Identification of RING Finger Protein 4 (RNF4) As a Modulator of DNA

Total Page:16

File Type:pdf, Size:1020Kb

Identification of RING Finger Protein 4 (RNF4) As a Modulator of DNA Identification of RING finger protein 4 (RNF4) as a modulator of DNA demethylation through a functional genomics screen Xiaoyi V. Hua, Tânia M. A. Rodriguesb, Haiyan Taoc, Robert K. Bakerb, Loren Miragliac, Anthony P. Orthc, Gary E. Lyonsb,1, Peter G. Schultza,1, and Xu Wuc,1 aDepartment of Chemistry, Scripps Research Institute, La Jolla, CA 92037; bDepartment of Anatomy, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53706; and cInstitute of the Novartis Research Foundation, San Diego, CA 92121 Contributed by Peter G. Schultz, June 29, 2010 (sent for review June 15, 2010) DNA methylation is an important epigenetic modification involved In plants, genetic and biochemical experiments suggest that in transcriptional regulation, nuclear organization, development, active DNA demethylation is mediated through a base excision aging, and disease. Although DNA methyltransferases have been repair (BER) pathway initiated by m5C-specific DNA glycosylases characterized, the mechanisms for DNA demethylation remain (16, 17). It is possible that active demethylation in mammals uses poorly understood. Using a cell-based reporter assay, we per- similar mechanisms. However, the mammalian counterpart of the formed a functional genomics screen to identify genes involved in m5C-specific DNA glycosylase has yet to be identified. Sponta- DNA demethylation. Here we show that RNF4 (RING finger protein neous or enzymatic m5C deamination would generate a G:T 4), a SUMO-dependent ubiquitin E3-ligase previously implicated in mismatch in DNA duplex, and subsequent G:T mismatch repair maintaining genome stability, plays a key role in active DNA has, therefore, been proposed as a possible mechanism for active demethylation. RNF4 reactivates methylation-silenced reporters demethylation in mammalian cells (8, 18). and promotes global DNA demethylation. Rnf4 deficiency is embry- Functional genomics approaches have been used to identify onic lethal with higher levels of methylation in genomic DNA. factors that are involved in diverse biological processes (19–21). Mechanistic studies show that RNF4 interacts with and requires Here we use a cell-based functional genomics screen to reveal CELL BIOLOGY the base excision repair enzymes TDG and APE1 for active deme- a key role for RNF4 in active DNA demethylation. Rnf4 de- thylation. This activity appears to occur by enhancing the enzymatic ficiency is embryonic lethal, resulting in a higher content of m5Cin activities that repair DNA G:T mismatches generated from methyl- genomic DNA. Furthermore, RNF4 interacts with and requires cytosine deamination. Collectively, our study reveals a unique func- BER enzymes for demethylation. tion for RNF4, which may serve as a direct link between epigenetic DNA demethylation and DNA repair in mammalian cells. Results Genome-Wide Gain-of-Function Screen Identifies RNF4 as a Regulator epigenetics | DNA repair | base excision repair of DNA Demethylation. To identify genes that promote DNA demethylation, we carried out a gain-of-function genome-wide NA methylation plays important roles in transcriptional reg- screen using a cell-based assay in which the methylation-silenced Dulation, genomic imprinting, and mammalian development p16INK4a promoter drives the expression of a luciferase reporter. (1). Deregulation of this important epigenetic modification has The p16INK4a promoter is known to be aberrantly silenced by been implicated in a number of diseases, including cancer and DNA methylation in many cancers (22). The reporter construct developmental defects (2). Methylation of DNA occurs at the 5C was methylated in vitro, purified, and cotransfected into HEK293 position of the CpG dinucleotide and is mediated by DNA cells in 384-well format with an arrayed cDNA expression library methyltransferases (DNMTs) (3). The de novo methyltransferases composed of 9,624 mouse and 6,415 human full-length cDNAs DNMT3a and DNMT3b are mainly responsible for introducing from the Mammalian Gene Collection (MGC) (23). GADD45a cytosine methylation at previously unmethylated CpG sites, was used as a positive control based on its previously reported whereas the maintenance methyltransferase DNMT1 copies pre- demethylation activity and gave a 10-fold increase in luciferase existing methylation patterns into the newly synthesized DNA activity 48 h posttransfection (10). From the primary screen, 19 strand during DNA replication (4). genes were found to induce luciferase activity greater than 10-fold Dynamic DNA methylation is critical during development (1, 5). and were subsequently reconfirmed using an in vitro methylated Although maintenance and de novo methylation mediated by pFMR1-luc reporter (24) (full hit list in Table S1). Among them, DNMTs are relatively well understood (4), the mechanisms of DNA GADD45g has been reported to be involved in DNA methylation demethylation are still elusive (6). Passive demethylation can occur regulations (9, 10). Other genes with DNA repair activities have through the inhibition of DNMT1 activity, causing a loss in the also been identified (25). methylation pattern during DNA replication. Rapid genome-wide RNF4 (RING finger protein 4, or SNURF) was one of the most demethylation is observed during gametogenesis and postfertiliza- active hits in our screen with a >20-fold increase in reporter ac- tion, suggesting an active demethylation mechanism independent of tivity (Table S1). RNF4 has a conserved function in genome sta- DNA replication. Recent studies have identified several factors that bility and DNA repair in eukaryotes (26, 27). In addition, we found are involved in active DNA demethylation, including the activation- induced cytidine deaminase (AID), an enzyme catalyzing 5-methyl cytidine (m5C) deamination in single-stranded DNA to generate Author contributions: X.V.H., A.P.O., G.E.L., P.G.S., and X.W. designed research; X.V.H., – T.M.A.R., H.T., R.K.B., and L.M. performed research; X.V.H., G.E.L., P.G.S., and X.W. ana- thymine and a G:T mismatch (7 9), and GADD45a, a nuclear pro- lyzed data; and X.V.H., G.E.L., P.G.S., and X.W. wrote the paper. tein involved in the maintenance of genomic stability and DNA The authors declare no conflict of interest. repair (9–11). However, neither AID- nor Gadd45a-deficient mice 1To whom correspondence may be addressed. E-mail: [email protected], schultz@scripps. (12, 13) exhibit catastrophic developmental defects (14, 15), sug- edu, or [email protected]. gesting other factors might be involved in the regulation of active This article contains supporting information online at www.pnas.org/lookup/suppl/doi:10. DNA demethylation. 1073/pnas.1009025107/-/DCSupplemental. www.pnas.org/cgi/doi/10.1073/pnas.1009025107 PNAS | August 24, 2010 | vol. 107 | no. 34 | 15087–15092 Downloaded by guest on September 28, 2021 that several methylation-silenced luciferase and GFP reporters Analysis of the methylation status of endogenous CpG islands in were also reactivated by RNF4 overexpression in different cell the p16INK4a promoter by bisulfite sequencing revealed that RNF4 lines (SV40-Luc, pOct4-Luc, and CMV-eGFP reporters; Fig. 1 A overexpression significantly reduces the methylation level of the INK4a and B), indicating that the activity of RNF4 is both reporter and p16 promoter in the HCT116 colorectal cancer cell line, with complete demethylation in >80% of clones analyzed (Fig. 1C). We next examined the methylation status of the p16INK4a promoters 2000 70000 U U SV40 40000 Oct4 A 1500 M using methylation-specific PCR (28). Overexpression of either 600 M 30000 GADD45a or RNF4 increases unmethylated-specific PCR prod- U U 400 20000 uct and decreases methylated-specific PCR product (Fig. 1D). RL RL 200 10000 Furthermore, removal of the repressive DNA methylation marks by RNF4 transfection led to partial reactivation of gene expres- 0 0 INK4a Ctrl GFP GADD45a RNF4 Ctrl GFP GADD45a RNF4 sion, as shown by 40% higher p16 mRNA levels (P < 0.001) measured by qRT-PCR (Fig. 1E). B Rnf4 Deficiency Is Embryonic Lethal, and Loss of RNF4 Results in an Increase in Global DNA Methylation. To address whether RNF4 plays an essential role in mammalian development, we took advantage of a recessive lethal gene-trap insertion mutation (29, 30) to generate Rnf4 knockout mice (Fig. S1A). Although het- Ctrl Gadd45a Rnf4 erozygous animals exhibited no obvious phenotype, homozygous null embryos were stunted and failed to develop to term (SI C Materials and Methods, Figs. S1–S3, and Table S2). The embryos died between E14 and E15, and exhibited ventricular septal de- fects and cardiac insufficiency, which probably accounted for − − PFG lethality. Genomic DNA from the Rnf4+/+, and Rnf4 / mouse A +/+ 50% 4FNR 78% *** D E 1.4 H 1.2 GFP GADD45a RNF4 APD 1.0 p16 U G 0.8 6/ B +/+ +/ - -/ - C p16 M p1 0.6 HMHM H M 0.4 100 p16 WT mRNA 0.2 0.0 80 * GFP RNF4 P CM 60 5 Fig. 1. RNF4 promotes DNA demethylation. (A) Luciferase reporter assays m transiently transfected with pCMV-sport6 (Ctrl) or the indicated genes. Lu- fd 40 ciferase expression was driven by the SV40 promoter in HEK293 cells, or the %o 20 Oct4 promoter in P19 cells. Reporter plasmids were unmethylated (U) or in vitro methylated (M). Error bars indicate SEM (n = 6). (B) GFP reporter assay 0 in HEK293 cells transiently transfected with the indicated genes. pEGFP-N1 +/++ /- -/ - vector was in vitro methylated. (Scale bar: 20 μm.) (C) Bisulfite sequence analysis of the p16INK4a promoter in HCT116 cells transiently transfected with the indicated genes. White and black circles represent unmethylated and Fig. 2. Rnf4 deficiency increases global methylation level. (A) Bisulfite se- methylated CpG, respectively. Images are representative result of three in- quencing of a maternal imprinted locus, Peg3 (paternal expressed gene 3), − − dependent experiments. (D) Methylation-specific PCR was performed using on genomic DNA from Rnf4+/+ or Rnf4 / MEFs. Representative results from bisulfate-treated genomic DNA as template with primers specificfor three independent experiments are shown. (B) Southern blot of DNA unmethylated CpG template (p16 U) and methylated CpG template (p16 M) methylation in minor satellite region.
Recommended publications
  • Degradation and Beyond: Control of Androgen Receptor Activity by the Proteasome System
    CELLULAR & MOLECULAR BIOLOGY LETTERS Volume 11, (2006) pp 109 – 131 http://www.cmbl.org.pl DOI: 10.2478/s11658-006-0011-9 Received: 06 December 2005 Revised form accepted: 31 January 2006 © 2006 by the University of Wrocław, Poland DEGRADATION AND BEYOND: CONTROL OF ANDROGEN RECEPTOR ACTIVITY BY THE PROTEASOME SYSTEM TOMASZ JAWORSKI Department of Cellular Biochemistry, Nencki Institute of Experimental Biology, Polish Academy of Sciences, Pasteura 3, 02-093 Warsaw, Poland Abstract: The androgen receptor (AR) is a transcription factor belonging to the family of nuclear receptors which mediates the action of androgens in the development of urogenital structures. AR expression is regulated post- * Corresponding author: e-mail: [email protected] Abbreviations used: AATF – apoptosis antagonizing factor; APIS complex – AAA proteins independent of 20S; ARA54 – AR-associated protein 54; ARA70 – AR-associated protein 70; ARE – androgen responsive element; ARNIP – AR N-terminal interacting protein; bFGF – basic fibroblast growth factor; CARM1 – coactivator-associated arginine methyltransferase 1; CHIP – C-terminus Hsp70 interacting protein; DBD – DNA binding domain; E6-AP – E6-associated protein; GRIP-1 – glucocorticoid receptor interacting protein 1; GSK3β – glycogen synthase kinase 3β; HDAC1 – histone deacetylase 1; HECT – homologous to the E6-AP C-terminus; HEK293 – human embryonal kidney cell line; HepG2 – human hepatoma cell line; Hsp90 – heat shock protein 90; IGF-1 – insulin-like growth factor 1; IL-6 – interleukin 6; KLK2 –
    [Show full text]
  • Supplementary Materials
    Supplementary materials Supplementary Table S1: MGNC compound library Ingredien Molecule Caco- Mol ID MW AlogP OB (%) BBB DL FASA- HL t Name Name 2 shengdi MOL012254 campesterol 400.8 7.63 37.58 1.34 0.98 0.7 0.21 20.2 shengdi MOL000519 coniferin 314.4 3.16 31.11 0.42 -0.2 0.3 0.27 74.6 beta- shengdi MOL000359 414.8 8.08 36.91 1.32 0.99 0.8 0.23 20.2 sitosterol pachymic shengdi MOL000289 528.9 6.54 33.63 0.1 -0.6 0.8 0 9.27 acid Poricoic acid shengdi MOL000291 484.7 5.64 30.52 -0.08 -0.9 0.8 0 8.67 B Chrysanthem shengdi MOL004492 585 8.24 38.72 0.51 -1 0.6 0.3 17.5 axanthin 20- shengdi MOL011455 Hexadecano 418.6 1.91 32.7 -0.24 -0.4 0.7 0.29 104 ylingenol huanglian MOL001454 berberine 336.4 3.45 36.86 1.24 0.57 0.8 0.19 6.57 huanglian MOL013352 Obacunone 454.6 2.68 43.29 0.01 -0.4 0.8 0.31 -13 huanglian MOL002894 berberrubine 322.4 3.2 35.74 1.07 0.17 0.7 0.24 6.46 huanglian MOL002897 epiberberine 336.4 3.45 43.09 1.17 0.4 0.8 0.19 6.1 huanglian MOL002903 (R)-Canadine 339.4 3.4 55.37 1.04 0.57 0.8 0.2 6.41 huanglian MOL002904 Berlambine 351.4 2.49 36.68 0.97 0.17 0.8 0.28 7.33 Corchorosid huanglian MOL002907 404.6 1.34 105 -0.91 -1.3 0.8 0.29 6.68 e A_qt Magnogrand huanglian MOL000622 266.4 1.18 63.71 0.02 -0.2 0.2 0.3 3.17 iolide huanglian MOL000762 Palmidin A 510.5 4.52 35.36 -0.38 -1.5 0.7 0.39 33.2 huanglian MOL000785 palmatine 352.4 3.65 64.6 1.33 0.37 0.7 0.13 2.25 huanglian MOL000098 quercetin 302.3 1.5 46.43 0.05 -0.8 0.3 0.38 14.4 huanglian MOL001458 coptisine 320.3 3.25 30.67 1.21 0.32 0.9 0.26 9.33 huanglian MOL002668 Worenine
    [Show full text]
  • PATZ1 Induces PP4R2 to Form a Negative Feedback Loop on IKK/ NF-Κb Signaling in Lung Cancer
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 32 Research Paper PATZ1 induces PP4R2 to form a negative feedback loop on IKK/ NF-κB signaling in lung cancer Ming-Yi Ho1, Chi-Ming Liang1, Shu-Mei Liang1,2 1Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC 2Agricultural Biotechnology Research Center, Academia Sinica, Taipei 11529, Taiwan, ROC Correspondence to: Chi-Ming Liang, email: [email protected] Shu-Mei Liang, email: [email protected] Keywords: epithelial-mesenchymal transition (EMT), IκB kinase (IKK), migration/invasion/metastasis, PATZ1, protein phosphatase 4 (PP4) Received: February 29, 2016 Accepted: June 17, 2016 Published: July 6, 2016 ABSTRACT Activation of IKK enhances NF-κB signaling to facilitate cancer cell migration, invasion and metastasis. Here, we uncover the existence of a negative feedback loop of IKK. The transcription factor PATZ1 induces protein phosphatase-4 (PP4) regulatory subunit 2 (PP4R2) in an IKK-dependent manner. PP4R2 enhances the binding of PP4 to phosphorylated IKK to inactivate IKK/NF-κB signaling during sustained stimulation by cellular stimuli such as growth factors and inflammatory mediators. Matched pair studies reveal that primary lung cancers express more PATZ1 and PP4R2 than lymph node metastases in patients. Ectopic PATZ1 decreases invasion/colonization of lung cancers and prolongs the survival of xenograft mice. These effects of PATZ1 are reversed by downregulating PP4R2. Our results suggest that PATZ1 and PP4R2 provide negative feedback on IKK/NF-κB signaling to prevent cancer cells from over-stimulation from cellular stimuli; a decline in PATZ1 and PP4R2 is functionally associated with cancer migration/invasion and agents enhancing PATZ1 and PP4R2 are worth exploring to prevent invasion/metastasis of lung cancers.
    [Show full text]
  • How Does SUMO Participate in Spindle Organization?
    cells Review How Does SUMO Participate in Spindle Organization? Ariane Abrieu * and Dimitris Liakopoulos * CRBM, CNRS UMR5237, Université de Montpellier, 1919 route de Mende, 34090 Montpellier, France * Correspondence: [email protected] (A.A.); [email protected] (D.L.) Received: 5 July 2019; Accepted: 30 July 2019; Published: 31 July 2019 Abstract: The ubiquitin-like protein SUMO is a regulator involved in most cellular mechanisms. Recent studies have discovered new modes of function for this protein. Of particular interest is the ability of SUMO to organize proteins in larger assemblies, as well as the role of SUMO-dependent ubiquitylation in their disassembly. These mechanisms have been largely described in the context of DNA repair, transcriptional regulation, or signaling, while much less is known on how SUMO facilitates organization of microtubule-dependent processes during mitosis. Remarkably however, SUMO has been known for a long time to modify kinetochore proteins, while more recently, extensive proteomic screens have identified a large number of microtubule- and spindle-associated proteins that are SUMOylated. The aim of this review is to focus on the possible role of SUMOylation in organization of the spindle and kinetochore complexes. We summarize mitotic and microtubule/spindle-associated proteins that have been identified as SUMO conjugates and present examples regarding their regulation by SUMO. Moreover, we discuss the possible contribution of SUMOylation in organization of larger protein assemblies on the spindle, as well as the role of SUMO-targeted ubiquitylation in control of kinetochore assembly and function. Finally, we propose future directions regarding the study of SUMOylation in regulation of spindle organization and examine the potential of SUMO and SUMO-mediated degradation as target for antimitotic-based therapies.
    [Show full text]
  • Multiple Regions of Chromosome 4 Demonstrating Allelic Losses in Breast Carcinomas1
    [CANCER RESEARCH 59, 3576–3580, August 1, 1999] Advances in Brief Multiple Regions of Chromosome 4 Demonstrating Allelic Losses in Breast Carcinomas1 Narayan Shivapurkar, Sanjay Sood, Ignacio I. Wistuba, Arvind K. Virmani, Anirban Maitra, Sara Milchgrub, John D. Minna, and Adi F. Gazdar2 Hamon Center for Therapeutic Oncology Research [N. S., S. S., I. I. W., A. K. V., A. M., J. D. M., A. F. G.] and Departments of Pathology [A. K. V., A. M., S. M., A. F. G.], Internal Medicine [J. D. M.], and Pharmacology [J. D. M.], University of Texas Southwestern Medical Center, Dallas, Texas 75235 Abstract Previous allelotyping studies have documented allelic loss on one or both arms of chromosome 4 in several neoplasms including blad- Allelotyping studies suggest that allelic losses at one or both arms of der, cervical, colorectal, hepatocellular, and esophageal cancers and in chromosome 4 are frequent in several tumor types, but information about squamous cell carcinomas of head and neck and of the skin (6, breast cancer is scant. A recent comparative genomic hybridization anal- ysis revealed frequent losses of chromosome 4 in breast carcinomas. In an 15–20). Our recent studies demonstrated frequent losses at three effort to more precisely locate the putative tumor suppressor gene(s) on nonoverlapping sites located on both arms of chromosome 4 in MMs chromosome 4 involved in the pathogenesis of breast carcinomas, we and SCLCs (21). Phenotypic tumor suppression has been observed by performed loss of heterozygosity studies using 19 polymorphic microsat- the introduction of chromosome 4 into human glioma cells (22). Thus, ellite markers.
    [Show full text]
  • Role of Ubiquitin and the HPV E6 Oncoprotein in E6AP- Mediated Ubiquitination
    Role of ubiquitin and the HPV E6 oncoprotein in E6AP- mediated ubiquitination Franziska Mortensena,b, Daniel Schneidera,c, Tanja Barbica, Anna Sladewska-Marquardta, Simone Kühnlea,1, Andreas Marxb,c, and Martin Scheffnera,b,2 aDepartment of Biology, University of Konstanz, 78457 Konstanz, Germany; bKonstanz Research School Chemical Biology, University of Konstanz, 78457 Konstanz, Germany; and cDepartment of Chemistry, University of Konstanz, 78457 Konstanz, Germany Edited by Aaron Ciechanover, Technion-Israel Institute of Technology, Bat Galim, Haifa, Israel, and approved July 7, 2015 (received for review March 25, 2015) Deregulation of the ubiquitin ligase E6 associated protein (E6AP) autism spectrum disorders (15, 16) and (ii) in mice, results in encoded by the UBE3A gene has been associated with three dif- increased E6AP levels and autistic phenotypes (17). ferent clinical pictures. Hijacking of E6AP by the E6 oncoprotein of The notion that alteration of the substrate spectrum, loss of distinct human papillomaviruses (HPV) contributes to the develop- E3 function, and increased E3 function of E6AP contribute to ment of cervical cancer, whereas loss of E6AP expression or func- the development of distinct disorders indicates that expression tion is the cause of Angelman syndrome, a neurodevelopmental and/or E3 activity of E6AP have to be tightly controlled. Whereas disorder, and increased expression of E6AP has been involved in some mechanisms controlling transcription of the UBE3A gene autism spectrum disorders. Although these observations indicate have been identified (e.g., the paternal allele is silenced by a that the activity of E6AP has to be tightly controlled, only little is UBE3A antisense transcript) (14, 18), only little is known about known about how E6AP is regulated at the posttranslational level.
    [Show full text]
  • Identification and Characterization Of
    Title page Title: IDENTIFICATION AND CHARACTERIZATION OF MEK1-MIP1-SMEK MULTIPROTEIN SIGNALING COMPLEX Perspective/Commentary By Alex Sobko Running title: MEK1-MIP1-SMEK SIGNALING COMPLEX Abstract In our previous study we characterized Dictyostelium SUMO targeted Ubiquitin Ligase (StUbL) MIP1 that associates with protein kinase MEK1 and targets SUMOylated MEK1 to ubiquitination and proteasomal degradation. These modifications happen in response to activation of MEK1 by chemoattractant cAMP. SMEK – second site genetic suppressor of mek1- null phenotype also identified in Dictyostelium. MEK1 and SMEK belong to the same linear pathway, in which MEK1 negatively regulates SMEK, which then negatively regulates chemotaxis and aggregation. RNF4 is mammalian homologue of MIP. RNF4 interacts with human homologue of Dictyostelium SMEK – hSMEK2. We propose existence of evolutionarily conserved MEK1-SMEK signaling complex that upon MEK1 activation and SUMOylation, recruits Ubiqutin Ligase MIP1/RNF4, which, in turn, ubiquitinates SMEK and targets this protein for proteasomal degradation. This could be a mechanism for negative regulation of SMEK by MEK1 signaling. Key words MEK1 / RNF4 / SUMO-targeted Ubiquitin Ligase / Suppressor of MEK (SMEK) / Ubiquitination 1 Text of the article: In our previous study (Sobko et al, 2002) we characterized Dictyostelium SUMO targeted Ubiquitin Ligase (StUbL) MIP1 that associates with protein kinase MEK1 and targets SUMOylated MEK1 to ubiquitination and proteasomal degradation. These modifications happen in response to activation of MEK1 by chemoattractant cAMP. Another study from Firtel lab characterized SMEK – second site genetic suppressor of mek1- null phenotype (Mendoza et al, 2005, Mendoza et al, 2007). Deletion of mek1 gene results in the phenotype, in which cells fail to aggregate properly and form very small aggregates, due to severe chemotaxis defect.
    [Show full text]
  • Mechanism of Ubiquitylation by Dimeric RING Ligase RNF4 Europe
    Europe PMC Funders Group Author Manuscript Nat Struct Mol Biol. Author manuscript; available in PMC 2012 April 16. Published in final edited form as: Nat Struct Mol Biol. ; 18(9): 1052–1059. doi:10.1038/nsmb.2108. Europe PMC Funders Author Manuscripts Mechanism of ubiquitylation by dimeric RING ligase RNF4 Anna Plechanovová1, Ellis G. Jaffray1, Stephen A. McMahon2, Kenneth A. Johnson2, Iva Navrátilová3, James H. Naismith2, and Ronald T. Hay1 1Wellcome Trust Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, UK 2Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK 3Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of Dundee, Dundee, UK Abstract Mammalian RNF4 is a dimeric RING ubiquitin E3 ligase that ubiquitylates poly-SUMOylated proteins. We found that RNF4 bound ubiquitin-charged UbcH5a tightly but free UbcH5a weakly. To provide insight into the mechanism of RING-mediated ubiquitylation we docked the UbcH5~ubiquitin thioester onto the RNF4 RING structure. This revealed that with E2 bound to one monomer of RNF4, the thioester-linked ubiquitin could reach across the dimer to engage the other monomer. In this model the “Ile44 hydrophobic patch” of ubiquitin is predicted to engage a conserved tyrosine located at the dimer interface of the RING and mutation of these residues blocked ubiquitylation activity. Thus, dimeric RING ligases are not simply inert scaffolds that bring substrate and E2-loaded ubiquitin into close proximity. Instead, they facilitate ubiquitin transfer by preferentially binding the E2~ubiquitin thioester across the dimer and activating the Europe PMC Funders Author Manuscripts thioester bond for catalysis.
    [Show full text]
  • Cisplatin Sensitivity in Diffuse Large B-Cell Lymphoma and the Influence of Mutations in DNA Repair Genes
    CISPLATIN SENSITIVITY IN DIFFUSE LARGE B- CELL LYMPHOMA AND THE INFLUENCE OF MUTATIONS IN DNA REPAIR GENES BY ANN-KATRINE HYTTEL ROM PEDERSEN Master Thesis in Biomedicine Medicine with Industrial specialization Aalborg University In collaboration with the Department of Hematology Aalborg University Hospital Master thesis |AHR Pedersen Cisplatin Sensitivity in Diffuse Large B-cell Lymphoma and the Influence of Mutations in DNA Repair Genes CISPLATIN SENSITIVITY IN DIFFUSE LARGE B-CELL LYMPHOMA AND THE INFLUENCE OF MUTATIONS IN DNA REPAIR GENES Master Thesis 9th and 10th semester Medicine with Industrial Specialization, Biomedicine Author Ann-Katrine Hyttel Rom Pedersen Stud.cand.scient.med Aalborg University Supervisors Karen Dybkær Sørensen Julie Støve Bødker Hanne Due Rasmussen Professor Senior Researcher Ph.D. student Department of Hematology Department of Hematology Department of Hematology Aalborg University Hospital Aalborg University Hospital Aalborg University Hospital Specifications Number of pages: 66 pages Keystrokes total: 22.477 Separate appendix: 83 pages Project period: September 3rd 2018 – May 31st 2019 School of Medicine and Health Aalborg University May 31st 2019 2 | 65 Master thesis |AHR Pedersen Cisplatin Sensitivity in Diffuse Large B-cell Lymphoma and the Influence of Mutations in DNA Repair Genes ABSTRACT Background Diffuse large B-cell lymphoma (DLBCL) is the most common type of non-Hodgkin lymphoma. How- ever, it is a heterogenous cancer both between and within classification with a variable clinical course and prognosis: 30-40 % of DLBCL patients relapse. Platinum-based chemotherapy, such as cisplatin, is often administered in the relapse situation. Treatment resistance remains a major hur- dle in DLBCL. DNA repair mechanisms, such as nucleotide excision repair and mismatch repair are important for cisplatin’s mechanism of action, as they are activated by cisplatin-induced crosslinks and mismatches and are therefore implicated in cisplatin resistance.
    [Show full text]
  • A Molecule Inducing Androgen Receptor Degradation and Selectively Targeting Prostate Cancer Cells
    Published Online: 20 August, 2019 | Supp Info: http://doi.org/10.26508/lsa.201800213 Downloaded from life-science-alliance.org on 24 September, 2021 Research Article A molecule inducing androgen receptor degradation and selectively targeting prostate cancer cells Serge Auvin1,*, Harun Oztürk¨ 7,*, Yusuf T Abaci7, Gisele Mautino1, Florence Meyer-Losic1, Florence Jollivet2,3,4, Tarig Bashir1, Hugues de The´ 2,3,4,5,6, Umut Sahin2,3,4,7 Aberrant androgen signaling drives prostate cancer and is targeted Sadar, 2016; Narayanan et al, 2016). ADT can be achieved by castration by drugs that diminish androgen production or impede either surgically, or by interfering pharmacologically with testos- androgen–androgen receptor (AR) interaction. Clinical resistance terone production. Nowadays, ADT is often complemented with the arises from AR overexpression or ligand-independent constitutive use of AR antagonists (i.e., bicalutamide and enzalutamide), which activation, suggesting that complete AR elimination could be a compete with testosterone for binding to AR (Chen et al, 2008; novel therapeutic strategy in prostate cancers. IRC117539 is a new Leibowitz-Amit & Joshua, 2012; Helsen et al, 2014; Bambury & Scher, molecule that targets AR for proteasomal degradation. Exposure to 2015). This combination strategy consequently achieves complete IRC117539 promotes AR sumoylation and ubiquitination, reminis- androgen blockade and is largely effective in short-term clinical cent of therapy-induced PML/RARA degradation in acute pro- management of prostate cancer. Yet, prostate cancer relapses almost myelocytic leukemia. Critically, ex vivo, IRC117539-mediated AR invariably, giving rise to castration-resistant prostate cancer (CRPC) degradation induces prostate cancer cell viability loss by inhibiting (Armstrong & Gao, 2015; Bambury & Rathkopf, 2016; Yap et al, 2016).
    [Show full text]
  • Network Potential Identifies Therapeutic Mirna Cocktails in Ewing Sarcoma
    bioRxiv preprint doi: https://doi.org/10.1101/854695; this version posted March 5, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Network potential identifies therapeutic miRNA cocktails in Ewing sarcoma Davis T. Weaver1, 2, *, Kathleen I. Pishas3,*, Drew Williamson4,*, Jessica Scarborough1, 2, Stephen L. Lessnick5, Andrew Dhawan2, 6, †, and Jacob G. Scott1, 2, 7, † 1Case Western Reserve University School of Medicine, Cleveland, OH, 44106, USA 2Translational Hematology Oncology Research, Cleveland Clinic, Cleveland OH, 44106, USA 3Peter MacCallum Cancer Centre, Melbourne, Australia, 3000 4Department of Pathology, Brigham & Women’s Hospital, Boston, MA, 02144 5Nationwide Children’s Hospital, Columbus, Ohio, 43205 6Division of Neurology, Cleveland Clinic, Cleveland Ohio, 44195 7Department of Physics, Case Western Reserve University, Cleveland, OH, 44106, USA *contributed equally †[email protected], [email protected] ABSTRACT Introduction: Micro-RNA (miRNA)-based therapies are an emerging class of cancer therapies with many potential applications in the field. Because of the broad effects miRNAs can have on different cells and tissues, a network science-based approach is well-equipped to evaluate and identify miRNA candidates and combinations of candidates for the repression of key oncogenic targets. Methods: We first characterized 6 Ewing sarcoma cell lines using paired mRNA and miRNA sequencing. We then estimated a measure of tumor state, which we term network potential, based on both the mRNA gene expression and the underlying protein-protein interaction network in the tumor.
    [Show full text]
  • Autocrine IFN Signaling Inducing Profibrotic Fibroblast Responses By
    Downloaded from http://www.jimmunol.org/ by guest on September 23, 2021 Inducing is online at: average * The Journal of Immunology , 11 of which you can access for free at: 2013; 191:2956-2966; Prepublished online 16 from submission to initial decision 4 weeks from acceptance to publication August 2013; doi: 10.4049/jimmunol.1300376 http://www.jimmunol.org/content/191/6/2956 A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Autocrine IFN Signaling Feng Fang, Kohtaro Ooka, Xiaoyong Sun, Ruchi Shah, Swati Bhattacharyya, Jun Wei and John Varga J Immunol cites 49 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2013/08/20/jimmunol.130037 6.DC1 This article http://www.jimmunol.org/content/191/6/2956.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 23, 2021. The Journal of Immunology A Synthetic TLR3 Ligand Mitigates Profibrotic Fibroblast Responses by Inducing Autocrine IFN Signaling Feng Fang,* Kohtaro Ooka,* Xiaoyong Sun,† Ruchi Shah,* Swati Bhattacharyya,* Jun Wei,* and John Varga* Activation of TLR3 by exogenous microbial ligands or endogenous injury-associated ligands leads to production of type I IFN.
    [Show full text]