Regional Survey of Structural Properties and Cementation Patterns of Fault Zones in the Northern Part of the Albuquerque Basin
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1 -- the Place of Faults in Petroleum Traps
Sorkhabi, R.,and Y. Tsuji, 2005, The place of faults in petroleum traps, in R. Sorkhabi and Y. Tsuji, eds., Faults, fluid flow, and petroleum traps: AAPG Memoir 85, 1 p. 1 – 31. The Place of Faults in Petroleum Traps Rasoul Sorkhabi1 Technology Research Center, Japan National Oil Corporation, Chiba, Japan Yoshihiro Tsuji2 Technology Research Center, Japan National Oil Corporation, Chiba, Japan ‘‘The incompleteness of available data in most geological studies traps some geologists.’’ Orlo E. Childs in Place of tectonic concepts in geological thinking (AAPG Memoir 2, 1963, p. 1) ‘‘Although the precise role of faults has never been systematically defined, much has been written that touches on the subject. One thing is certain: we need not try to avoid them.’’ Frederick G. Clapp in The role of geologic structure in the accu mulation of petroleum (Structure of typical American oil fields II, 1929, p. 686) ABSTRACT ver since Frederick Clapp included fault structures as significant petroleum traps in his landmark paper in 1910, the myriad function of faults in petroleum E migration and accumulation in sedimentary basins has drawn increasing atten- tion. Fault analyses in petroleum traps have grown along two distinct and successive lines of thought: (1) fault closures and (2) fault-rock seals. Through most of the last century, geometric closure of fault traps and reservoir seal juxtaposition by faults were the focus of research and industrial application. These research and applications were made as structural geology developed quantitative methods for geometric and kine- matic analyses of sedimentary basins, and plate tectonics offered a unified tool to correlate faults and basins on the basis of the nature of plate boundaries to produce stress. -
Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile
University of Mississippi eGrove Electronic Theses and Dissertations Graduate School 2011 Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile Nathan M. Snyder Follow this and additional works at: https://egrove.olemiss.edu/etd Part of the Geology Commons Recommended Citation Snyder, Nathan M., "Calcite Cementation of Sixty-Five-Year-Old Aragonite Sand Dredge Pile" (2011). Electronic Theses and Dissertations. 269. https://egrove.olemiss.edu/etd/269 This Dissertation is brought to you for free and open access by the Graduate School at eGrove. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of eGrove. For more information, please contact [email protected]. CALCITE CEMENTATION OF SIXTY-FIVE-YEAR-OLD ARAGONITE SAND DREDGE PILE A Thesis presented in partial fulfillment of requirements for the degree of Master of Science in the Department of Geology and Geological Engineering The University of Mississippi by NATHANIAL M. SNYDER May 2011 Copyright Nathanial M. Snyder ALL RIGHTS RESERVED ABSTRACT Dredging of the harbor at Stocking Island, Bahamas (23°31’45”N, 75°49’41”W) in 1942 produced four dredge piles of cross-bedded aragonite skeletal sand. The spoils piles are on the leeward (western) shore of the island, where they are subject to minimal wave energy. Collectively they are 350 x 50 m in plan view and 2 m high. The surface is very well cemented, which requires a hammer and chisel for sampling. Samples were collected from six sites at various locations of the dredge pile. Samples were analyzed for both chemical and physical properties using thin-section examination, X-ray diffraction, X-ray fluorescence, bulk density measurements, isotopic analyses, and scanning electron microscopy. -
Hydrogeology of Wales
Hydrogeology of Wales N S Robins and J Davies Contributors D A Jones, Natural Resources Wales and G Farr, British Geological Survey This report was compiled from articles published in Earthwise on 11 February 2016 http://earthwise.bgs.ac.uk/index.php/Category:Hydrogeology_of_Wales BRITISH GEOLOGICAL SURVEY The National Grid and other Ordnance Survey data © Crown Copyright and database rights 2015. Hydrogeology of Wales Ordnance Survey Licence No. 100021290 EUL. N S Robins and J Davies Bibliographical reference Contributors ROBINS N S, DAVIES, J. 2015. D A Jones, Natural Rsources Wales and Hydrogeology of Wales. British G Farr, British Geological Survey Geological Survey Copyright in materials derived from the British Geological Survey’s work is owned by the Natural Environment Research Council (NERC) and/or the authority that commissioned the work. You may not copy or adapt this publication without first obtaining permission. Contact the BGS Intellectual Property Rights Section, British Geological Survey, Keyworth, e-mail [email protected]. You may quote extracts of a reasonable length without prior permission, provided a full acknowledgement is given of the source of the extract. Maps and diagrams in this book use topography based on Ordnance Survey mapping. Cover photo: Llandberis Slate Quarry, P802416 © NERC 2015. All rights reserved KEYWORTH, NOTTINGHAM BRITISH GEOLOGICAL SURVEY 2015 BRITISH GEOLOGICAL SURVEY The full range of our publications is available from BGS British Geological Survey offices shops at Nottingham, Edinburgh, London and Cardiff (Welsh publications only) see contact details below or BGS Central Enquiries Desk shop online at www.geologyshop.com Tel 0115 936 3143 Fax 0115 936 3276 email [email protected] The London Information Office also maintains a reference collection of BGS publications, including Environmental Science Centre, Keyworth, maps, for consultation. -
Strength Developed from Carbonate Cementation in Silica-Carbonate Base Course Materials
24 TRANSPORTATION RESEARCH RECORD 1190 Strength Developed from Carbonate Cementation in Silica-Carbonate Base Course Materials ROBIN E. GRAVES, JAMES L. EADES, AND LARRY L. SMITH Strength increases resulting Crom carbonate cementalion in are depleted, new sources must be found to accommodate compacted sands and cemented coquina highway base course the transportation needs of the state's rapidly expanding materials or variable quartz-calcite composition were investi population. Materials obtained from the newer quarries gated lhrough the use of limerock-bearing-ratio (LBR) le ting. often have a different mineralogical composition because Q uart~ and calcite sands were mixed in various proportion , of the great variability of geologic conditions affecting their compacted into LBR mold , oaked for time periods from 2 deposition. days up to 60 days, and tested to determine stt·ength increase with time. For comparison, cemented coquina highway base This has been the case with cemented coquina base course course materials of variable quartz-calcite composition were materials in Florida (3). Currently mined cemented coquina also compacted soaked, and tested. Jn addition duplicate sets contains abundant quartz sand, often resulting in carbon or specimens were te tcd that had 1 percent Ca(OH}i, (hydrated ate compositions below the 50 percent required by FDOT. lime) mixed with the dry materials before compacting and The quartz occurs in two forms. Some is incorporated into soaking. This was done to provide a om·ce of' CaH ions for cemented limestone rock, but most exists as unconsoli formation of additional calcium carbonate cement. Re ul~ of the LBR testing program showed that more strength developed dated quartz sand. -
Geometry of Calcite Cemented Zones in Shallow Marine Sandstones
'’W 4 PROFIT RF-^/w 1990-1994 PROJECT SUMMARY REPORTS RESERVOIR CHARACTERIZATION NEAR WELL FLOW Program for Research On Field Oriented Improved Recovery Technology oismsunoN of ihb documeot is iwumiteo % Edited by: Jem Olsen, Snorre Olaussen, Trond B. Jensen, Geir Helge Landa, Leif Hinderaker Norwegian Petroleum Directorate Stavanger 1995 DISCLAIMER Portions of this document may be illegible in electronic image products. Images are produced from the best available original document PROFIT - RESERVOIR CHARACTERIZATION Geometry of calcite cemented zones in shallow marine sandstones Olav Walderhaug, Edward Prestholm and Ingrid E.L0xnevad Rogaland Research, Stavanger Abstract thought to belong to concretions. The difference between the geometry of calcite Calcite cementation in the Jurassic shallow cementation in the Ula Formation and in the marine sandstones of the Bearreraig Formation, Bridport Sands is thought to be due to a the Valtos Formation, the Bridport Sands and relatively uniform rate of siliciclastic deposition the Bencliff Grit occurs as continuously for the Ula Formation having led to a more cemented layers, as stratabound concretions and uniform distribution of biogenic carbonate as scattered concretions. All three geometrical compared to the Bridport Sands where laterally forms of calcite cementaton may occur within extensive layers of biogenic carbonate formed the same formation, whereas in other cases a during periods of very low siliciclastic formation may be dominated by only one or deposition. Based on the results of the core and two of these modes of calcite cementation. outcrop studies, a tentative identification key Calcite cemented layers and layers of for calcite cemented zones encountered in cores stratabound concretions in the studied is suggested. -
A) Conglomerate B) Dolostone C) Siltstone D) Shale 1. Which
1. Which sedimentary rock would be composed of 7. Which process could lead most directly to the particles ranging in size from 0.0004 centimeter to formation of a sedimentary rock? 0.006 centimeter? A) metamorphism of unmelted material A) conglomerate B) dolostone B) slow solidification of molten material C) siltstone D) shale C) sudden upwelling of lava at a mid-ocean ridge 2. Which sedimentary rock could form as a result of D) precipitation of minerals from evaporating evaporation? water A) conglomerate B) sandstone 8. Base your answer to the following question on the C) shale D) limestone diagram below. 3. Limestone is a sedimentary rock which may form as a result of A) melting B) recrystallization C) metamorphism D) biologic processes 4. The dot below is a true scale drawing of the smallest particle found in a sample of cemented sedimentary rock. Which sedimentary rock is shown in the diagram? What is this sedimentary rock? A) conglomerate B) sandstone C) siltstone D) shale A) conglomerate B) sandstone C) siltstone D) shale 9. Which statement about the formation of a rock is best supported by the rock cycle? 5. Which sequence of events occurs in the formation of a sedimentary rock? A) Magma must be weathered before it can change to metamorphic rock. A) B) Sediment must be compacted and cemented before it can change to sedimentary rock. B) C) Sedimentary rock must melt before it can change to metamorphic rock. C) D) Metamorphic rock must melt before it can change to sedimentary rock. D) 6. Which sedimentary rock formed from the compaction and cementation of fragments of the skeletons and shells of sea organisms? A) shale B) gypsum C) limestone D) conglomerate Base your answers to questions 10 and 11 on the diagram below, which is a geologic cross section of an area where a river has exposed a 300-meter cliff of sedimentary rock layers. -
Evolution of Extensional Basins and Basin and Range Topography West of Death Valley, California K.V
TECTONICS, VOL. 8, NO. 3, PAGES453-467, JUNE 1989 EVOLUTION OF EXTENSIONAL BASINS AND BASIN AND RANGE TOPOGRAPHY WEST OF DEATH VALLEY, CALIFORNIA K.V. Hodges,L.W. McKenna,J. Stock •, J. Knapp, L. Page,K. Sternlof, D. Silverberg,G. Wrist2, and J. D. Walker 3 Department of Earth, Atmospheric,and Planetary Sciences,Massachusetts Institute of Technology, Cambridge Abstract. Neogeneextension in the Death Valley system remained active during development of region, SE California, has produced a variety of PanamintValley and, thus, during developmentof sedimentarybasins. Diachronousmovements on an modernBasin and Rangetopography as well. These array of strike-slip and normal fault systemshave results indicate that large-scale extension in the resultedin the uplift andpreservation of olderbasins Death Valley region,accommodated by movementon in modernranges. One of the bestexposed of these low- to moderate-angle normal fault systemsand is the Nova basin on the western flank of the high-angle strike-slipfault systems,is a continuing Panamint Mountains. The Nova basin includes over process. Basin and Range topography in the 2000 m of sedimentaryand volcanicrocks deposited PanamintValley- Death Valley areawas generatedat during denudation of the Panamint Mountains least in part by displacements on low-angle metamorphiccore complex in late Miocene(?)- early detachmentsrather than high-angle normal faults. Pliocenetime. The principalgrowth structure for the basinwas the Emigrant detachment,which initiated andmoved at a low angle. Modern PanamintValley, INTRODUCTION west of the range, developedas a consequenceof Late Pliocene- Recent,kinematically linked move- The fact that topographyin the Basin and Range ment on the right-slip, high-angleHunter Mountain Province of the western United States is controlled fault zone and the low-angle Panamint Valley by normal faulting has been recognizedfor over a detachment. -
Mechanical Stratigraphy Controls Normal Fault Growth and Dimensions, Outer
1 Mechanical Stratigraphy Controls Normal Fault Growth and Dimensions, Outer 2 Kwanza Basin, Offshore Angola 3 4 David Redpath1*, Christopher A.-L Jackson1, Rebecca E. Bell1 5 Basins Research Group (BRG), Department of Earth Science & Engineering, Imperial 6 College, Prince Consort Road, London, SW7 2BP, UK 7 *Corresponding author: David Redpath ([email protected]) 8 This paper is a non-peer reviewed preprint submitted to EarthArXiv. This preprint has been 9 submitted to AGU Tectonics for consideration for publication. 10 11 12 Key Points: 13 Mechanical stratigraphy and fault interaction control the extent to which faults adhere 14 to displacement-length scaling relationships. 15 Fault growth and displacement-length relationships must be considered in context of 16 local controls to be adequately described. 17 Detailed kinematic analysis on faults developing within the same overall tectono- 18 stratigraphic setting can shed light on the kinematics of blind fault growth. 19 20 21 22 Abstract 23 Fault growth and dimensions are controlled by mechanical stratigraphy on seismic scales. Here 24 we present a detailed analysis of largely blind faults and their kinematics Offshore, Angola; 25 where, salt bodies and mass-transport complexes (MTC) act as mechanically restricting 26 elements to an array of extensional faults. Our study presents mechanically restricted faults 27 whose data fall within the general scatter present in global displacement-length (D-L) scaling 28 datasets, and yet have starkly different fault growth models to those expected using geometric 29 data alone. We show how using displacement-length data to determine fault growth can mask 30 the not insignificant mechanical controls on growth histories in the absence of detailed 31 kinematic analysis. -
Data for Quaternary Faults, Liquefaction Features, and Possible Tectonic Features in the Central and Eastern United States, East of the Rocky Mountain Front
U.S. Department of the Interior U.S. Geological Survey Data for Quaternary faults, liquefaction features, and possible tectonic features in the Central and Eastern United States, east of the Rocky Mountain front By Anthony J. Crone and Russell L. Wheeler Open-File Report 00-260 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. 2000 Contents Abstract........................................................................................................................................1 Introduction..................................................................................................................................2 Strategy for Quaternary fault map and database .......................................................................10 Synopsis of Quaternary faulting and liquefaction features in the Central and Eastern United States..........................................................................................................................................14 Overview of Quaternary faults and liquefaction features.......................................................14 Discussion...............................................................................................................................15 Summary.................................................................................................................................18 -
Lite Geology 14
Winter 1995 L I T E NewMexico Bureau ~.~, .~,..,.~ "~ ~,,~..~,~.~.,..~,~ of .............. ¯ Mines and Mineral .’..:. .i .,.."".. Resources (NMBM&MR) A quarterly publication for educators arid the public- contemporary geological topics~ issues and events EadhBriefs "Concretions, Bombs, and Ground Water Peter S. Mozley Departmentof Earth and EnVironmental Science, NewMexico Tech Concretions are hard masses of sedimentary and, more rarely, volcanic rock that form by the preferential precipitation of minerals (cementation) in localized portions of the rock. They are commonlysubspherical, but frequently form a variety of other shapes, including disks, grape-like aggregates, and complex shapes that defy description (Figs. 1, 2, and 3). Concretions are usually very noticeable features, because they have a strikingly. different color and/or hardness than the rest of the rock. In someareas this is unfortunate, as the concretions have attracted the unwanted attention of local graffiti artists. Commonly, when you break open concretions you will find that they have formed around a nucleus, such as a fossil fragment or piece of organic matter. For a variety of reasons, this nucleus created a more favorable site for cement precipitation than other sites in therock. ~erhapsthe mostunusual concretion "[ spent too much time in thesame place in the back swamp .nucleiarefound in a modemcoastal’ and the clanged concretion went and nucleated on me." saltmarsh in England.Siderite (FeCOa) concretionsin the marshformed aroundWorld-War-II era military shells,bombs, and associated shrapnel, ThisIssue: includingsome large unexploded shells(AI-Agha et al.,1995). A British Earth Briefs--how does Nature conceal Reptiles’onthe Rocks--someunique geologiststudying these concretions bombs and record ancient water-flow photosof homedlizards in New realizedthis only after striking a large pathways? Mexico unexplodedshell repeatedly with his rockhammer (yes, he livedto tellabout Have you ever wondered.. -
Relationship Between Growth Faults, Subsidence, and Land Loss: an Example from Cameron Parish, Southwestern Louisiana, USA
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/340069701 Relationship between Growth Faults, Subsidence, and Land Loss: An Example from Cameron Parish, Southwestern Louisiana, USA Article in Journal of Coastal Research · March 2020 DOI: 10.2112/JCOASTRES-D-19-00108.1 CITATION READS 1 257 1 author: Raphael Gottardi University of Louisiana at Lafayette 41 PUBLICATIONS 136 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Basin Analysis View project All content following this page was uploaded by Raphael Gottardi on 23 March 2020. The user has requested enhancement of the downloaded file. Journal of Coastal Research 00 0 000–000 Coconut Creek, Florida Month 0000 Relationship between Growth Faults, Subsidence, and Land Loss: An Example from Cameron Parish, Southwestern Louisiana, USA Matthew O’Leary and Raphael Gottardi* School of Geosciences University of Louisiana at Lafayette Lafayette, LA 70504, U.S.A. ABSTRACT O’Leary, M. and Gottardi, R., 0000. Relationship between growth faults, subsidence, and land loss: An example from Cameron Parish, Southwestern Louisiana, USA. Journal of Coastal Research, 00(0), 000–000. Coconut Creek (Florida), ISSN 0749-0208. This study investigates the relationship between faulting, subsidence, and land loss in coastal Louisiana. A methodology that integrates three-dimensional (3D) seismic data, well logs, high-resolution topographic mapping (LIDAR), and historical aerial photography is successfully developed to identify fault-related geomorphic changes in southwestern Louisiana’s Chenier Plain. Analysis of a 3D seismic survey and well logs reveals the presence of 10 normal faults that form an east-west graben in the middle of the study area. -
Integrating 3-D Seismic Data with Shallow High Resolution Seismic Data
University of New Orleans ScholarWorks@UNO University of New Orleans Theses and Dissertations Dissertations and Theses Spring 5-19-2017 Evidence of fault movement during the Holocene in Southern Louisiana: integrating 3-D seismic data with shallow high resolution seismic data Joseph P. Frank University of New Orleans, [email protected] Follow this and additional works at: https://scholarworks.uno.edu/td Part of the Geology Commons Recommended Citation Frank, Joseph P., "Evidence of fault movement during the Holocene in Southern Louisiana: integrating 3-D seismic data with shallow high resolution seismic data" (2017). University of New Orleans Theses and Dissertations. 2321. https://scholarworks.uno.edu/td/2321 This Thesis is protected by copyright and/or related rights. It has been brought to you by ScholarWorks@UNO with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights- holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/or on the work itself. This Thesis has been accepted for inclusion in University of New Orleans Theses and Dissertations by an authorized administrator of ScholarWorks@UNO. For more information, please contact [email protected]. Evidence of fault movement during the Holocene in Southern Louisiana: integrating 3-D seismic data with shallow high resolution seismic data A Thesis Submitted to the Graduate Faculty of the University of New Orleans in partial fulfillment of the requirements for the degree of Master of Science in Earth and Environmental Sciences Coastal Geology by Joseph Frank B.S.