Freshwater Leeches (Clitellata: Hirudinida) of South-Western Iran: Small Area - High Diversity

Total Page:16

File Type:pdf, Size:1020Kb

Freshwater Leeches (Clitellata: Hirudinida) of South-Western Iran: Small Area - High Diversity Correspondence ISSN 2336-9744 (online) | ISSN 2337-0173 (print) The journal is available on line at www.biotaxa.org/em Freshwater leeches (Clitellata: Hirudinida) of south-western Iran: Small area - High diversity SARA RAHMANIPANAH1, HAMID BELGHEISZADEH2*, KAVEH DARABI DARESTANI3 & HORA JALAI TEHRANI4 1 Department of Biology, School of advanced sciences in regenerative medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran. Email address: [email protected] 2* Department of Parasitology and Entomology, Islamic Azad University Tehran Medical Branch, Tehran, Iran 3Zoology Department, School of Biological Sciences and Center of Excellence in Phylogeny of Living Organisms, College of Sciences, University of Tehran, Tehran, Iran. Email: [email protected] 4 Department of Biology, School of advanced sciences in regenerative medicine, Tehran Medical Sciences Branch, Islamic Azad University, Tehran, Iran. Email: [email protected] *Corresponding author: [email protected] Received 29 October 2015 │ Accepted 11 November 2015 │ Published online 15 November 2015. Leeches (Annelida: Hirudinida) are one of the most important benthic invertebrates in different aquatic habitats since they have different roles such as predators, preys or parasites (Sawyer 1986). Iran is a country in Middle East (south western part of Palaearctic) that has not been studied comprehensively regarding leech diversity (e.g. Bennike 1940; Gholami 2005; Grosser & Pešić 2006; Grosser & Pešić 2008; Grosser et al. 2011, Salimi et al. 2011; Mirzaei et al. 2007; Darabi Darestani & Malek 2011a, b). Esfahan freshwater eco-region is considered as one of the smallest eco-regions (out of 11 eco- regions in Iran, Abell et al. 2008) and it has one basin named as Isfahan which is an endorheic basin for Zayande Rood River. Chahar Mahaal and Bakhtiari province is located in this basin (Kiyani Haftlang, 2003). Different substrates (aquatic vegetation, roots of trees, submerged materials and underside of stones) in freshwater habitats of Chahar Mahaal and Bakhtiari province (Fig. 1) have been investigated from June 2014 to May 2015. Habitats were mostly running waters (e.g. springs or streams) with muddy or pebble and rocky beddings. Despite small geographical area of the study, a rich leech fauna has been recorded. In total, four families, six genera and six species have been reported in seven localities as follow: Family Glossiphoniidae Vailant, 1890 Glossiphonia (Johnston, 1819) Glossiphonia complanata (Linnaeus, 1758) Material: Saman, (N: 32°28' E: 50°39'E), 2081m a.s.l, leg. Rahmanipanah: 28 specs. Ben, (N: 32°32' E: 50°45'), 2057m a.s.l, leg. Rahmanipanah: 13 specs. Remarks: Reported by Mirzaei et al. (2007) in this province and Isfahan basin. The species is presumably a Holarctic species (Nesemann & Neubert 1999). Hemiclepsis (Vezhdovskii, 1844) Hemiclepsis marginata (O.F.Muller, 1774) Material: Farokhshahr, (N: 33°50' E: 59°31'), 2102m a.s.l, leg. Rahmanipanah: 8 specs. Ecol. Mont., 4, 2015, 29-32 29 FRESHWATER LEECHES OF SOUTH-WESTERN IRAN Remarks: Reported by Grosser & Pešić (2006) from northern Iran. New for Isfahan basin. It is a Palaearctic species (Nesemann & Neubert 1999). Figure 1. Study area (oval shape) showing Isfahan basin that encompasses Chahar Mahaal and Bakhtiari province. Family Piscicolidae Johnston, 1865 Piscicola De Blainville, 1818 Piscicola geometra (Linnaeus, 1758) Material: Saman, (N: 32°28' E: 50°39'E), 2081m a.s.l, leg. Rahmanipanah: 3 specs. Remarks: Reported by Pazooki & Masoumian (2012) from northern Iran. New for Isfahan basin. The species is presumably distributed in Holarctic and Neotropic regions (Nesemann & Neubert 1999). Family Hirudinidae Whitman, 1886 Hirudo Linneaus, 1758 Hirudo orientalis Utevsky and Trontelj, 2005 (Fig. 2) Material: Farokhshahr, (N: 33°50' E: 59°31'), 2102m a.s.l, leg. Rahmanipanah: 41 specs. Saman, (N: 32°28' E: 50°39'E), 2081m a.s.l, leg. Rahmanipanah: 46 specs. Ben, (N: 32°32' E: 50°45'), 2057m a.s.l, leg. Rahmanipanah: 31specs. Shar-e-Kian, (N: 32°57' E: 54°48'), leg.2074m a.s.l, leg. Rahmanipanah: 32specs. Sharekord, (N: 32°00' E: 50°00'), 2070m a.s.l, leg. Rahmanipanah: 48specs. Soureshjan, (N: 31°3' E: 52°48'), 2062m a.s.l, leg. Rahmanipanah: 42 specs. Taghanak, (N: 31°23' E: 52°48'), 2048m a.s.l, leg. Rahmanipanah: 38specs. Ecol. Mont., 4, 2015, 29-32 30 RAHMANIPANAH ET AL. Remarks: Reported by Utevsky & Trontelj (2005) and Grosser & Pešić (2006) from northern Iran. New for Isfahan basin. It is distributed in Caucasus, Azerbaijan, Iran, Uzbekistan and Kazakhstan (Utevsky & Trontelj 2005). Figure 2. The Persian medicinal leech Hirudo orientalis a) ventral view and b) dorsal view of adult specimen (Scale: 1cm), c) Ventral view of clitterlar region, M: male genital pore and F: female genital pore (Scale: 1mm). Genus Limnatis Moquin-Tandon, 1826 Limnatis nilotica (Savigny, 1822) Material: Shar-e-Kian, (N: 32°57' E: 54°48'), leg.2074m a.s.l, leg. Rahmanipanah: 14 specs. Saman, (N: 32°28' E: 50°39'E), 2081m a.s.l, leg. Rahmanipanah: 21 specs. Remarks: Recorded by Bennike (1940) from western Iran, Gholami (2005) from northern Iran and Grosser & Pešić (2006) from southern Iran. New for Isfahan basin. The species is distributed in circum- Mediterranean area, Ukraine and Crimean peninsula, near and Middle East, Arabian Peninsula and eastern Africa (Nesemann & Neubert 1999). Familiy Erpobdellidae R. Blanchard, 1894 Genus Erpobdella De Blainville, 1818 Erpobdella octoculata (Linnaeus, 1758) Material: Saman, (N: 32°28' E: 50°39'E), 2081m a.s.l, leg. Rahmanipanah: 1 spec. Remarks: Reported by Grosser & Pešić (2006) from western, south western, north eastern and central part of Iran, Salimi et al. (2011) from western Iran. New for Isfahan basin. It is widely distributed in Palaearctic. The species is well known from western, central and northern Europe. In Mediterranean region, Ecol. Mont., 4, 2015, 29-32 31 FRESHWATER LEECHES OF SOUTH-WESTERN IRAN it has been poorly reported but it is known from Italy, Greece and Balkans. It is not known from Iberian Peninsula and Mediterranean islands. It is also known, eastward, from Anatolia, the upper Euphrates in Turkey and Caucasus (Nesemann & Neubert 1999). Species abundance showed that the localities were mainly dominated by species of Hirudinidae specifically two species Hirudo orientalis which was present in all localities and Limnatis nilotica with presence status in three localities. Glossiphonid leeches with two species Glossiphonia complanata and Hemiclepsis marginata were ranked second in terms of abundance and the least abundant leeches belonged to Piscicolidae and Erpobdellidae with one species in each family Piscicola geometra and Erpobdella octoculata respectively. It shows that the clean and cold water of the studied localities have created a favorable habitats for the Hirudinid leeches. The presence of H. orientalis at this geographical point is a new finding as it is the southernmost known distribution range for the species. The study area did not inhabit rich fauna of Erpobdellids contrary to other studies (Grosser & Pešić 2006; Salimi et al. 2011). Acknowledgments We warmly thank the Islamic Islamic Azad University Tehran Medical Branch for their financial support of this study. References Abell, R., Thieme, M. L., Revenga, C., Bryer, M., Kottelat, M., Bogutskaya, N., Coad, B., Mandrak, N., Balderas, S. C., Bussing, W., Stiassny, M. L. J., Skelton, P., Allen, G. R., Unmack, P., Naseka, A., Sindorf, R. Ng, N., Robertson, J., Armijo, E., Higgins, J. V., Heibel, T. J., Wikramanayake, E., Olson, D., Lopez, H. L., Reis, R. E., Lundberg, J. G., Perez, M. H. S. & Petry, P. (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience, 58, 403–414. Bennike, S.A.B. (1940) On some Iranian freshwater Hirudinida. In‘Danish Scientific Investigations in Iran, Part II’, 1–10, Danske Zoologiske Tidsskrift. Copenhagen. Darabi Darestani, K. & Malek, M. (2011a) Seasonal variation in the occurrence of the medicinal leech Hirudo orientalis in Guilan Province, Iran. Aquatic biology, 11, 289–294. Darabi Darestani, k. & Malek, M. (2011b) Predation in two species of leech under laboratory Conditions. Progress in Biological Sciences, 2, 11–15. Gholami, A. (2005) Systematic study of northern Iran leeches (In Farsi). Master's thesis. Faculty of Biology. Tehran University. Grosser, C. & Pešić, V. (2006) On the diversity of Iranian leeches (Annelida: Hirudinida). Archives Biology Science Belgrade 58(1), 21–24. Grosser, C. & Pešić, V. (2008) Dina farsa sp. nov. (Annelida, Hirudinida: Erpobdellidae) – eine neue Egelart aus dem Iran. Lauterbornia, 65, 15–26. Grosser, C., Nesemann, H & Pešić, V. (2011) Dina orientalis sp. nov. —an overlooked new leech (Annelida: Hirudinida: Erpobdellidae) species from the Near and Middle East. Zootaxa, 2746, 20–24. Kiyani Haftlang, K. (2003) The Book of Iran: A Survey of the Geography of Iran. Alhoda. UK. Mirzaei, F., Asadollah, S., Jalali, M., Barzegar, M. & Jalali, B. (2007) Survey on Leeches of Zayandeh-rud river of Iran. Parasitologia, 49, 24–28. Nesemann, H. & Neubert, E. (1999) Annelida, Clitellata: Branchiobdellida, Acanthobdellea, Hirudinea. In: J. Schwoerbel, P. Zwick, (eds.), Süßwasserfauna von Mitteleuropa 6/2, Spektrum, Heidelberg, 178 pp. Pazooki, J. & Masoumian, M. (2012) Synopsis of the Parasites in Iranian Freshwater Fishes. Iranian Journal of Fisheries Sciences, 11(3), 570–589. Salimi, B., Mobedi, I., Haghighi khiabanian, A. & Soltani, M. (2011) On the diversity of leeches (Annelida: Hirudina) in the freshwaters of Kurdistan province, Iran. Archives of Biological Science, Belgrade, 63(3), 837–840. Sawyer, R.T. (1986) Leech biology and behaviour. Clarendon Press, Oxford. Utevsky, SY. & Trontelj, P. (2005) A new species of the medicinal leech (Oligochaeta, Hirudinida, Hirudo) from Transcaucasia and an identification key for the genus Hirudo. Parasitology Research, 98, 61– 66. Ecol. Mont., 4, 2015, 29-32 32 .
Recommended publications
  • Research Article Genetic Diversity of Freshwater Leeches in Lake Gusinoe (Eastern Siberia, Russia)
    Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 619127, 11 pages http://dx.doi.org/10.1155/2014/619127 Research Article Genetic Diversity of Freshwater Leeches in Lake Gusinoe (Eastern Siberia, Russia) Irina A. Kaygorodova,1 Nadezhda Mandzyak,1 Ekaterina Petryaeva,1,2 and Nikolay M. Pronin3 1 Limnological Institute, 3 Ulan-Batorskaja Street, Irkutsk 664033, Russia 2 Irkutsk State University, 5 Sukhe-Bator Street, Irkutsk 664003, Russia 3 Institute of General and Experimental Biology, 6 Sakhyanova Street, Ulan-Ude 670047, Russia Correspondence should be addressed to Irina A. Kaygorodova; [email protected] Received 30 July 2014; Revised 7 November 2014; Accepted 7 November 2014; Published 27 November 2014 Academic Editor: Rafael Toledo Copyright © 2014 Irina A. Kaygorodova et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The study of leeches from Lake Gusinoe and its adjacent area offered us the possibility to determine species diversity. Asa result, an updated species list of the Gusinoe Hirudinea fauna (Annelida, Clitellata) has been compiled. There are two orders and three families of leeches in the Gusinoe area: order Rhynchobdellida (families Glossiphoniidae and Piscicolidae) and order Arhynchobdellida (family Erpobdellidae). In total, 6 leech species belonging to 6 genera have been identified. Of these, 3 taxa belonging to the family Glossiphoniidae (Alboglossiphonia heteroclita f. papillosa, Hemiclepsis marginata,andHelobdella stagnalis) and representatives of 3 unidentified species (Glossiphonia sp., Piscicola sp., and Erpobdella sp.) have been recorded. The checklist gives a contemporary overview of the species composition of leeches and information on their hosts or substrates.
    [Show full text]
  • Flow Regime Change in an Endorheic Basin in Southern Ethiopia
    Hydrol. Earth Syst. Sci., 18, 3837–3853, 2014 www.hydrol-earth-syst-sci.net/18/3837/2014/ doi:10.5194/hess-18-3837-2014 © Author(s) 2014. CC Attribution 3.0 License. Flow regime change in an endorheic basin in southern Ethiopia F. F. Worku1,4,5, M. Werner1,2, N. Wright1,3,5, P. van der Zaag1,5, and S. S. Demissie6 1UNESCO-IHE Institute for Water Education, P.O. Box 3015, 2601 DA Delft, the Netherlands 2Deltares, P.O. Box 177, 2600 MH Delft, the Netherlands 3University of Leeds, School of Civil Engineering, Leeds, UK 4Arba Minch University, Institute of Technology, P.O. Box 21, Arba Minch, Ethiopia 5Department of Water Resources, Delft University of Technology, P.O. Box 5048, 2600 GA Delft, the Netherlands 6Ethiopian Institute of Water Resources, Addis Ababa University, P.O. Box 150461, Addis Ababa, Ethiopia Correspondence to: F. F. Worku ([email protected]) Received: 29 December 2013 – Published in Hydrol. Earth Syst. Sci. Discuss.: 29 January 2014 Revised: – – Accepted: 20 August 2014 – Published: 30 September 2014 Abstract. Endorheic basins, often found in semi-arid and 1 Introduction arid climates, are particularly sensitive to variation in fluxes such as precipitation, evaporation and runoff, resulting in Understanding the hydrology of a river and its historical flow variability of river flows as well as of water levels in end- characteristics is essential for water resources planning, de- point lakes that are often present. In this paper we apply veloping ecosystem services, and carrying out environmen- the indicators of hydrological alteration (IHA) to characterise tal flow assessments.
    [Show full text]
  • Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus Idus
    REVIEWS IN FISHERIES SCIENCE & AQUACULTURE https://doi.org/10.1080/23308249.2020.1822280 REVIEW Review and Meta-Analysis of the Environmental Biology and Potential Invasiveness of a Poorly-Studied Cyprinid, the Ide Leuciscus idus Mehis Rohtlaa,b, Lorenzo Vilizzic, Vladimır Kovacd, David Almeidae, Bernice Brewsterf, J. Robert Brittong, Łukasz Głowackic, Michael J. Godardh,i, Ruth Kirkf, Sarah Nienhuisj, Karin H. Olssonh,k, Jan Simonsenl, Michał E. Skora m, Saulius Stakenas_ n, Ali Serhan Tarkanc,o, Nildeniz Topo, Hugo Verreyckenp, Grzegorz ZieRbac, and Gordon H. Coppc,h,q aEstonian Marine Institute, University of Tartu, Tartu, Estonia; bInstitute of Marine Research, Austevoll Research Station, Storebø, Norway; cDepartment of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Łod z, Poland; dDepartment of Ecology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia; eDepartment of Basic Medical Sciences, USP-CEU University, Madrid, Spain; fMolecular Parasitology Laboratory, School of Life Sciences, Pharmacy and Chemistry, Kingston University, Kingston-upon-Thames, Surrey, UK; gDepartment of Life and Environmental Sciences, Bournemouth University, Dorset, UK; hCentre for Environment, Fisheries & Aquaculture Science, Lowestoft, Suffolk, UK; iAECOM, Kitchener, Ontario, Canada; jOntario Ministry of Natural Resources and Forestry, Peterborough, Ontario, Canada; kDepartment of Zoology, Tel Aviv University and Inter-University Institute for Marine Sciences in Eilat, Tel Aviv,
    [Show full text]
  • Hydrographic Development of the Aral Sea During the Last 2000 Years Based on a Quantitative Analysis of Dinoflagellate Cysts
    Palaeogeography, Palaeoclimatology, Palaeoecology 234 (2006) 304–327 www.elsevier.com/locate/palaeo Hydrographic development of the Aral Sea during the last 2000 years based on a quantitative analysis of dinoflagellate cysts P. Sorrel a,b,*, S.-M. Popescu b, M.J. Head c,1, J.P. Suc b, S. Klotz b,d, H. Oberha¨nsli a a GeoForschungsZentrum, Telegraphenberg, D-14473 Potsdam, Germany b Laboratoire Pale´oEnvironnements et Pale´obioSphe`re (UMR CNRS 5125), Universite´ Claude Bernard—Lyon 1, 27-43, boulevard du 11 Novembre, 69622 Villeurbanne Cedex, France c Department of Geography, University of Cambridge, Downing Place, Cambridge CB2 3EN, UK d Institut fu¨r Geowissenschaften, Universita¨t Tu¨bingen, Sigwartstrasse 10, 72070 Tu¨bingen, Germany Received 30 June 2005; received in revised form 4 October 2005; accepted 13 October 2005 Abstract The Aral Sea Basin is a critical area for studying the influence of climate and anthropogenic impact on the development of hydrographic conditions in an endorheic basin. We present organic-walled dinoflagellate cyst analyses with a sampling resolution of 15 to 20 years from a core retrieved at Chernyshov Bay in the NW Large Aral Sea (Kazakhstan). Cysts are present throughout, but species richness is low (seven taxa). The dominant morphotypes are Lingulodinium machaerophorum with varied process length and Impagidinium caspienense, a species recently described from the Caspian Sea. Subordinate species are Caspidinium rugosum, Romanodinium areolatum, Spiniferites cruciformis, cysts of Pentapharsodinium dalei, and round brownish protoper- idiniacean cysts. The chlorococcalean algae Botryococcus and Pediastrum are taken to represent freshwater inflow into the Aral Sea. The data are used to reconstruct salinity as expressed in lake level changes during the past 2000 years.
    [Show full text]
  • Leeches of the Suborder Hirudiniformes (Hirudinea: Haemopidae, Hirudinidae, Haemadipsidae) from the Ganga Watershed (Nepal, India: Bihar)
    ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhist. Mus. Wien 103 B 77-88 Wien, Dezember 2001 Leeches of the suborder Hirudiniformes (Hirudinea: Haemopidae, Hirudinidae, Haemadipsidae) from the Ganga watershed (Nepal, India: Bihar) H. Nesemann* & S. Sharma** Abstract New records of three families of arhynchobdellid leeches (Hirudinea, Hirudiniformes) from Nepal, including two localities from India (Bihar), are presented. The sinojapanese Whitmania laevis, family Haemopidae, is found for the first time from the Himalayan region. The family Hirudinidae was found with Poecilobdella granulosa and Hirudinaria manillensis. A further leech, Myxobdella nepalica sp.n., is descri- bed. The terrestrial family Haemadipsidae has three taxa in the Nepalese Himalaya; Haemadipsa zeylanica agilis, H. zeylanica montivindicis and H. sylvestris. Zusammenfassung Aus Nepal werden Neunachweise von drei Familien der Egel (Hirudinea, Arhynchobdellida, Hirudini- formes) vorgestellt, die auch zwei Fundstellen in Indien (Bihar) einschließen. Die ostasiatische Art Whitmania laevis, Familie Haemopidae, wird erstmalig aus der Himalayaregion nachgewiesen. Es wurden drei Arten der Familie Hirudinidae gefunden: Poecilobdella granulosa und Hirudinaria manillensis; Myxobdella nepalica sp.n. wird neu beschrieben. Die landlebenden Haemadipsidae sind durch drei Taxa Haemadipsa zeylanica agilis, H. zeylanica montivindicis und H. sylvestris in Nepal vertreten, die sich bevorzugt an Gewässerufern aufhalten. Introduction In addition to the knowledge of the class Hirudinea from Nepal (NESEMANN & SHARMA 1996) new records of leech species collected from 1996 to 2001 are presented. The pre- sent paper deals with three families of Hirudiniformes. Short descriptions on their mor- phology are given supported by detailed figures. The aim of the study is to provide rea- ders with additional characteristics for the identification of the taxa in the field, using the keys of MOORE (1927), CHANDRA (1983) and SAWYER (1986).
    [Show full text]
  • Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq
    Vol. 2 (2): 180-218, 2018 Checklists of Parasites of Fishes of Salah Al-Din Province, Iraq Furhan T. Mhaisen1*, Kefah N. Abdul-Ameer2 & Zeyad K. Hamdan3 1Tegnervägen 6B, 641 36 Katrineholm, Sweden 2Department of Biology, College of Education for Pure Science, University of Baghdad, Iraq 3Department of Biology, College of Education for Pure Science, University of Tikrit, Iraq *Corresponding author: [email protected] Abstract: Literature reviews of reports concerning the parasitic fauna of fishes of Salah Al-Din province, Iraq till the end of 2017 showed that a total of 115 parasite species are so far known from 25 valid fish species investigated for parasitic infections. The parasitic fauna included two myzozoans, one choanozoan, seven ciliophorans, 24 myxozoans, eight trematodes, 34 monogeneans, 12 cestodes, 11 nematodes, five acanthocephalans, two annelids and nine crustaceans. The infection with some trematodes and nematodes occurred with larval stages, while the remaining infections were either with trophozoites or adult parasites. Among the inspected fishes, Cyprinion macrostomum was infected with the highest number of parasite species (29 parasite species), followed by Carasobarbus luteus (26 species) and Arabibarbus grypus (22 species) while six fish species (Alburnus caeruleus, A. sellal, Barbus lacerta, Cyprinion kais, Hemigrammocapoeta elegans and Mastacembelus mastacembelus) were infected with only one parasite species each. The myxozoan Myxobolus oviformis was the commonest parasite species as it was reported from 10 fish species, followed by both the myxozoan M. pfeifferi and the trematode Ascocotyle coleostoma which were reported from eight fish host species each and then by both the cestode Schyzocotyle acheilognathi and the nematode Contracaecum sp.
    [Show full text]
  • Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): Phylogenetic Relationships and Evolution
    MOLECULAR PHYLOGENETICS AND EVOLUTION Molecular Phylogenetics and Evolution 30 (2004) 213–225 www.elsevier.com/locate/ympev Arhynchobdellida (Annelida: Oligochaeta: Hirudinida): phylogenetic relationships and evolution Elizabeth Bordaa,b,* and Mark E. Siddallb a Department of Biology, Graduate School and University Center, City University of New York, New York, NY, USA b Division of Invertebrate Zoology, American Museum of Natural History, New York, NY, USA Received 15 July 2003; revised 29 August 2003 Abstract A remarkable diversity of life history strategies, geographic distributions, and morphological characters provide a rich substrate for investigating the evolutionary relationships of arhynchobdellid leeches. The phylogenetic relationships, using parsimony anal- ysis, of the order Arhynchobdellida were investigated using nuclear 18S and 28S rDNA, mitochondrial 12S rDNA, and cytochrome c oxidase subunit I sequence data, as well as 24 morphological characters. Thirty-nine arhynchobdellid species were selected to represent the seven currently recognized families. Sixteen rhynchobdellid leeches from the families Glossiphoniidae and Piscicolidae were included as outgroup taxa. Analysis of all available data resolved a single most-parsimonious tree. The cladogram conflicted with most of the traditional classification schemes of the Arhynchobdellida. Monophyly of the Erpobdelliformes and Hirudini- formes was supported, whereas the families Haemadipsidae, Haemopidae, and Hirudinidae, as well as the genera Hirudo or Ali- olimnatis, were found not to be monophyletic. The results provide insight on the phylogenetic positions for the taxonomically problematic families Americobdellidae and Cylicobdellidae, the genera Semiscolex, Patagoniobdella, and Mesobdella, as well as genera traditionally classified under Hirudinidae. The evolution of dietary and habitat preferences is examined. Ó 2003 Elsevier Inc. All rights reserved.
    [Show full text]
  • The Leeches (Hirudinea) of the "Karas Lake" Reserve in Poland
    ©Erik Mauch Verlag, Dinkelscherben, Deutschland,33 Download unter www.biologiezentrum.at Lauterbornia 52: 33-38, D-86424 Dinkelscherben, 2004-12-30 The leeches (Hirudinea) of the "Karas Lake" reserve in Poland Aleksander Bielecki, Adam Jawniak and Joanna Kalinowska With 3 figures and 1 table Keywords: Hirudinea, Karas Lake, Polen, reserve, dominance, faunistics Schlagwörter: Hirudinea, Karas, Polen, Dominanz, Faunistik During research on the "Karas Lake" reserve, 16 species of leeches were found and described here, inclusive of the very rare taxaBatracobdelloides moogi, Boreobdella verrucata, Piscicola borow ieci and Piscicola pojmanskae. 1 Introduction The studies began in 2002 in the "Karas Lake" reserve in Poland (Fig. 3). The aim of this investigation was to recognize the quantitative and qualitative com­ munities of leeches in the reserve. "Karas Lake" is the shallow and eutrophic basin in the ending stage of the land-forming process. Prevailing winds from the West and North cause organic matter deposition mainly on the windward side of the lake. There are intensive peat-forming processes on this side of the lake and, as a result, these have formed a wide peat bog. There is mineral-organic soil on the southeast side of the lake, where the floral zones are wide and surface water occurs only in the spring (Krupa & al. 2000). 2 Material and methods The study was conducted between 20 April and 30 July 2002. The material was collected from plants, mainly from Typha latifolia and from the sticks driven into the bottom. In next part of the study, material was collected for conserva­ tion. Leech preservation is difficult, and for measurements and dissection the leeches should be extended and not twisted.
    [Show full text]
  • Review Article
    Review Article Leech Therapeutic Applications A. M. ABDUALKADER*, A. M. GHAWI1, M. ALAAMA, M. AWANG AND A. MERZOUK2 Departments of Pharmaceutical Chemistry, and 1Basic Medical Science, Faculty of Pharmacy, International Islamic University Malaysia, Jalan Istana, 25200 Kuantan, Pahang, Malaysia, 2Biopep Solutions Inc., 235-11590 Cambie Road, Richmond, BC V6X 3Z5, Canada Abdualkader, et al.: Leeching Hematophagous animals including leeches have been known to possess biologically active compounds in their secretions, especially in their saliva. The blood‑sucking annelids, leeches have been used for therapeutic purposes since the beginning of civilization. Ancient Egyptian, Indian, Greek and Arab physicians used leeches for a wide range of diseases starting from the conventional use for bleeding to systemic ailments, such as skin diseases, nervous system abnormalities, urinary and reproductive system problems, inflammation, and dental problems. Recently, extensive researches on leech saliva unveiled the presence of a variety of bioactive peptides and proteins involving antithrombin (hirudin, bufrudin), antiplatelet (calin, saratin), factor Xa inhibitors (lefaxin), antibacterial (theromacin, theromyzin) and others. Consequently, leech has made a comeback as a new remedy for many chronic and life‑threatening abnormalities, such as cardiovascular problems, cancer, metastasis, and infectious diseases. In the 20th century, leech therapy has established itself in plastic and microsurgery as a protective tool against venous congestion and served
    [Show full text]
  • Summary Record of the 26Th Meeting of the Animals Committee
    Original language: English AC26 summary record CONVENTION ON INTERNATIONAL TRADE IN ENDANGERED SPECIES OF WILD FAUNA AND FLORA ____________ Twenty-sixth meeting of the Animals Committee Geneva (Switzerland), 15-20 March 2012 and Dublin (Ireland), 22-24 March 2012 SUMMARY RECORD Animals Committee matters 1. Opening of the meeting The Chair opened the meeting and welcomed all participants, before giving the floor to the Secretary- General, who also welcomed everyone and introduced new members of the Secretariat's scientific team (Mr De Meulenaer and Ms Kwitsinskaia) and enforcement team (Ms Garcia Ferreira, Ms Jonsson and Mr van Rensburg). He wished the Committee well in its deliberations. The Chair thanked the Secretary-General and invited suggestions as to how the Conference of the Parties could establish stronger measures to support the Committee as well as export countries, which deserved particular assistance. No other intervention was made during discussion of this item.1 2. Rules of Procedure The Secretariat introduced document AC26 Doc. 2 and proposed amending Rule 22 as follows: “On request, the Secretariat shall distribute printed and translated documents...”. The Secretariat explained that most members regularly indicated that they did not need printed copies and that this proposal was made to reduce costs. Although not opposed to the change in principle, a Party regretted that the suggestion had not been presented in the document, which would have given Parties time to consider it, and was concerned that this unannounced proposal might create a precedent. Another Party asked a question on the procedure to accept observers, but the Chair invited it to raise this topic under agenda item 4 on Admission of observers.
    [Show full text]
  • Occasional Papers
    NUMBER 69, 55 pages 25 March 2002 BISHOP MUSEUM OCCASIONAL PAPERS RECORDS OF THE HAWAII BIOLOGICAL SURVEY FOR 2000 PART 2: NOTES NEAL L. EVENHUIS AND LUCIUS G. ELDREDGE, EDITORS BISHOP MUSEUM PRESS HONOLULU C Printed on recycled paper Cover: Metrosideros polymorpha, native ‘öhi‘a lehua. Photo: Clyde T. Imada. Research publications of Bishop Museum are issued irregularly in the RESEARCH following active series: • Bishop Museum Occasional Papers. A series of short papers PUBLICATIONS OF describing original research in the natural and cultural sciences. Publications containing larger, monographic works are issued in BISHOP MUSEUM five areas: • Bishop Museum Bulletins in Anthropology • Bishop Museum Bulletins in Botany • Bishop Museum Bulletins in Entomology • Bishop Museum Bulletins in Zoology • Pacific Anthropological Reports Institutions and individuals may subscribe to any of the above or pur- chase separate publications from Bishop Museum Press, 1525 Bernice Street, Honolulu, Hawai‘i 96817-0916, USA. Phone: (808) 848-4135; fax: (808) 848-4132; email: [email protected]. The Museum also publishes Bishop Museum Technical Reports, a series containing information relative to scholarly research and collections activities. Issue is authorized by the Museum’s Scientific Publications Committee, but manuscripts do not necessarily receive peer review and are not intended as formal publications. Institutional libraries interested in exchanging publications should write to: Library Exchange Program, Bishop Museum Library, 1525 Bernice Street,
    [Show full text]
  • The Formation of Badwater Basin and the Death Valley Salt Flats S
    The Formation of Badwater Basin and the Death Valley Salt Flats S. G. Minton-Morgan 12 June 2013 ABSTRACT The iconic landscape of Badwater Basin, located in Death Valley National Park, rests 282 ft (86 m) below sea level; the lowest point in North America. It is home to a varied collection of landforms and features – many of them ephemeral - including salt flats, saline springs, ephemeral lakes, and their resultant muddy deposits. The unique landscape is a result of ancient volcanism, climate, and flooding combined with modern weather patterns and underground hydrothermal activity. Of these factors, flooding and hydrothermal activity are perhaps the most dramatic, as they visibly alter the terrain in ways directly observable on timescales of a few years. Similarly, two most notable features of Badwater Basin – its sprawling salt flats and its namesake Badwater Spring – are inextricably linked together in that the minute spring-fed lake provides the hydrological activity necessary to give the salt flats their unique geometric character as distinct from other salt deposits around the Valley. INTRODUCTION What mysteries lay at the lowest point in North America? Death Valley is a site unique among the basins in the Basin and Range region; not only is it home to the lowest, hottest point in North America, it also rests in the rain shadow of the 11049 ft. Telescope Peak, giving it a dry, desert climate found nowhere else in the region. Badwater Basin, the lowest point in Death Valley is a forbidding landscape to human beings, yet is simultaneously home to some of the most fascinating geological and hydrological features in the Northern Hemisphere.
    [Show full text]