd 1092 D. Pérez-Pantoja et al. HOOC COOH OH 3-Hydroxypheny lacetic acid 4-Hydroxyphenylpyruvic acid NH2 Mha6H COOH Gallic acid COOH Phenylacetyl-CoA O COOH Anthranilic acid Benzoyl-CoA COSCoA HOOC HppDO OH COSCoA AntDO Cl HO Benzoic acid COSCoA HO OH COOH Cl OH OH HO BenDO NH OH OH 2 Paa Homogentisic acid Box 2,4-Dichlorophenol Hge Cl Gal HO Cl Sal1H HOOC 2-Aminobenzoyl-CoA COSCoA COSCoA 3,5-Dichlorocatechol Salicylic acid Cl OH O COOH OH OH OH Cca OH 2-Halobenzoic acid Cl OH Cl Cl COOH Ab Cl OH c OH COOH COOH cp4H OH Cl OhbDO T 2,4,6-Trichlorophenol O COOH Cat12 COSCoA Hxq OH HOOC IaaDO Catechol HOOC COOH NH2 6-Chlorohydroxyquinol C HOOC Cl at HO COOH Indole-3-acetic 23 COOH HO OH acid O 4-Hydroxyphenylacetic acid BphDO CHO O COOH N COOH H CHO Hpc HO COOH COOH COOH OH OH OH Homoprotocatechuic Cca COOH Cl acid HO Central Salicylic OH Biphenyl COOH COOH COOH O COOH acid OH Me t abolism HOOC COOH Cl Cl OH 3-Chlorocatechol H C OH COOH 3 CH3 Gen Tmo O Mhb6H COOH zDO COOH HO OH Cb Benzene Phenol HO O COOH CHO Gentisic acid 3-Hydroxybenzoic acid Dhc HOOC OHC COOH HOOC COOH Cl OH HOOC Chlorobenzene HO HOOC Isophthalic COOH HOOC OH DO acid mt COOH COOH C H C CH NH 2 CHO 3 3 COOH COOH 2,3-Dihydroxy-p-cumic acid HOOC OH HOOC NH2 NH 2 HO Protocatechuic O O COOH COOH COOH acid COOH P Phthalic acid h CHO b OH COOH 2-Aminophenol OH 3H COOH H3C CH 3 COOH p -Cumic acid Dhp COOH Hxq HO OH COOH HO HO OH HO OH Hydroquinone HOOC O CH OH H2N COOH 3 Vanillic COOH 3-Hydroxyanthranilic OH OH O CH3 Hydroxyquinol OH acid Isovanillic Terephthalic acid 2,3-Dihydroxyphenylpropionic 4-Hydroxybenzoic acid acid acid acid Res4H DapDO PcmH O HO H C OH Mhp2H HO 3 OH OH p-Cresol HOOC 2,4’-Dihydroxyacetophenone OH Resorcinol 3-Hydroxyphenylpropionic acid Fig. 1. Overview of peripheral and ring-cleavage pathways for bacterial catabolism of aromatic compounds. The inner circle includes the structures of dearomatized and ring-cleavage products. The outer circle includes the structures of aryl-CoA and dihydroxylated ring-cleavage intermediates. Dotted lines indicate multiple steps. Gene markers listed in Table 1 are bolded. by either intradiol or extradiol dioxygenases. While all bacterial lineage whose genomic sequences have been intradiol dioxygenases described thus far belong to the completed (Chain et al., 2006; Gross et al., 2008; Mattes same superfamily, members of at least three different et al., 2008; Pérez-Pantoja et al., 2008). Based on the families are reported to be involved in the extradiol ring- available literature in the biodegradation field, the excep- cleavage of hydroxylated aromatics. Altogether, the inven- tional catabolic potential of Burkholderiales revealed tory of oxygenases involved in activation and cleavage by genomic analysis is not surprising because of the of the aromatic ring is extensive and phylogenetically large number of strains belonging to this order that diverse, including several different families that have have been isolated by its biodegradative abilities (a been recently compiled for phylogenomic studies (Pérez- non-comprehensive list restricted to genus Burkholderia Pantoja et al., 2010b). Analysis of the distribution of these is found in Denef, 2007). The relevance of Burkholderiales aromatic oxygenases-encoding genes among available for environmental biotechnology has been largely pro- bacterial genome sequences has shown that members of posed based on these culture-dependent methods the Burkholderiales order of the b-proteobacteria harbour (O’Sullivan and Mahenthiralingam, 2005; Chiarini et al., the most impressive potential for aromatic compounds 2006; Denef, 2007). However, the unequivocal confirma- catabolism. These biodegradative abilities become out- tion of Burkholderiales preponderance in bioremediation standing in highly specialized degraders belonging to this processes occurring in multiple environmental systems © 2011 Society for Applied Microbiology and Blackwell Publishing Ltd, Environmental Microbiology, 14, 1091–1117 Degradation of aromatic compounds in Burkholderiales 1093 has been raised with the emergence of stable isotope families in these 80 sequenced genomes is not homo- probing techniques that links functional activity to specific geneous since 48 strains belong to the Burkholderiaceae members of microbial communities (Madsen, 2006). family. The other strains are distributed among the Using this in situ approach, a key biodegradative role for Comamonadaceae (16), Alcaligenaceae (8) and Oxalo- Burkholderiales has been reported in bioremediation of bacteraceae (5) families (Fig. 2). Three unclassified multiple aromatic compounds including: polychloroby- Burkholderiales species, Thiomonas intermedia K12, phenyls (Tillmann et al., 2005; Uhlik et al., 2009), toluene Methylibium petroleiphilum PM1 and Leptothrix cholodnii (Sun et al., 2010), benzene (Liou et al., 2008; Xie et al., SP-6 were also analysed. 2011), benzoate (Pumphrey and Madsen, 2008), salicy- The genome database for Burkholderiales includes late (Singleton et al., 2005), phenol (Manefield et al., bacteria that can be classified, somewhat artificially, 2005), pentachlorophenol (Mahmood et al., 2005), 2,4- based on their source of isolation: (i) human host,
Recommended publications
  • The 2014 Golden Gate National Parks Bioblitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event
    National Park Service U.S. Department of the Interior Natural Resource Stewardship and Science The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 ON THIS PAGE Photograph of BioBlitz participants conducting data entry into iNaturalist. Photograph courtesy of the National Park Service. ON THE COVER Photograph of BioBlitz participants collecting aquatic species data in the Presidio of San Francisco. Photograph courtesy of National Park Service. The 2014 Golden Gate National Parks BioBlitz - Data Management and the Event Species List Achieving a Quality Dataset from a Large Scale Event Natural Resource Report NPS/GOGA/NRR—2016/1147 Elizabeth Edson1, Michelle O’Herron1, Alison Forrestel2, Daniel George3 1Golden Gate Parks Conservancy Building 201 Fort Mason San Francisco, CA 94129 2National Park Service. Golden Gate National Recreation Area Fort Cronkhite, Bldg. 1061 Sausalito, CA 94965 3National Park Service. San Francisco Bay Area Network Inventory & Monitoring Program Manager Fort Cronkhite, Bldg. 1063 Sausalito, CA 94965 March 2016 U.S. Department of the Interior National Park Service Natural Resource Stewardship and Science Fort Collins, Colorado The National Park Service, Natural Resource Stewardship and Science office in Fort Collins, Colorado, publishes a range of reports that address natural resource topics. These reports are of interest and applicability to a broad audience in the National Park Service and others in natural resource management, including scientists, conservation and environmental constituencies, and the public. The Natural Resource Report Series is used to disseminate comprehensive information and analysis about natural resources and related topics concerning lands managed by the National Park Service.
    [Show full text]
  • Metaproteogenomic Insights Beyond Bacterial Response to Naphthalene
    ORIGINAL ARTICLE ISME Journal – Original article Metaproteogenomic insights beyond bacterial response to 5 naphthalene exposure and bio-stimulation María-Eugenia Guazzaroni, Florian-Alexander Herbst, Iván Lores, Javier Tamames, Ana Isabel Peláez, Nieves López-Cortés, María Alcaide, Mercedes V. del Pozo, José María Vieites, Martin von Bergen, José Luis R. Gallego, Rafael Bargiela, Arantxa López-López, Dietmar H. Pieper, Ramón Rosselló-Móra, Jesús Sánchez, Jana Seifert and Manuel Ferrer 10 Supporting Online Material includes Text (Supporting Materials and Methods) Tables S1 to S9 Figures S1 to S7 1 SUPPORTING TEXT Supporting Materials and Methods Soil characterisation Soil pH was measured in a suspension of soil and water (1:2.5) with a glass electrode, and 5 electrical conductivity was measured in the same extract (diluted 1:5). Primary soil characteristics were determined using standard techniques, such as dichromate oxidation (organic matter content), the Kjeldahl method (nitrogen content), the Olsen method (phosphorus content) and a Bernard calcimeter (carbonate content). The Bouyoucos Densimetry method was used to establish textural data. Exchangeable cations (Ca, Mg, K and 10 Na) extracted with 1 M NH 4Cl and exchangeable aluminium extracted with 1 M KCl were determined using atomic absorption/emission spectrophotometry with an AA200 PerkinElmer analyser. The effective cation exchange capacity (ECEC) was calculated as the sum of the values of the last two measurements (sum of the exchangeable cations and the exchangeable Al). Analyses were performed immediately after sampling. 15 Hydrocarbon analysis Extraction (5 g of sample N and Nbs) was performed with dichloromethane:acetone (1:1) using a Soxtherm extraction apparatus (Gerhardt GmbH & Co.
    [Show full text]
  • CUED Phd and Mphil Thesis Classes
    High-throughput Experimental and Computational Studies of Bacterial Evolution Lars Barquist Queens' College University of Cambridge A thesis submitted for the degree of Doctor of Philosophy 23 August 2013 Arrakis teaches the attitude of the knife { chopping off what's incomplete and saying: \Now it's complete because it's ended here." Collected Sayings of Muad'dib Declaration High-throughput Experimental and Computational Studies of Bacterial Evolution The work presented in this dissertation was carried out at the Wellcome Trust Sanger Institute between October 2009 and August 2013. This dissertation is the result of my own work and includes nothing which is the outcome of work done in collaboration except where specifically indicated in the text. This dissertation does not exceed the limit of 60,000 words as specified by the Faculty of Biology Degree Committee. This dissertation has been typeset in 12pt Computer Modern font using LATEX according to the specifications set by the Board of Graduate Studies and the Faculty of Biology Degree Committee. No part of this dissertation or anything substantially similar has been or is being submitted for any other qualification at any other university. Acknowledgements I have been tremendously fortunate to spend the past four years on the Wellcome Trust Genome Campus at the Sanger Institute and the European Bioinformatics Institute. I would like to thank foremost my main collaborators on the studies described in this thesis: Paul Gardner and Gemma Langridge. Their contributions and support have been invaluable. I would also like to thank my supervisor, Alex Bateman, for giving me the freedom to pursue a wide range of projects during my time in his group and for advice.
    [Show full text]
  • Taxonomic Assessment of Lumbricidae (Oligochaeta) Earthworm Genera Using DNA Barcodes
    European Journal of Soil Biology 48 (2012) 41e47 Contents lists available at SciVerse ScienceDirect European Journal of Soil Biology journal homepage: http://www.elsevier.com/locate/ejsobi Original article Taxonomic assessment of Lumbricidae (Oligochaeta) earthworm genera using DNA barcodes Marcos Pérez-Losada a,*, Rebecca Bloch b, Jesse W. Breinholt c, Markus Pfenninger b, Jorge Domínguez d a CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do Porto, Campus Agrário de Vairão, 4485-661 Vairão, Portugal b Biodiversity and Climate Research Centre, Lab Centre, Biocampus Siesmayerstraße, 60323 Frankfurt am Main, Germany c Department of Biology, Brigham Young University, Provo, UT 84602-5181, USA d Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, E-36310, Spain article info abstract Article history: The family Lumbricidae accounts for the most abundant earthworms in grasslands and agricultural Received 26 May 2011 ecosystems in the Paleartic region. Therefore, they are commonly used as model organisms in studies of Received in revised form soil ecology, biodiversity, biogeography, evolution, conservation, soil contamination and ecotoxicology. 14 October 2011 Despite their biological and economic importance, the taxonomic status and evolutionary relationships Accepted 14 October 2011 of several Lumbricidae genera are still under discussion. Previous studies have shown that cytochrome c Available online 30 October 2011 Handling editor: Stefan Schrader oxidase I (COI) barcode phylogenies are informative at the intrageneric level. Here we generated 19 new COI barcodes for selected Aporrectodea specimens in Pérez-Losada et al. [1] including nine species and 17 Keywords: populations, and combined them with all the COI sequences available in Genbank and Briones et al.
    [Show full text]
  • Achromobacter Buckle Infection Diagnosed by a 16S Rdna Clone
    Hotta et al. BMC Ophthalmology 2014, 14:142 http://www.biomedcentral.com/1471-2415/14/142 CASE REPORT Open Access Achromobacter buckle infection diagnosed by a 16S rDNA clone library analysis: a case report Fumika Hotta1†, Hiroshi Eguchi1*, Takeshi Naito1†, Yoshinori Mitamura1†, Kohei Kusujima2† and Tomomi Kuwahara3† Abstract Background: In clinical settings, bacterial infections are usually diagnosed by isolation of colonies after laboratory cultivation followed by species identification with biochemical tests. However, biochemical tests result in misidentification due to similar phenotypes of closely related species. In such cases, 16S rDNA sequence analysis is useful. Herein, we report the first case of an Achromobacter-associated buckle infection that was diagnosed by 16S rDNA sequence analysis. This report highlights the significance of Achromobacter spp. in device-related ophthalmic infections. Case presentation: A 56-year-old woman, who had received buckling surgery using a silicone solid tire for retinal detachment eighteen years prior to this study, presented purulent eye discharge and conjunctival hyperemia in her right eye. Buckle infection was suspected and the buckle material was removed. Isolates from cultures of preoperative discharge and from deposits on the operatively removed buckle material were initially identified as Alcaligenes and Corynebacterium species. However, sequence analysis of a 16S rDNA clone library using the DNA extracted from the deposits on the buckle material demonstrated that all of the 16S rDNA sequences most closely matched those of Achromobacter spp. We concluded that the initial misdiagnosis of this case as an Alcaligenes buckle infection was due to the unreliability of the biochemical test in discriminating Achromobacter and Alcaligenes species due to their close taxonomic positions and similar phenotypes.
    [Show full text]
  • Gut Microbiome Alterations in Ulcerative Colitis and After Moxibustion Intervention
    Gut Microbiome Alterations In Ulcerative Colitis And After Moxibustion Intervention Qin Qi Shanghai University of Traditional Chinese Medicine Ya-Nan Liu Shanghai University of Traditional Chinese Medicine Si-Yi Lv Shanghai University of Traditional Chinese Medicine Huan-Gan Wu Shanghai University of Traditional Chinese Medicine Lin-Shuang Zhang Zhejiang Institute for Food and Drug Control Zhan Cao Tongji University School of Medicine Hui-Rong Liu Shanghai University of Traditional Chinese Medicine Xiao-Mei Wang ( [email protected] ) Shanghai University of Traditional Chinese Medicine Lu-Yi Wu Shanghai University of Traditional Chinese Medicine Research Article Keywords: Ulcerative colitis, Moxibustion, Gut microbiota, Metagenomic Posted Date: August 11th, 2021 DOI: https://doi.org/10.21203/rs.3.rs-789670/v1 License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License Page 1/22 Abstract Background: Recent studies have shown that the pathogenesis of ulcerative colitis (UC) is closely related to the gut microbiota. Moxibustion, a common treatment in traditional Chinese medicine, is the burning of the herb moxa over acupuncture points. Moxibustion has been used to improve the inammation and gastrointestinal dysfunctions in gastrointestinal disorders such as UC. In this study, we investigated whether moxibustion could improve the gut microbial dysbiosis induced by dextran sulphate sodium (DSS). Methods: Twenty-ve male rats were randomly assigned into ve groups: normal (NG), UC model (UC), moxibustion (UC+MOX), mesalazine (UC+MES), and normal rats with moxibustion (NG+MOX). The UC rat model was established by administering DSS solution. The rats in the UC+MOX and NG+MOX groups were treated with moxibustion at Tianshu (bilateral, ST25) points once daily for 7 consecutive days, and the UC+MES group rats were treated with mesalazine once daily for 7 consecutive days.
    [Show full text]
  • GTL PI Meeting 2009 Abstracts
    Systems Biology for DOE Energy and Environmental Missions Systems Environmental Microbiology The Virtual Institute of Microbial Stress and many unique aspects of studying such complex systems. For Survival VIMSS:ESPP example, the study of the D. vulgaris / Methanococcus mari- paludis syntrophic co-culture (serving as a model of naturally occurring SRB/ Methanogen interactions) required optimi- GTL zation of microarray hybridization methods and an alternate workflow for iTRAQ proteomics application. Our team also has advanced tools for metabolite level analysis, such as a 13C isotopomer based flux analysis which provides valuable ESPP Functional Genomics and Imaging information about bacterial physiology. However the study Core (FGIC): Cell Wide Analysis of of individual organisms in a mixed culture using existing Metal-Reducing Bacteria flux analysis methods is difficult since the method typically relies on amino acids from hydrolyzed proteins from a Aindrila Mukhopadhyay,1,6* Edward Baidoo,1,6 Kelly homogenous biomass. To overcome the need to separate the Bender5,6 ([email protected]), Peter Benke,1,6 target organism in a mixed culture, we successfully explored Swapnil Chhabra,1,6 Elliot Drury,3,6 Masood Hadi,2,6 Zhili the idea that a single highly-expressed protein could be used He,4,6 Jay Keasling1,6 ([email protected]), Kimberly to analyze the isotopomer distribution of amino acids from Keller,3,6 Eric Luning,1,6 Francesco Pingitore,1,6 Alyssa one organism. An overview of there studies and key obser- vations are presented. Redding,1,6 Jarrod Robertson,3,6 Rajat Sapra,2,6 Anup Singh2,6 ([email protected]), Judy Wall3,6 (wallj@ Additionally we continued to collect cell wide data in missouri.edu), Grant Zane,3,6 Aifen Zhou,4,6 and Jizhong Shewanella oneidensis and Geobacter metallireducens for Zhou4,6 ([email protected]) comparative studies.
    [Show full text]
  • Supplementary Materials - Methods
    Supplementary Materials - Methods Bacterial Phylogeny Using the predicted phylogenetic positions from the Microbial Gene Atlas (MiGA), all complete genomes for the classes betaproteobacteria, alphaproteobacteria, and Bacteroides available on NCBI were collected. The GToTree pipeline was run on each of these datasets, including the Nephromyces endosymbiont, using the relevant ​ ​ HMM set of single copy gene targets (57–62). This included 138 gene targets and 722 genomes in alphaproteobacteria, 203 gene targets and 471 genomes in betaproteobacteria, and 90 gene targets and 388 genomes in Bacteroidetes. In betaproteobacteria, 5 genomes were removed for having either too few hits to the single copy gene targets, or multiple hits. The final trees were created with FastTree v2 (63), and formatted in FigTree (S Figure 2,3). Amplicon Methods Detailed Fifty Molgula manhattensis tunicates were collected from a single floating dock ​ ​ located in Greenwich Bay, RI (41.653N, -71.452W), and 29 Molgula occidentalis were ​ ​ collected from Alligator Harbor, FL (29.899N, -84.381W) by Gulf Specimens Marine Laboratories, Inc. (https://gulfspecimen.org/). All 79 samples were collected in August ​ ​ of 2016 and prepared for a single Illumina MiSeq flow cell (hereafter referred to as Run One). An additional 25 Molgula occidentalis were collected by Gulf Specimens Marine ​ ​ Laboratories, Inc. in March of 2018 from the same location and prepared for a second MiSeq flow cell (hereafter referred to as Run Two). Tunicates were dissected to remove renal sacs and Nephromyces cells contained within were collected by a micropipette and ​ ​ placed in 1.5 ml eppendorf tubes. Dissecting tools were sterilized in a 10% bleach solution for 15 min and then rinsed between tunicates.
    [Show full text]
  • 14128 JGI CR 07:2007 JGI Progress Report
    U.S. JOINT DEPARTMENT GENOME OF ENERGY INSTITUTE PROGRESS REPORT 2007 On the cover: The eucalyptus tree was selected in 2007 for se- quencing by the JGI. The microbial community in the termite hindgut of Nasutitermes corniger was the subject of a study published in the November 22, 2007 edition of the journal, Nature. JGI Mission The U.S. Department of Energy Joint Genome Institute, supported by the DOE Office of Science, unites the expertise of five national laboratories—Lawrence Berkeley, Lawrence Livermore, Los Alamos, Oak Ridge, and Pacific Northwest — along with the Stanford Human Genome Center to advance genomics in support of the DOE mis- sions related to clean energy generation and environmental char- acterization and cleanup. JGI’s Walnut Creek, CA, Production Genomics Facility provides integrated high-throughput sequencing and computational analysis that enable systems-based scientific approaches to these challenges. U.S. DEPARTMENT OF ENERGY JOINT GENOME INSTITUTE PROGRESS REPORT 2007 JGI PROGRESS REPORT 2007 Director’s Perspective . 4 JGI History. 7 Partner Laboratories . 9 JGI Departments and Programs . 13 JGI User Community . 19 Genomics Approaches to Advancing Next Generation Biofuels . 21 JGI’s Plant Biomass Portfolio . 24 JGI’s Microbial Portfolio . 30 Symbiotic Organisms . 30 Microbes That Break Down Biomass . 32 Microbes That Ferment Sugars Into Ethanol . 34 Carbon Cycling . 39 Understanding Algae’s Role in Photosynthesis and Carbon Capture . 39 Microbial Bioremediation . 43 Microbial Managers of the Nitrogen Cycle . 43 Microbial Management of Wastewater . 44 Exploratory Sequence-Based Science . 47 Genomic Encyclopedia for Bacteria and Archaea (GEBA) . 47 Functional Analysis of Horizontal Gene Transfer . 47 Anemone Genome Gives Glimpse of Multicelled Ancestors .
    [Show full text]
  • Iron Transport Strategies of the Genus Burkholderia
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2015 Iron transport strategies of the genus Burkholderia Mathew, Anugraha Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-113412 Dissertation Published Version Originally published at: Mathew, Anugraha. Iron transport strategies of the genus Burkholderia. 2015, University of Zurich, Faculty of Science. Iron transport strategies of the genus Burkholderia Dissertation zur Erlangung der naturwissenschaftlichen Doktorwürde (Dr. sc. nat.) vorgelegt der Mathematisch-naturwissenschaftlichen Fakultät der Universität Zürich von Anugraha Mathew aus Indien Promotionskomitee Prof. Dr. Leo Eberl (Vorsitz) Prof. Dr. Jakob Pernthaler Dr. Aurelien carlier Zürich, 2015 2 Table of Contents Summary .............................................................................................................. 7 Zusammenfassung ................................................................................................ 9 Abbreviations ..................................................................................................... 11 Chapter 1: Introduction ....................................................................................... 14 1.1.Role and properties of iron in bacteria ...................................................................... 14 1.2.Iron transport mechanisms in bacteria .....................................................................
    [Show full text]
  • Comparative Studies of Oxalyl-Coa Decarboxylase Produced by Soil
    3t' (O' COMPARATIVE STUDIES OF OXALYL.COA DECARBOXYLASE PRODUCED BY SOIL AND RUMINAL BACTERIA Thesis Submitted for the degree of Master of Agricultural Science in The University of Adelaide Faculty of Agricultural and Natural Resource Sciences by STEPHEN BOTTRILL November 1999 I I Table of Contents List of Figures VI List of Tables VM Abstract IX Acknowledgements XII Ståtement XIII List of Abbreviations XTV Chapær 1. Liærature Review 1 1.1 Introduction. 1 1.2 Exogenous Sources of Oxalates. 1 1.3 Endogenous Sources of Oxalate. 5 1.4 Poisoning. 9 1.4.1 Acute Poisoning" 10 1.4.2 Subacute Poisoning. 11 1.4.3 Chronic Poisoning. t2 1.4.4 SymPtoms in Humans. 14 1.4.5 Treatment of Poisoning. I4 1.4.6 Management to Prevent Poisoning. 15 1.5 Oxalate-Degrading Microorganisms. 18 1.6 Bacterial Classification 22 1.7 Pathways of Oxalate Degradation. 24 1.8 Formate in the Rumen. 27 1.9 Aims and Objectives. 29 Chapær 2. Materials and Methods 31 2.1 Materials 31 2.1.1 Chemicals 3r 2.1.2 EquiPment 31 2.I.3 Bacterial Strains and Plasmids 32 TI 2.1.4 Composition of Media 34 2.1.4.I Oxalate-Containing Media 34 2.1.4.I.1Liquid 34 2.1.4.1.2 Solid 34 2.1.4.2 O mlob act er formi g enes Media 35 2.I.4.2.I Trace Metals Solution 35 2.I.4.2.2 Medium A 35 2.1.4.2.3 Medium B 36 2.I.4.3 Luria-Bertani (LB) Broth 36 2.I.4.4 SOC Medium 37 2.2 Methods 37 2.2 -I Growth conditions 37 2.2.2 Isolation of oxal ate- de gradin g s oil bacteria 37 2.2.3 Characterisation of soil isolaæs 38 2.2.3.1 MicroscoPY 38 2.2.3.2 Gram stain 38 2.2.3.3 Carbon source utilisation 40 2.2.4.4 Volatile
    [Show full text]
  • Targeting the Burkholderia Cepacia Complex
    viruses Review Advances in Phage Therapy: Targeting the Burkholderia cepacia Complex Philip Lauman and Jonathan J. Dennis * Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada; [email protected] * Correspondence: [email protected]; Tel.: +1-780-492-2529 Abstract: The increasing prevalence and worldwide distribution of multidrug-resistant bacterial pathogens is an imminent danger to public health and threatens virtually all aspects of modern medicine. Particularly concerning, yet insufficiently addressed, are the members of the Burkholderia cepacia complex (Bcc), a group of at least twenty opportunistic, hospital-transmitted, and notoriously drug-resistant species, which infect and cause morbidity in patients who are immunocompromised and those afflicted with chronic illnesses, including cystic fibrosis (CF) and chronic granulomatous disease (CGD). One potential solution to the antimicrobial resistance crisis is phage therapy—the use of phages for the treatment of bacterial infections. Although phage therapy has a long and somewhat checkered history, an impressive volume of modern research has been amassed in the past decades to show that when applied through specific, scientifically supported treatment strategies, phage therapy is highly efficacious and is a promising avenue against drug-resistant and difficult-to-treat pathogens, such as the Bcc. In this review, we discuss the clinical significance of the Bcc, the advantages of phage therapy, and the theoretical and clinical advancements made in phage therapy in general over the past decades, and apply these concepts specifically to the nascent, but growing and rapidly developing, field of Bcc phage therapy. Keywords: Burkholderia cepacia complex (Bcc); bacteria; pathogenesis; antibiotic resistance; bacterio- phages; phages; phage therapy; phage therapy treatment strategies; Bcc phage therapy Citation: Lauman, P.; Dennis, J.J.
    [Show full text]