In Vivo Antitumor Activity of a Recombinant IL-7/IL-15 Hybrid Cytokine in Mice

Total Page:16

File Type:pdf, Size:1020Kb

In Vivo Antitumor Activity of a Recombinant IL-7/IL-15 Hybrid Cytokine in Mice Author Manuscript Published OnlineFirst on July 29, 2016; DOI: 10.1158/1535-7163.MCT-16-0111 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Running title: In vivo antitumor Activity of a Recombinant IL-7/IL-15 Title: In vivo antitumor Activity of a Recombinant IL-7/IL-15 Hybrid Cytokine in Mice Yinhong Song1, 2, Yalan Liu1, Rong Hu1, Min Su1, Debra Rood1, and Laijun Lai1, 3 1 Department of Allied Health Sciences, 3 University of Connecticut Stem Cell Institute, University of Connecticut, Storrs, CT 2 Medical College, Three Gorges University, Yichang, China Keywords: cancer treatment, cytokines, IL-7, IL-15, mice Correspondence: Laijun Lai, M.D., Department of Allied Health Sciences, University of Connecticut, 1390 Storrs Road, Storrs, CT 06269, USA. Phone: (860) 486-6073; Fax: (860) 486-0534; E-mail: [email protected] Potential Conflict of Interest: The authors declare that they have no conflict of interest. Financial Support: This work was partly supported by a grant from the Connecticut Biomedical Research Program (#2011-0145, to L. Lai). Word count: 4,591; total number of figures and tables: 6 1 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2016; DOI: 10.1158/1535-7163.MCT-16-0111 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Abstract Both IL-7 and IL-15 have become important candidate immunomodulators for cancer treatment. However, IL-7 or IL-15 used alone suffers from shortcomings, such as short serum half-life and limited antitumor effect. We have cloned and expressed a recombinant (r) IL-7/IL-15 fusion protein in which IL-7 and IL-15 are linked by a flexible linker. We then compared the antitumor effect of rIL-7/IL-15 with the individual factors rIL-7 and/or rIL-15. We show here that rIL-7/IL-15 has a higher antitumor activity than the combination of the individual factors in both murine B16F10 melanoma and CT-26 colon cancer models. This was associated with a significant increase in tumor infiltration of T cells, DCs and NK cells and a decrease in regulatory T cells (Tregs). In addition, rIL-7/IL-15-treated DCs had higher expression of costimulatory molecules CD80 and CD86. The higher antitumor activity of rIL-7/IL-15 is likely due to its longer in vivo half-life and different effects on immune cells. Our results suggest that rIL-7/IL-15 may offer a new tool to enhance antitumor immunity and treat cancer. Introduction Both IL-7 and IL-15 are the common cytokine receptor γ–chain (γc) family cytokines. IL-7 plays a central role in the development and maintenance of T cells (1-5). The IL-7 receptor (R) consists of two subunits, the IL-7Rα and γc (1-5), the latter also being a component of the receptors for IL-2, IL-4, IL-9, IL-15 and IL-21. IL-7Rα is expressed by T 2 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2016; DOI: 10.1158/1535-7163.MCT-16-0111 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. cells and DCs, etc. (1-6). Several studies have shown that IL-7 has antitumor activity (7-12). For example, tumor cell lines that were transfected to produce rIL-7 locally reduced tumorigenicity in vivo, which was dependent on CD4+ or CD8+ T cells (7-9, 11). Local or systemic administration of rIL-7 also had antitumor effects (7, 10), especially when rIL-7 was combined with cancer vaccines (10, 12). IL-15 induces the differentiation and proliferation of T and NK cells, enhances the cytolytic activity of CD8+ T cells, and induces the maturation of DCs (13). The IL-15 receptor is composed of a unique α subunit (IL-15Rα), a β subunit (IL-2R/15Rβ) that is shared with the IL-2 receptor, and the γc. IL-15 can bind to IL-15Rβ via cis- or trans-presentation by IL-15Rα. IL-15Rβ is expressed by multiple lymphoid populations, such as T cells, DCs, NK cells, and NKT cells, etc. (14). In vivo administration of IL-15 has anti-tumor effects in several mouse tumor models (15-22); however, it has been shown that administration of IL-15 alone is not optimal (13). Various combination strategies have been explored to increase the efficacy of IL-15 immunotherapy, including coadministration of other cytokines or inhibitory antibodies against immune-suppression molecules (17-19, 22). These approaches produced greater anti-tumor responses than did IL-15 alone. Because both rIL-7 and rIL-15 have a low molecular weight, they undergo a rapid renal clearance in vivo, thereby having a short plasma half-life (23-26), which diminishes their in vivo antitumor effects (24, 25). Linking the coding sequences of IL-15 with other proteins has 3 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2016; DOI: 10.1158/1535-7163.MCT-16-0111 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. increased the IL-15’s plasma half-life. Some of the fusion proteins also increase IL-15 signaling, thereby increasing its efficacy (24, 25, 27-29). We have previously described a single-chain rIL-7/HGFβ hybrid cytokine liking IL-7 and HGFβ by a flexible linker (30). The in vivo half-life of rIL-7/HGFβ was significantly longer than that of rIL-7 (31). In addition, rIL-7/HGFβ has different effects on immune cells (30-32), resulting in a higher antitumor activity (33), as compared with the individual factors rIL-7 and/or rHGFβ. Here we sought to determine whether a single-chain recombinant hybrid cytokine containing IL-7 and IL-15 might have a higher antitumor effect than the combination of the individual factors rIL-7 and rIL-15. Materials and Methods Animals and cell lines Murine B16F10 melanoma and CT-26 colon cancer cells were obtained from the American Type Culture Collection and the National Cancer Institute in 2008. American Type Culture Collection characterized the cells by using karyotyping and cytochrome c oxidase I testing. We passaged the cells for less than 4 months before storing them in liquid nitrogen. Before the cancer cells were injected into mice, they were cultured in Dulbecco Modified Eagle Medium (Invitrogen, Carlsbad, CA) supplemented with 10% FBS at 37℃ and 5% CO2 humidified air. Cell viability was assessed using a trypan blue exclusion dye method. Cells with a viability >95% were resuspended in PBS for injection. BALB/c, C57BL/6 mice, 4 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2016; DOI: 10.1158/1535-7163.MCT-16-0111 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. homozygous C57BL/6 IFN-γ null mice (IFN-γ-/-), and homozygous TNF-α null mice (TNF-α-/-) were purchased from the Jackson Laboratory (Bar Harbor, ME). Mice were housed, treated, and handled in accordance with protocols approved by the Institutional Animal Care and Use Committee of the University of Connecticut. Construction, expression and purification of human single-chain IL-7/IL-15 hybrid cytokine. The human IL-7/IL-15 gene was constructed by adapting a protocol we previously used to construct the human IL-7/HGFα gene (32). Briefly, the human IL-7 cDNA was amplified with primers A [(that contains a secret sequence (SS)] and B, and the human IL-15 cDNA with primer C and D (Supplemental Table 1). The PCR products of IL-7 and IL-15 were combined and subjected to an additional round of PCR with primers A and D. Because primers B and C contained the linker sequence encoding (Gly4Ser)2, the IL-7 and IL-15 genes (IL-7/IL-15) were connected by a flexible linker after the overlap extension PCR. The IL-7/IL-15 gene was then cloned into a pOptiVEC mammalian expression vector (Invitrogen) (Figure 1A) that was then transfected into Chinese hamster ovary cell-derived DG44 cells (Invitrogen) to produce rIL-7/IL-15 protein. rIL-7/IL-15 protein was then purified from the supernatant of the transfected DG44 cells. Briefly, the supernatant was concentrated by a prep/scale–tangential flow filter cartridge with 10 kDa molecular weight cut-off (Millipore, Bedford, MA) and diafiltered into washing buffer. The sample was then applied to serially linked columns of CM and DEAE sepharose 5 Downloaded from mct.aacrjournals.org on September 30, 2021. © 2016 American Association for Cancer Research. Author Manuscript Published OnlineFirst on July 29, 2016; DOI: 10.1158/1535-7163.MCT-16-0111 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. (GE Health Care Biosciences, Piscataway, NJ); after washing, the linked columns were separated. rIL-7/IL-15 protein was eluted from the DEAE column in the washing buffer containing NaCl gradient, and further purified by a gel filtration column (16/60 Sephacryl S-100 high resolution, GE). The purified protein was analyzed by SDS-PAGE and Western blotting using antibodies against human IL-7 and IL-15. For controls, we also cloned and expressed human IL-7 (32) or IL-15 (using primers E and D) gene individually, and purified rIL-7 and rIL-15 proteins from the expression system, respectively.
Recommended publications
  • Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus
    Type I Interferons and the Development of Impaired Vascular Function and Repair in Human and Murine Lupus by Seth G Thacker A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Immunology) in The University of Michigan 2011 Doctoral Committee: Associate Professor Mariana J. Kaplan, Chair Professor David A. Fox Professor Alisa E. Koch Professor Matthias Kretzler Professor Nicholas W. Lukacs Associate Professor Daniel T. Eitzman © Seth G Thacker 2011 Sharon, this work is dedicated to you. This achievement is as much yours as it is mine. Your support through all six years of this Ph.D. process has been incredible. You put up with my countless miscalculations on when I would finish experiments, and still managed to make me and our kids feel loved and special. Without you this would have no meaning. Sharon, you are the safe harbor in my life. ii Acknowledgments I have been exceptionally fortunate in my time here at the University of Michigan. I have been able to interact with so many supportive people over the years. I would like to express my thanks and admiration for my mentor. Mariana has taught me so much about writing, experimental design and being a successful scientist in general. I could never have made it here without her help. I would also like to thank Mike Denny. He had a hand in the beginning of all of my projects in one way or another, and was always quick and eager to help in whatever way he could. He really made my first year in the lab successful.
    [Show full text]
  • Immunomodulation and Generation of Tolerogenic Dendritic Cells by Probiotic Bacteria in Patients with Inflammatory Bowel Disease
    International Journal of Molecular Sciences Article Immunomodulation and Generation of Tolerogenic Dendritic Cells by Probiotic Bacteria in Patients with Inflammatory Bowel Disease 1, 2, 1 Shaghayegh Baradaran Ghavami y, Abbas Yadegar y , Hamid Asadzadeh Aghdaei , Dario Sorrentino 3,4,*, Maryam Farmani 1 , Adil Shamim Mir 5, Masoumeh Azimirad 2 , Hedieh Balaii 6, Shabnam Shahrokh 6 and Mohammad Reza Zali 6 1 Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; [email protected] (S.B.G.); [email protected] (H.A.A.); [email protected] (M.F.) 2 Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; [email protected] (A.Y.); [email protected] (M.A.) 3 IBD Center, Division of Gastroenterology, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA 4 Department of Clinical and Experimental Medical Sciences, University of Udine School of Medicine, 33100 Udine, Italy 5 Department of Internal Medicine, Roanoke Memorial Hospital, Carilion Clinic, VA 24014, USA; [email protected] 6 Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 1985717413, Iran; [email protected] (H.B.); [email protected] (S.S.); [email protected] (M.R.Z.) * Correspondence: [email protected] These authors equally contributed to this study. y Received: 7 August 2020; Accepted: 27 August 2020; Published: 29 August 2020 Abstract: In inflammatory bowel diseases (IBD), the therapeutic benefit and mucosal healing from specific probiotics may relate to the modulation of dendritic cells (DCs).
    [Show full text]
  • B Cell Checkpoints in Autoimmune Rheumatic Diseases
    REVIEWS B cell checkpoints in autoimmune rheumatic diseases Samuel J. S. Rubin1,2,3, Michelle S. Bloom1,2,3 and William H. Robinson1,2,3* Abstract | B cells have important functions in the pathogenesis of autoimmune diseases, including autoimmune rheumatic diseases. In addition to producing autoantibodies, B cells contribute to autoimmunity by serving as professional antigen- presenting cells (APCs), producing cytokines, and through additional mechanisms. B cell activation and effector functions are regulated by immune checkpoints, including both activating and inhibitory checkpoint receptors that contribute to the regulation of B cell tolerance, activation, antigen presentation, T cell help, class switching, antibody production and cytokine production. The various activating checkpoint receptors include B cell activating receptors that engage with cognate receptors on T cells or other cells, as well as Toll-like receptors that can provide dual stimulation to B cells via co- engagement with the B cell receptor. Furthermore, various inhibitory checkpoint receptors, including B cell inhibitory receptors, have important functions in regulating B cell development, activation and effector functions. Therapeutically targeting B cell checkpoints represents a promising strategy for the treatment of a variety of autoimmune rheumatic diseases. Antibody- dependent B cells are multifunctional lymphocytes that contribute that serve as precursors to and thereby give rise to acti- cell- mediated cytotoxicity to the pathogenesis of autoimmune diseases
    [Show full text]
  • Expression in B Cells Receptor-Induced Regulation of B7-2
    The Journal of Immunology ␤ B Cell Receptor- and 2-Adrenergic Receptor-Induced Regulation of B7-2 (CD86) Expression in B Cells1 Adam P. Kohm,2* Afsaneh Mozaffarian,3* and Virginia M. Sanders4*† The costimulatory molecule B7-2 (CD86) is expressed on the surface of APCs, including B cells. Considering the importance of B7-2 in regulating both T and B cell function, it may be important to understand the regulatory mechanisms governing its ␤ expression. We report in this study that stimulation of the B cell receptor (BCR) and/or a neurotransmitter receptor, the 2- ␤ ␤ adrenergic receptor ( 2AR), may cooperate to regulate B cell-associated B7-2 expression in vitro and in vivo. 2AR stimulation further enhanced the level of BCR-induced B7-2 expression in B cells potentially via protein tyrosine kinase-, protein kinase A-, ␤ protein kinase C-, and mitogen-activated protein kinase-dependent mechanisms. Importantly, BCR and/or 2AR stimulation, but not histone hyperacetylation and DNA hypomethylation alone, increased B cell-associated B7-2 expression by increasing B7-2 mRNA stability, NF-␬B nuclear binding, and NF-␬B-dependent gene transcription. Thus, this study provides additional insight ␤ into the signaling intermediates and molecular mechanisms by which stimulation of the BCR and 2AR may regulate B cell- associated B7-2 expression. The Journal of Immunology, 2002, 168: 6314–6322. he growing B7 family of costimulatory molecules criti- tion increased the level of B7-2 mRNA and protein expression in cally influences the T cell-dependent Ab response. The the B cell with peak expression at 12 and 24 h, respectively (5–9).
    [Show full text]
  • IL-7) and IL-7 Splice Variants Affect Differentiation of Human Neural Progenitor Cells
    Genes and Immunity (2010) 11, 11–20 & 2010 Macmillan Publishers Limited All rights reserved 1466-4879/10 $32.00 www.nature.com/gene ORIGINAL ARTICLE Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells M Moors1,4, NK Vudattu2,, J Abel1, U Kra¨mer1, L Rane2, N Ulfig3, S Ceccatelli4, V Seyfert-Margolies5, E Fritsche1 and MJ Maeurer2 1Group of Toxicology, Group of Epidemiology, Institut fu¨r Umweltmedizinische Forschung, Du¨sseldorf, Germany; 2Microbiology, Tumor and Cell Biology and Smittskyddsinstitutet, Stockholm, Sweden; 3Department of Anatomy, University of Rostock, Rostock, Germany; 4Division of Neurotoxicology, Department of Neuroscience, Karolinska Institutet, Sweden and 5Department of Medicine, University of California, San Francisco, CA, USA Alternative splicing of pre-mRNA increases proteomic diversity, a crucial mechanism in defining tissue identity. We demonstrate differentially spliced interleukin (IL)-7 in distinct anatomic areas in the adult, in developing human brains and in normal human neuronal progenitor (NHNP) cells. IL-7c (c, the canonical form spanning all six exons) or its variants IL-7d5, d4 or d4/5 were cloned and expressed as recombinant proteins. IL-7 and splice variants were able to shift the differentiation of NHNP cells as compared with the diluent control (Po0.01) defined by anti-b (III)-tubulin and glial fibrillary acidic protein expression, with different degrees (IL-7c4d4/54IL-7d5); IL-7d4 exhibited a significantly weaker potency. Differentiation was confirmed by transcriptome analysis of IL-7c-stimulated neural NHNP cells, resulting in 58 differentially expressed genes; some of these are involved in neural differentiation, for example, the developmentally regulated transcription factor kru¨ppel-like factor 12, musashi 2, a translational regulator of cell fate or the sonic hedgehog receptor patch 1.
    [Show full text]
  • Induces Antigen Presentation in B Cells Cell-Activating Factor of The
    B Cell Maturation Antigen, the Receptor for a Proliferation-Inducing Ligand and B Cell-Activating Factor of the TNF Family, Induces Antigen Presentation in B Cells This information is current as of September 27, 2021. Min Yang, Hidenori Hase, Diana Legarda-Addison, Leena Varughese, Brian Seed and Adrian T. Ting J Immunol 2005; 175:2814-2824; ; doi: 10.4049/jimmunol.175.5.2814 http://www.jimmunol.org/content/175/5/2814 Downloaded from References This article cites 54 articles, 36 of which you can access for free at: http://www.jimmunol.org/content/175/5/2814.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 27, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2005 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology B Cell Maturation Antigen, the Receptor for a Proliferation-Inducing Ligand and B Cell-Activating Factor of the TNF Family, Induces Antigen Presentation in B Cells1 Min Yang,* Hidenori Hase,* Diana Legarda-Addison,* Leena Varughese,* Brian Seed,† and Adrian T.
    [Show full text]
  • Knock-Out Validated Antibodies from Cloud-Clone Cat.No
    Knock-out validated antibodies from Cloud-Clone Cat.No. Target PAA778Hu01 B-Cell Leukemia/Lymphoma 2 (Bcl2) PAL763Hu01 Myxovirus Resistance 1 (MX1) PAB698Hu01 Lactate Dehydrogenase B (LDHB) PAA009Hu01 Angiopoietin 2 (ANGPT2) PAA849Ra01 Glycogen Phosphorylase, Liver (PYGL) PAA153Hu01 Alpha-Fetoprotein (aFP) PAF460Hu01 Folate Receptor 1, Adult (FOLR1) PAB233Hu01 Cyclin Dependent Kinase 4 (CDK4) PAA150Hu04 Carcinoembryonic Antigen (CEA) PAB905Hu01 Interleukin 7 Receptor (IL7R) PAC823Hu01 Thymidine Kinase 1, Soluble (TK1) PAH838Hu01 Isocitrate Dehydrogenase 2, mitochondrial (IDH2) PAK078Mu01 Fas Associating Death Domain Containing Protein (FADD) PAA537Hu01 Enolase, Neuron Specific (NSE) PAA651Hu01 Hyaluronan Binding Protein 1 (HABP1) PAB215Hu02 Fibrinogen Beta (FGb) PAB769Hu01 S100 Calcium Binding Protein A6 (S100A6) PAB231Hu01 Keratin 18 (KRT18) PAH839Hu01 Isocitrate Dehydrogenase 1, Soluble (IDH1) PAE748Hu01 Karyopherin Alpha 2 (KPNa2) PAB081Hu02 Heat Shock 70kDa Protein 1A (HSPA1A) PAA778Mu01 B-Cell Leukemia/Lymphoma 2 (Bcl2) PAA853Hu03 Caspase 8 (CASP8) PAA399Mu01 High Mobility Group Protein 1 (HMG1) PAA303Mu01 Galectin 3 (GAL3) PAA537Mu02 Enolase, Neuron Specific (NSE) PAA994Ra01 Acid Phosphatase 1 (ACP1) PAB083Ra01 Superoxide Dismutase 2, Mitochondrial (SOD2) PAB449Mu01 Enolase, Non Neuronal (NNE) PAA376Mu01 Actinin Alpha 2 (ACTN2) PAA553Ra01 Matrix Metalloproteinase 9 (MMP9) PAA929Bo01 Retinol Binding Protein 4, Plasma (RBP4) PAA491Ra02 Keratin 2 (KRT2) PAC025Hu01 Keratin 8 (KRT8) PAB231Mu01 Keratin 18 (KRT18) PAC598Hu03 Vanin 1 (VNN1)
    [Show full text]
  • Phase I Study of Recombinant Human Interleukin-7 Administration in Subjects with Refractory Malignancy
    Published OnlineFirst January 12, 2010; DOI: 10.1158/1078-0432.CCR-09-1303 Cancer Therapy: Clinical Clinical Cancer Research Phase I Study of Recombinant Human Interleukin-7 Administration in Subjects with Refractory Malignancy Claude Sportès1, Rebecca R. Babb1, Michael C. Krumlauf1, Frances T. Hakim1, Seth M. Steinberg2, Catherine K. Chow5, Margaret R. Brown6, Thomas A. Fleisher6, Pierre Noel6, Irina Maric6, Maryalice Stetler-Stevenson3, Julie Engel7, Renaud Buffet7, Michel Morre7, Robert J. Amato8, Andrew Pecora9, Crystal L. Mackall4, and Ronald E. Gress1 Abstract Purpose: Interleukin-7 (IL-7) has critical and nonredundant roles in T-cell development, hematopoi- esis, and postdevelopmental immune functions as a prototypic homeostatic cytokine. Based on a large body of preclinical evidence, it may have multiple therapeutic applications in immunodeficiency states, either physiologic (immunosenescence), pathologic (HIV), or iatrogenic (postchemotherapy and posthe- matopoietic stem cell transplant), and may have roles in immune reconstitution or enhancement of im- munotherapy. We report here on the toxicity and biological activity of recombinant human IL-7 (rhIL-7) in humans. Design: Subjects with incurable malignancy received rhIL-7 subcutaneously every other day for 2 weeks in a phase I interpatient dose escalation study (3, 10, 30, and 60 μg/kg/dose). The objectives were safety and dose-limiting toxicity determination, identification of a range of biologically active doses, and char- acterization of biological and, possibly, antitumor effects. Results: Mild to moderate constitutional symptoms, reversible spleen and lymph node enlargement, and marked increase in peripheral CD3+, CD4+, and CD8+ lymphocytes were seen in a dose-dependent and age-independent manner in all subjects receiving ≥10 μg/kg/dose, resulting in a rejuvenated circulat- ing T-cell profile, resembling that seen earlier in life.
    [Show full text]
  • Evolutionary Divergence and Functions of the Human Interleukin (IL) Gene Family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W
    UPDATE ON GENE COMPLETIONS AND ANNOTATIONS Evolutionary divergence and functions of the human interleukin (IL) gene family Chad Brocker,1 David Thompson,2 Akiko Matsumoto,1 Daniel W. Nebert3* and Vasilis Vasiliou1 1Molecular Toxicology and Environmental Health Sciences Program, Department of Pharmaceutical Sciences, University of Colorado Denver, Aurora, CO 80045, USA 2Department of Clinical Pharmacy, University of Colorado Denver, Aurora, CO 80045, USA 3Department of Environmental Health and Center for Environmental Genetics (CEG), University of Cincinnati Medical Center, Cincinnati, OH 45267–0056, USA *Correspondence to: Tel: þ1 513 821 4664; Fax: þ1 513 558 0925; E-mail: [email protected]; [email protected] Date received (in revised form): 22nd September 2010 Abstract Cytokines play a very important role in nearly all aspects of inflammation and immunity. The term ‘interleukin’ (IL) has been used to describe a group of cytokines with complex immunomodulatory functions — including cell proliferation, maturation, migration and adhesion. These cytokines also play an important role in immune cell differentiation and activation. Determining the exact function of a particular cytokine is complicated by the influence of the producing cell type, the responding cell type and the phase of the immune response. ILs can also have pro- and anti-inflammatory effects, further complicating their characterisation. These molecules are under constant pressure to evolve due to continual competition between the host’s immune system and infecting organisms; as such, ILs have undergone significant evolution. This has resulted in little amino acid conservation between orthologous proteins, which further complicates the gene family organisation. Within the literature there are a number of overlapping nomenclature and classification systems derived from biological function, receptor-binding properties and originating cell type.
    [Show full text]
  • Illuminating the Source of in Vivo Interleukin-7
    DOI 10.4110/in.2011.11.1.1 REVIEW ARTICLE pISSN 1598-2629 eISSN 2092-6685 Seeing Is Believing: Illuminating the Source of In Vivo Interleukin-7 Grace Yoonhee Kim1,2,3, Changwan Hong1 and Jung-Hyun Park1* 1Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, 2Howard Hughes Medical Institute-NIH Research Scholars Program, Bethesda, MD, 3The Johns Hopkins University School of Medicine, Baltimore, MD, USA Interleukin-7 (IL-7) is an essential cytokine for T cells. INTRODUCTION However, IL-7 is not produced by T cells themselves such that T cells are dependent on extrinsic IL-7. In fact, in the ab- Originally described as a pre-B cell growth factor expressed sence of IL-7, T cell development in the thymus as well as in bone marrow stromal cells (1), interleukin-7 (IL-7) was survival of naive T cells in the periphery is severely impaired. subsequently identified as an essential and non-redundant cy- Furthermore, modulating IL-7 availability in vivo either by ge- tokine in T cells (2,3). In fact, IL-7 plays a critical role in netic means or other experimental approaches determines every aspect of T cell biology, including early T cell develop- the size, composition and function of the T cell pool. ment in the thymus, CD4/CD8 lineage choice during positive Consequently, understanding IL-7 expression is critical for understanding T cell immunity. Until most recently, however, selection as well as maintaining the survival and homeostasis the spatiotemporal expression of in vivo IL-7 has remained of naïve and memory T cells in the periphery (2-6).
    [Show full text]
  • A Distinct Subset of Plasmacytoid Dendritic Cells Induces Activation and Differentiation of B and T Lymphocytes
    A distinct subset of plasmacytoid dendritic cells induces activation and differentiation of B and T lymphocytes Hong Zhanga, Josh D. Gregoriob, Toru Iwahoric, Xiangyue Zhanga, Okmi Choid, Lorna L. Tolentinod, Tyler Prestwooda, Yaron Carmia, and Edgar G. Englemana,1 aDepartment of Pathology, Stanford University School of Medicine, Stanford, CA 94304; bKyowa Kirin Pharmaceutical Research, La Jolla, CA 92037; cSoulage Medical Clinic, Inage-Ku Chiba-City, Chiba, 263-0005, Japan; and dStanford Blood Center, Stanford Hospital, Stanford, CA 94304 Edited by Kenneth M. Murphy, Washington University, St. Louis, MO, and approved January 10, 2017 (received for review June 29, 2016) Plasmacytoid dendritic cells (pDCs) are known mainly for their not only in peripheral blood mononuclear cells (PBMCs), but secretion of type I IFN upon viral encounter. We describe a also in bone marrow, cord blood, and tonsil, and can be gener- + + + CD2hiCD5 CD81 pDC subset, distinguished by prominent den- ated from CD34 hematopoietic progenitor cells in vitro. drites and a mature phenotype, in human blood, bone marrow, and tonsil, which can be generated from CD34+ progenitors. These Results + + CD2hiCD5 CD81 cells express classical pDC markers, as well as the CD5 and CD81 Distinguish Subsets of Human pDCs. Peripheral blood toll-like receptors that enable conventional pDCs to respond to pDCs were analyzed by flow cytometry for their expression of viral infection. However, their gene expression profile is distinct, different tetraspanin proteins based on the previous finding that and they produce little or no type I IFN upon stimulation with expression of the tetraspanin molecule CD9 distinguishes high CpG oligonucleotides, likely due to their diminished expression of and low IFNα-producing pDCs in mice (23).
    [Show full text]
  • IL-7- and IL-15-Rich Environment Cells That Are Activated in An
    Initial Antigen Encounter Programs CD8+ T Cells Competent to Develop into Memory Cells That Are Activated in an Antigen-Free, IL-7- and IL-15-Rich Environment This information is current as of September 26, 2021. Roberto Carrio, Oliver F. Bathe and Thomas R. Malek J Immunol 2004; 172:7315-7323; ; doi: 10.4049/jimmunol.172.12.7315 http://www.jimmunol.org/content/172/12/7315 Downloaded from References This article cites 52 articles, 26 of which you can access for free at: http://www.jimmunol.org/content/172/12/7315.full#ref-list-1 http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication by guest on September 26, 2021 *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2004 by The American Association of Immunologists All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Initial Antigen Encounter Programs CD8؉ T Cells Competent to Develop into Memory Cells That Are Activated in an Antigen-Free, IL-7- and IL-15-Rich Environment1 Roberto Carrio,* Oliver F.
    [Show full text]