The Evolutionary Origin of Language Reconsidered

Total Page:16

File Type:pdf, Size:1020Kb

The Evolutionary Origin of Language Reconsidered Breaking Down the Barriers, 1-19 2013-1-050-001-000341-1 The Evolutionary Origin of Language Reconsidered Charles N. Li (李 訥) University of California, Santa Barbara There are markers and processes in hominid’s evolution and cognitive capability that are relevant to the emergence of language. After a long process of creation and concatenation of symbolic signals in their speech, grammatical structures emerged shortly, in a swift, graded and ongoing manner. This dynamic process defies any attempt to impose on it a non-arbitrary discrete marker as the point of origin of language. Key words: emergence of human language, language origin, human evolution, symbolic signals, gesturing, animal communication, grammatical principles, Foxp2 1. Introduction Throughout history, humans have been fascinated with origins: The origin of the universe, the origin of the earth, the origin of life, the origin of human, the origin of language. Unlike the origins of the universe, the earth, life and human, which are consigned to scientific investigation, the origin of language has attracted a good amount of speculations. The earliest one on record comes from the Old Testament, where we learn that a vengeful God punished the people of Babylon for their vanity and disobedience by creating a great diversity of languages. By the 21st century, a new round of speculations on the origin of language and other complex human behavior has prompted the evolutionary biologist, Richard Lewontin, to sound an alarm in an AAAS meeting (Feb., 2008), that research on the evolution of hominid cognition is akin to ‘paleofantasy’. There is no fossil record of human cognition, observed Mr. Lewontin. Even though Lewontin’s alarm is salutary, I believe that the combined advances in the study of fossil records (paleoanthropology), neuroscience, human genetics, animal communicative behavior and linguistics have laid the empirical foundation for mapping out the landmarks, the processes, the time frame and an outline of the evolutionary origin of language. First, several important landmarks in hominid evolution allow us to delimit a period of time during which human language emerged. Secondly, a wide array of research on Charles N. Li animal communicative behavior in the second half of the 20th century has unveiled the fundamental differences between animal communicative behavior and human language, enhancing our ability to infer the transformations undertaken by hominid communicative behavior that led to the emergence of language. Thirdly, archaeological, neurological and human genetic evidence provides a number of clues to the evolutionary processes leading to the emergence of language. Finally, advances in linguistics have elucidated the emergence of grammar, a dynamic process that never ends in a living language. Let me begin by clarifying the genre of modern language that may give us a hint of language at its origin. 2. Modern language and language origin Modern human language has multiple genres, similar to a Linnean genus consisting of different species. These genres constitute a spectrum with graded differences in grammar, organization as well as vocabulary. If we compare the two extremes of the spectrum, their differences, instead of being graded and minor, will appear discrete and significant in myriad ways. At one extreme of the spectrum is the formal written language constructed in sentences and paragraphs, which, at their best, are rendered in logical and coherent arguments or narrative, and composed strictly according to grammatical conventions. In this channel of communication, the linguistic text must bear the entire burden of transmitting information and attaining communicative felicity between the author and the reader. This is the prevalent genre of language in academic research. Educated people favor the formal written language to such an extent that they endeavor, in certain social contexts, to speak in the way they write. At the other extreme of the spectrum is the casual spoken language of pre-literate cultures, or the casual conversation in contemporary social interaction. This genre of language is composed of words, phrases, intonation units, pauses and various inter- jections, where grammatical constraints are far weaker than they are in written text. Unlike a piece of written text which must be self-sufficient for the purpose of proper transmission of information to the reader, casual spoken language can draw on extra- linguistic information in the communicative context. In other words, unlike a written text, which stands alone in the transmission of information, the language of casual conversation constitutes only one of many facets of a communicative context. If one compares the language in a high-fidelity transcript of a session of casual conversation with the written language of an academic paper, one will have the impression that the former looks haphazard, anarchistic and often ungrammatical. It is, therefore, not surprising that educated people in a literate society tend to hold the language of casual 2 The Evolutionary Origin of Language Reconsidered conversation in low esteem.1 To underscore the gulf separating the two opposite ends of the spectrum of language genres, I will point out two pieces of evidence that are relevant to the origin of language.2 First, every human being is genetically disposed toward acquiring a casual spoken or sign language without instruction, whereas no one can make the same claim for the acquisition of a written language.3 To learn to write is an arduous intellectual endeavor that requires long-term schooling. To those who take writing seriously, it is an art and craft to be honed and improved as long as they live. Probably no more than twenty percent of the world’s population is fluent in a written language. But every human is fluent in a spoken language. Secondly, written language was invented five to six thousand years ago. It is a vital invention that has fueled cultural development, because it permits the unlimited preservation and accumulation of knowledge for transmission to future generations. Casual spoken language precedes written language by hundreds of thousands of years. This chronological difference alone is sufficient to compel us to acknowledge that written language is much too far removed from the origin of human language for it to be useful in investigating how the communicative behavior of hominids evolved into language. Casual spoken language is the only conduit through which we may gain some insight into the nature of language at its origin. In particular, we must bear in mind that long before the dawn of civilization, when the behavior of our hominid ancestors was still focused on survival, as it is the case among all undomesticated, non-human animals today, language was the vehicle of communication that elevated humans to the unprecedented position of absolute dominance in the animal kingdom. I have established an understanding of the linguistic base of what we are looking for as hominid communicative behavior evolved toward language, i.e., a communicative behavior that involves linguistic as well as extra-linguistic information, and a linguistic code that is far less grammatically constrained and far more haphazard than formal written language. I will now proceed to ferret out the major landmarks in hominid evolution that are relevant to the origin of language. 1 This low esteem has had immense impact on generative linguistic theory which, at least during its early development, uses, as its empirical base, the genre of spoken language that closely approximates formal written language. 2 There is a significant literature on the differences between written language and spoken language which does not need to be cited here. 3 There is a significant literature on the acquisition of literacy which is beyond the scope of this article. 3 Charles N. Li 3. Hominids evolution and language origin The family of hominids began approximately six to seven million years ago by a group of great apes who descended from a tree habitat to a savanna habitat in Africa. The cause for this habitat change is assumed to be the geological formation of the Great Rift Valley in East Africa. As East Africa began drifting away from the continent because of tectonic movement, creating the so-called Great Rift Valley, the climate on the East side of the valley turned arid. There, tropical forest gave way to savanna and plains such as the Serengeti and Masai Mara. According to this scenario of geological transformation, our earliest hominid ancestors didn’t come down the trees voluntarily. The trees they were living in gradually disappeared. This is the so-called East Side Story in paleoanthropology. The validity of the East Side Story is now being challenged by recent discoveries of six million year old fossils in Chad and Kenya.4 If these fossils turn out to be hominids, the East Side Story will be cast in doubt because both sites of discovery were rain forest habitat six million years ago. Whether or not the East Side Story proves to be a valid hypothesis for our earliest hominid ancestors to descend from the trees, fossil records confirm that the earliest hominids originated in Africa and genetic studies based on the rate of mutation place the emergence of hominids at around six to seven million years ago. The second landmark more or less coincides with our hominid ancestor’s descent from trees. It is the trait that defines the Linnean family of Hominids, namely, bipedalism. All non-human living great apes knuckle-walk. Humans are the only great ape that has the body and brain structure for walking upright. It took about four million years for hominids to evolve into full-fledged bipedalism and its attendant anatomical structures. This evolutionary transformation involves not just the skeletal structure, but also the muscular composition, the central and the peripheral nervous systems. In other words, the emergence of bipedalism coincides with the start of the evolutionary development of the hominid nervous system to beget a larger and more complex brain.
Recommended publications
  • Two Modern Compositional Approaches
    Musical Aesthetics of the Natural World: Two Modern Compositional Approaches Eli Stine and Christopher Luna-Mega University of Virginia, McIntire Department of Music Throughout recorded human history, experiences and observations of the natural world have inspired the arts. Within the sonic arts, evocations of nature permeate a wide variety of acoustic and electronic composition strategies. These strategies artistically investigate diverse attributes of nature: tranquility, turbulence, abundance, scarcity, complexity, and purity, to name but a few. Within the 20th century, new technologies to understand these attributes, including media recording and scientific analysis, were developed. These technologies allow music composi- tion strategies to go beyond mere evocation and to allow for the construction of musical works that engage explicit models of nature (what has been called ‘biologically inspired music’). This paper explores two such deployments of these ‘natural sound models’ within music and music generation systems created by the authors: an electroacoustic composition using data derived from multi-channel recordings of forest insects (Luna-Mega) and an electronic music generation system that extracts musical events from the different layers of natural soundscapes, in particular oyster reef soundscapes (Stine). Together these works engage a diverse array of extra-musical disciplines: environmental science, acoustic ecology, entomology, and computer science. The works are contextualized with a brief history of natural sound models from pre- antiquity to the present in addition to reflections on the uses of technology within these projects and the potential experiences of audiences listening to these works. “Great art picks up where nature ends.” - Mark Chagall and aesthetics towards a more quantitative awareness of how The natural world has been a focal point for the arts since the natural world functions and evolves is present within a the Upper Paleolithic.
    [Show full text]
  • Language Evolution to Revolution: from a Slowly Developing Finite Communication System with Many Words to Infinite Modern Language
    bioRxiv preprint doi: https://doi.org/10.1101/166520; this version posted July 20, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Language evolution to revolution: from a slowly developing finite communication system with many words to infinite modern language Andrey Vyshedskiy1,2* 1Boston University, Boston, USA 2ImagiRation LLC, Boston, MA, USA Keywords: Language evolution, hominin evolution, human evolution, recursive language, flexible syntax, human language, syntactic language, modern language, Cognitive revolution, Great Leap Forward, Upper Paleolithic Revolution, Neanderthal language Abstract There is overwhelming archeological and genetic evidence that modern speech apparatus was acquired by hominins by 600,000 years ago. There is also widespread agreement that modern syntactic language arose with behavioral modernity around 100,000 years ago. We attempted to answer two crucial questions: (1) how different was the communication system of hominins before acquisition of modern language and (2) what triggered the acquisition of modern language 100,000 years ago. We conclude that the communication system of hominins prior to 100,000 years ago was finite and not- recursive. It may have had thousands of words but was lacking flexible syntax, spatial prepositions, verb tenses, and other features that enable modern human language to communicate an infinite number of ideas. We argue that a synergistic confluence of a genetic mutation that dramatically slowed down the prefrontal cortex (PFC) development in monozygotic twins and their spontaneous invention of spatial prepositions 100,000 years ago resulted in acquisition of PFC-driven constructive imagination (mental synthesis) and converted the finite communication system of their ancestors into infinite modern language.
    [Show full text]
  • Human Evolution Timeline 1
    Name: Human Origins Web Inquiry 1. Got to the website: http://humanorigins.si.edu/evidence 2. Read the paragraph under “Evidence of Evolution.” 3. In the maroon box on the left, click on “Timeline Interactive” 4. Start by clicking on the red bands at the bottom of the timeline, beginning with Homo sapiens and the rest of the Hominids. Read the information boxes that pop up when you click. 5. When you come across a species you find particularly interesting, record that information (including dates) in the box below. Record facts of at least 5 interesting hominid species, including Homo sapiens. 6. Then begin to explore the rest of the timeline. As you go, record at least 5 other interesting species. 7. Use the magnifier tool at the bottom of the timeline. Click on “color key” to identify the different color dots. Each dot represents a specific piece of evidence scientists have discovered in their study of evolution. 8. Click on various colored dots to learn about tools, events, geology, climate information, behavior, and skeletal adaptations discovered by scientists that add to the evidence for human evolution. Record 7 pieces of evidence you find interesting or particularly important in the box on the back. Make sure to put down different types of evidence (different colors). 9. Take 15-20 minutes to explore the whole timeline and record interesting facts. 10. Build your own timeline on the next page, filling in the interesting species and evidence you recorded in their proper place in the timeline. Hominids Species Dates Interesting fact(s) Homo sapiens Name: Evidence Type of Date Interesting fact(s) Evidence Name: Human Evolution Timeline 1.
    [Show full text]
  • The Adaptive Significance of Human Language
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Senior Thesis Projects, 1993-2002 College Scholars 2000 The Adaptive Significance of Human Language Nathan Oesch Follow this and additional works at: https://trace.tennessee.edu/utk_interstp2 Recommended Citation Oesch, Nathan, "The Adaptive Significance of Human Language" (2000). Senior Thesis Projects, 1993-2002. https://trace.tennessee.edu/utk_interstp2/52 This Project is brought to you for free and open access by the College Scholars at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Senior Thesis Projects, 1993-2002 by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. The Adaptive Significance of Human Language Nathan Oesch Department of Psychology University of Tennessee, Knoxville noesch @ utk. edu Abstract Many experts have argued that human language is fundamentally incompatible with the principles of traditional Darwinian evolutionary theory. According to conventional Darwinian explanations, specific traits evolved among species according to gradual and incremental genetic changes, each of which that were in some way so favorable to the survival and reproduction of ancestral generations that they were ultimately preserved within successive generations of those species. Human language, it has been said, is simply to complex to be explained as a result of Darwinian explanations, since each successive step in the evolution of language would confer no obvious survival benefits to its recipients. According to this idea, language is such an "all-or­ none system," that it could not possibly have existed in any immediately beneficial intermediate forms and thus could not have evolved according to conventional Darwinian modes of explanation.
    [Show full text]
  • Homo Erectus Infancy and Childhood the Turning Point in the Evolution of Behavioral Development in Hominids
    10 Homo erectus Infancy and Childhood The Turning Point in the Evolution of Behavioral Development in Hominids Sue Taylor Parker In man, attachment is mediated by several different sorts of behaviour of which the most obvious are crying and calling, babbling and smiling, clinging, non-nutritional sucking, and locomotion as used in approach, following and seeking. —John Bowlby, Attachment The evolution of hominid behavioral ontogeny can be recon - structed using two lines of evidence: first, comparative neontological data on the behavior and development of living hominoid species (humans and the great apes), and second, comparative paleontolog- ical and archaeological evidence associated with fossil hominids. (Although behavior rarely fossilizes, it can leave significant traces.) 1 In this chapter I focus on paleontological and neontological evi - dence relevant to modeling the evolution of the following hominid adaptations: (1) bipedal locomotion and stance; (2) tool use and tool making; (3) subsistence patterns; (4) growth and development and other life history patterns; (5) childbirth; (6) childhood and child care; and (7) cognition and cognitive development. In each case I present a cladistic model for the origins of the characters in question. 2 Specifically, I review pertinent data on the following widely recog - nized hominid genera and species: Australopithecus species (A. afarensis , A. africanus , and A. robustus [Paranthropus robustus]) , early Homo species (Australopithecus gahri , Homo habilis , and Homo rudolfensis) , and Middle Pleistocene Homo species (Homo erectus , Homo ergaster , and others), which I am calling erectines . Copyrighted Material www.sarpress.org 279 S UE TAYLOR PARKER Table 10.1 Estimated Body Weights and Geological Ages of Fossil Hominids _______________________________________________________________________ Species Geologic Age Male Weight Female Weight (MYA) (kg) (kg) _______________________________________________________________________ A.
    [Show full text]
  • Neither Chimpanzee Nor Human, Ardipithecus Reveals the Surprising Ancestry of Both Tim D
    SPECIAL FEATURE: PERSPECTIVE PERSPECTIVE SPECIAL FEATURE: Neither chimpanzee nor human, Ardipithecus reveals the surprising ancestry of both Tim D. Whitea,1, C. Owen Lovejoyb, Berhane Asfawc, Joshua P. Carlsona, and Gen Suwad,1 aDepartment of Integrative Biology, Human Evolution Research Center, University of California, Berkeley, CA 94720; bDepartment of Anthropology, School of Biomedical Sciences, Kent State University, Kent, OH 44242–0001; cRift Valley Research Service, Addis Ababa, Ethiopia; and dThe University Museum, The University of Tokyo, Hongo, Bunkyo-ku Tokyo 113-0033, Japan Edited by Neil H. Shubin, University of Chicago, Chicago, IL, and approved September 10, 2014 (received for review April 25, 2014) Australopithecus fossils were regularly interpreted during the late 20th century in a framework that used living African apes, especially chimpanzees, as proxies for the immediate ancestors of the human clade. Such projection is now largely nullified by the discovery of Ardipithecus. In the context of accumulating evidence from genetics, developmental biology, anatomy, ecology, biogeography, and geology, Ardipithecus alters perspectives on how our earliest hominid ancestors—and our closest living relatives—evolved. human evolution | Australopithecus | hominid | Ethiopia “...the stock whence two or more species have chimpanzees, can serve as adequate repre- (5). Indeed, a widely used textbook still pro- sprung, need in no respect be intermediate sentations of the ancestral past. claims that, “Overall, Au. afarensis seems very between those species.” much like a missing link between the living Background T. H. Huxley, 1860 (1) Africanapesandlaterhomininsinitsdental, ’ Darwin s human evolution scenario attemp- cranial, and skeletal morphology” (6). Charles Darwin famously suggested that ted to explain hominid tool use, bipedality, Australopithecus can no longer be legiti- Africa was humanity’s most probable birth enlarged brains, and reduced canine teeth (2).
    [Show full text]
  • 'Lucy' Fossil Found
    Published online 20 September 2006 | Nature | doi:10.1038/news060918-5 News Little 'Lucy' fossil found Toddler hominin has arms for swinging and legs for walking. Rex Dalton The 3.3-million-year-old bones of a female toddler from Ethiopia are telling scientists a story about the route human ancestors took from the trees to the ground. In today's issue of Nature, an Ethiopian-led international team reports the discovery of a juvenile skeleton of the species commonly known as 'Lucy', or Australopithecus afarensis.1,2 The researchers have named her Selam, after an Ethiopian word for 'peace'. The specimen, which is the oldest and most complete juvenile of a human relative ever found, has features that stand as striking examples of part-way evolution between primitive apes and modern humans. Although many other samples of A. afarensis have been found before, this is the first one reported to come complete with a whole shoulder-blade bone (scapula). In modern humans the scapula has a ridge running horizontally across the top of the bone; in apes the scapula's ridge reaches further down the Little Salem is the most back, where it can help to throw more muscle into arm action, as would be needed to swing from trees. ancient toddler ever found. In the young A. afarensis, the scapula looks to be part-way between. Zeresenay Alemseged and Copyright Authority for Research and Conservation "The animal was losing its capacity to be arboreal — heading right toward being human," says of Cultrual Heritages anthropologist Owen Lovejoy of Kent State University in Ohio.
    [Show full text]
  • How Did Language Begin?
    How did language begin? Written by Ray Jackendoff What does the question mean? In asking about the origins of human language, we first have to make clear what the question is. The question is not how languages gradually developed over time into the languages of the world today. Rather, it is how the human species developed over time so that we — and not our closest relatives, the chimpanzees and bonobos — became capable of using language. And what an amazing development this was! No other natural communication system is like human language. Human language can express thoughts on an unlimited number of topics (the weather, the war, the past, the future, mathematics, gossip, fairy tales, how to fix the sink...). It can be used not just to convey information, but to solicit information (ques- tions) and to give orders. Unlike any other animal communication system, it contains an expression for negation — what is not the case. Every human lan- guage has a vocabulary of tens of thousands of words, built up from several dozen speech sounds. Speakers can build an unlimited number of phrases and sentences out of words plus a smallish collec- tion of prefixes and suffixes, and the meanings of sentences are built from the meanings of the individ- ual words. What is still more remarkable is that every normal child learns the whole system from hearing others use it. Animal communication systems, in contrast, typically have at most a few dozen distinct calls, and they are used only to communicate immediate issues such as food, danger, threat, or reconciliation.
    [Show full text]
  • Mechanics of Bipedalism: an Exploration of Skeletal Morphology and Force Plate Anaylsis Erin Forse May 04, 2007 a Senior Thesis
    MECHANICS OF BIPEDALISM: AN EXPLORATION OF SKELETAL MORPHOLOGY AND FORCE PLATE ANAYLSIS ERIN FORSE MAY 04, 2007 A SENIOR THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF BACHELOR OF ARTS IN ARCHAEOLOGICAL STUDIES UNIVERSITY OF WISCONSIN- LA CROSSE Abstract There are several theories on how humans learned to walk, and while these all address the adaptations needed for walking, none adequately describes how our early ancestors developed the mechanism to walk. Our earliest recognizable relatives, the australopithecines, have several variations on a theme: walking upright. There are varied changes as australopithecines approach the genus Homo. These changes occurred in the spine, legs, pelvis, and feet, and changes are also in the cranium, arms and hands, but these are features that may have occurred simultaneously with bipedalism. Several analyses of Australopithecus afarensis, specifically specimen A.L. 288-1 ("Lucy"), have shown that the skeletal changes are intermediate between apes and humans. Force plate analyses are used to determine if the gait pattern of humans resembles that of apes, and if it is a likely development pattern. The results of both these analyses will give insight into how modern humans developed bipedalism. Introduction Bipedalism is classified as movement of the post-cranial body in a vertical position, with the lower limbs shifting as an inverted pendulum, progressing forward. Simply, it is upright walking. Several theories have addressed why bipedalism evolved in hominids, with some unlikely ideas taking hold throughout the history of the issue. Other theories are more likely, but all lack the same characteristic: answering how bipedalism developed.
    [Show full text]
  • Cave Bear Ecology and Interactions With
    CAVEBEAR ECOLOGYAND INTERACTIONSWITH PLEISTOCENE HUMANS MARYC. STINER, Department of Anthropology,Building 30, Universityof Arizona,Tucson, AZ 85721, USA,email: [email protected] Abstract:Human ancestors (Homo spp.), cave bears(Ursus deningeri, U. spelaeus), andbrown bears (U. arctos) have coexisted in Eurasiafor at least one million years, andbear remains and Paleolithic artifacts frequently are found in the same caves. The prevalenceof cave bearbones in some sites is especiallystriking, as thesebears were exceptionallylarge relative to archaichumans. Do artifact-bearassociations in cave depositsindicate predation on cave bearsby earlyhuman hunters, or do they testify simply to earlyhumans' and cave bears'common interest in naturalshelters, occupied on different schedules?Answering these and other questions aboutthe circumstancesof human-cave bear associationsis made possible in partby expectations developedfrom research on modem bearecology, time-scaledfor paleontologicand archaeologic applications. Here I review availableknowledge on Paleolithichuman-bear relations with a special focus on cave bears(Middle Pleistocene U. deningeri)from YarimburgazCave, Turkey.Multiple lines of evidence show thatcave bearand human use of caves were temporallyindependent events; the apparentspatial associations between human artifacts andcave bearbones areexplained principally by slow sedimentationrates relative to the pace of biogenicaccumulation and bears' bed preparationhabits. Hibernation-linkedbehaviors and population characteristics of cave
    [Show full text]
  • A Narrative Review of the Intervention Techniques for Childhood Apraxia of Speech Katherine Mahoney
    Undergraduate Review Volume 11 Article 15 2015 A Narrative Review of the Intervention Techniques for Childhood Apraxia of Speech Katherine Mahoney Follow this and additional works at: http://vc.bridgew.edu/undergrad_rev Recommended Citation Mahoney, Katherine (2015). A Narrative Review of the Intervention Techniques for Childhood Apraxia of Speech. Undergraduate Review, 11, 81-90. Available at: http://vc.bridgew.edu/undergrad_rev/vol11/iss1/15 This item is available as part of Virtual Commons, the open-access institutional repository of Bridgewater State University, Bridgewater, Massachusetts. Copyright © 2015 Katherine Mahoney in which the brain has difficulty motor planning for speech A Narrative Review of the (McCarty, 2013). The prognosis of CAS is emblematic of the time in which CAS is diagnosed and the intensity of the inter- Intervention Techniques vention (Velleman, 2003, p. 8). for Childhood Apraxia of CAS is a complex speech disorder affected by many factors. Speech Although CAS is a speech disorder that affects the motor planning skills for speech and the coordination of vocal tract muscle movements, the disorder does occur concurrently KATHERINE MAHONEY with phonological difficulties (Velleman, 2003, p. 2). There are many different symptoms that can occur with the disor- hildhood Apraxia of Speech (CAS) is a speech disorder der; however, there are no specific phonological characteristics that affects development of the motor planning skills that must be present in the diagnosis (Bauman-Waengler, 2012, needed for the production of speech. According to p.368). The technical report for CAS produced by the Ameri- C can Speech-Language-Hearing Association lists the following prevalence data, CAS affects approximately two children per 1,000 (Bauman-Waengler, 2012, p.366).
    [Show full text]
  • Anthro Notes : National Museum of Natural History Bulletin for Teachers
    LUCY,UPATREE? Also, they argue, at least some of the A. afarensis hominids, especially the smaller ones like Lucy, no doubt slept, Paleoanthropologists no longer ques- hid, and fed in trees enough of the tion that Lucy, a 3 1/2 foot hominid time so that we can recognize some female with a chimp- sized brain, walked arboreal features in their anatomy. on two legs in Ethiopia about 3.5 million years ago. Neither do they argue that Susman and Stern presented their the anatomy of Lucy's species, Australo - evidence and analysis in an extensive pithecus afarensis , is fully modern; all article in the Journal of Physical agree it is a "mosaic of human-like and Anthropology (March 1983) , and at an ape-like features." No one seriously exciting and often boisterous confer- disputes that bipedal ism was more impor- ence in April. The conference, held tant to their lifestyle than for any non- at the Institute of Human Origins in human primate, living or dead. However, Berkeley, was directed by Donald C. Lucy's discoverers, Donald C. Johanson Johanson, founder of the Institute. and Tim White, claim that the bipedalism There the different factions met to seen in A. afarensis differs insignifi- examine the bones and thrash out their cantly from that of modern humans. Other many different views about two con- scientists disagree. troversies: 1) When did bipedalism begin and to what extent was Lucy Recently two noted anatomists from bipedal? 2) Did A. afarensis make the State University of New York at Stony the footprints at Laetoli or did Brook, Jack Stern and Randall L.
    [Show full text]