Skin Substitutes for Chronic Wounds

Total Page:16

File Type:pdf, Size:1020Kb

Skin Substitutes for Chronic Wounds Resident CoRneR State-of-the-Art Wound Healing: Skin Substitutes for Chronic Wounds George Han, MD, PhD The care of chronic wounds represents an impor- not achieve adequate healing for chronic wounds, it tant and evolving area of dermatology. With a may be necessary to pursue other approaches. It has rising prevalence of chronic wounds bearing been estimated that chronic ulcers occur in up to notable effects on patient morbidity including 1.3% of the US adult population, mostly in the lower amputations, appropriate and effective inter- extremities.2,3 With the vast majority of amputations vention to treat these debilitating wounds can directly resulting from nonhealing ulcers in the legs,4 make a significant clinical impact. In recent appropriate and effective intervention can have a years, several advanced bioactive wound dress- substantial clinical impact. In recent years, numer- ings have been developedCUTIS to specifically treat ous advanced wound dressings have been developed chronic nonhealing wounds. These wound dress- specifically to treat chronic nonhealing wounds. ings encompass a wide range of products con- Because dermatologists will treat these patients, it is taining synthetic matrix scaffolds, animal-derived important for us to become familiar with these skin matrices, and human tissue. With several of these substitutes, which may become a more integral part wound dressings, randomized controlled trials of our armamentarium in caring for chronic wounds. (RCTs) have demonstrated improvement in wound Wound healing normally progresses through dis- healing;Do furthermore, cost-effectiveness Not studies tinct phases,Copy with the ultimate goal of reestablishing have suggested that these products may reduce barrier function and the structures normally found in the overall cost of treating a chronic wound. intact skin. Several mechanisms exist whereby wound Familiarity with these products and their appropri- healing does not progress, often due to underlying ate use may be helpful to dermatologists treating factors such as arteriovenous insufficiency, diabetes chronic wounds. mellitus, nutritional deficiency, infection, or physical Cutis. 2014;93:E13-E16. factors (ie, pressure ulcers). Some of these underlying conditions are straightforward to treat; for example, in the case of infection, antibiotics and active wound he care of chronic wounds is a challenging dressings containing silver, betaine, polyhexameth- topic and a growing area for clinical and ylene biguanide, or other antimicrobial substances research interest within dermatology. A review can help promote wound healing. However, many of T ® of wound care was presented in a Cutis resident cor- the other pathways to chronic wound physiology are ner column last year.1 When routine wound care does much more difficult to manage, with the underlying factor often being insufficient delivery of oxygen and nutrients to the wound.5 It is well known from the literature on burn wounds that a large nonhealing wound has direct effects on the body’s metabolism, From Albert Einstein College of Medicine/Montefiore Medical increasing the cardiac index and total body oxygen Center, New York, New York. The author reports no conflict of interest. consumption to levels comparable with other con- 6 Correspondence: George Han, MD, PhD ditions (eg, hyperthyroidism). As a result, kerati- ([email protected]). nocytes at the wound edge are no longer able to WWW.CUTIS.COM VOLUME 93, JANUARY 2014 E13 Copyright Cutis 2014. No part of this publication may be reproduced, stored, or transmitted without the prior written permission of the Publisher. Resident Corner successfully migrate centripetally to heal the wound and instead proliferate in place, forming a thick Skin Substitutes for Wound Healing hyperkeratotic layer that serves as the hallmark of a chronic wound edge.7 Synthetic skin substitutes have Wound Dressing Manufacturer been used to treat chronic wounds, not only forming Acellular Human Dermis a dressing to cover the ulcerated wound base but also actively participating in the wound healing process AlloDerm LifeCell Corporation with the addition of growth factors or cytokines that may directly stimulate angiogenesis or reepithelializa- AlloSkin AlloSource tion. In the early 1980s, the field of bioactive wound dressings started with cultured skin cells, which were DermACell Arthrex, Inc then applied to the wounds or tissue-engineered skin GammaGraft Promethean substitutes; this technology, which emerged from treating burn wounds when it was impractical or LifeSciences, Inc impossible to harvest enough graft tissue to treat the Graftjacket Kinetic Concepts, Inc burn, has evolved considerably since that time. This review will focus on tissue-engineered skin substi- Matrix HD RTI Surgical, Inc tutes and their application in the treatment of chro- nic wounds. TheraSkin Soluble Systems, LLC Synthetic Skin Substitutes Animal Derived A bioprosthetic skin substitute generally refers to a Biobranea Smith & Nephew, Inc material consisting of a biologically derived substance that may be combined with another material to allow Endoformb Hollister Wound for its application to a wound. There currently are Care LLC more than 50 skin substitutes on the market, with many more under development.CUTIS These skin substi- EZ Derma Mölnlycke Health Care tutes represent a biocompatible extracellular matrix template that allows for the migration of cells from Integraa Integra LifeSciences neighboring, ostensibly healthy tissue, encompassing Corporation either biomaterial (ie, noncellular matrices contain- b ing important proteins but no cellular components Oasis Wound Matrix Smith & Nephew, Inc derived from cadaveric, animal, or synthetic sources) PriMatrixb TEI Biosciences or cellularDo (ie, tissues harvested Not from human or ani- Copy mal origin) categories of products. However, there are TransCytea,c Smith & Nephew, Inc materials that contain components of each. Overall, these dressings are expensive to manufacture and Human Derived apply, which to some degree has prevented their Apligraf Organogenesis, Inc widespread adoption, but they remain useful and even cost effective in selected situations. Dermagraft Shire Regenerative Acellular Human Dermis—Acellular human der- Medicine, Inc mis products generally are derived from cadaveric skin tissue that has been treated with various deter- aUses a synthetic matrix coated with animal collagen gents, enzymes, and antibacterial and/or antimicro- or polypeptides. bUses an animal-derived extracellular matrix. bial agents to ensure that there is no immunogenicity cTransCyte also contains neonatal fibroblasts. or potential harm. These materials serve as biocom- patible scaffolds for cellular and vascular growth into the wound bed and allow for secondary tissue regeneration. Additionally, they can contain colla- gen, elastin, proteoglycans, and other proteins, which may in turn modulate the wound healing process. animal-derived extracellular matrix or a synthetic Examples of acellular human dermis wound dressings matrix coated with animal collagen or polypeptides, are provided in the Table. mostly porcine and/or bovine (Table). Both materi- Animal-Derived Matrix or Material—Several als aim to provide structural support in the form of a companies have taken the approach of using an matrix on which new tissue and vasculature can form E14 CUTIS® WWW.CUTIS.COM Copyright Cutis 2014. No part of this publication may be reproduced, stored, or transmitted without the prior written permission of the Publisher. Resident Corner while providing proteins and/or growth factors that extracellular matrix, which has been shown to sig- can modulate wound healing. nificantly (P.05) improve the proportion of wounds Human-Derived Products—Materials that incorpo- healed at 12 weeks in multiple studies.16-18 Some rate fibroblasts derived from human sources, generally other products have been tested in smaller trials, and from neonatal foreskin tissue, have been an inter- ongoing studies are being conducted. It has not been esting development in the field of skin substitutes. proven if these results can be extended to similar skin One such product, Dermagraft (Shire Regenerative substitutes, but the outlook is encouraging. Ideally, Medicine, Inc), also incorporates an extracellular further research will generate an environment in matrix and a bioabsorbable polyglactin mesh. The which several products are available and can compete major benefit is that the fibroblasts are able to directly on a cost-efficient basis to allow for more widespread generate growth factors, collagen, cytokines, and application of these novel skin substitutes. glycosaminoglycans to contribute to healing in the wound environment. This approach has proven quite Cost-effectiveness efficacious in treating wounds such as diabetic foot Numerous studies analyzing the cost of chronic ulcers8; however, a few theoretical yet unproven risks wound treatment with biosynthetic skin substitutes include rejection of and hypersensitivity to this mate- have been conducted. Given the substantial eco- rial due to trace amounts of bovine serum. nomic burden of chronic wounds in general, includ- The other major skin substitute in this class is ing costly inpatient admissions, skilled nursing for Apligraf (Organogenesis, Inc), an allogenic, cultured, dressing changes, and material costs, it is important bilayered skin equivalent. With this material, a der- to note that marked improvement in overall heal- mal layer
Recommended publications
  • Wound Bed Preparation: TIME in Practice
    Clinical PRACTICE DEVELOPMENT Wound bed preparation: TIME in practice Wound bed preparation is now a well established concept and the TIME framework has been developed as a practical tool to assist practitioners when assessing and managing patients with wounds. It is important, however, to remember to assess the whole patient; the wound bed preparation ‘care cycle’ promotes the treatment of the ‘whole’ patient and not just the ‘hole’ in the patient. This paper discusses the implementation of the wound bed preparation care cycle and the TIME framework, with a detailed focus on Tissue, Infection, Moisture and wound Edge (TIME). Caroline Dowsett, Heather Newton dependent on one another. Acute et al, 2003). Wound bed preparation wounds usually follow a well-defined as a concept allows the clinician to KEY WORDS process described as: focus systematically on all of the critical Wound bed preparation 8Coagulation components of a non-healing wound to Tissue 8Inflammation identify the cause of the problem, and Infection 8Cell proliferation and repair of implement a care programme so as to Moisture the matrix achieve a stable wound that has healthy 8Epithelialisation and remodelling of granulation tissue and a well vascularised Edge scar tissue. wound bed. In the past this model of healing has The TIME framework been applied to chronic wounds, but To assist with implementing the he concept of wound bed it is now known that chronic wound concept of wound bed preparation, the preparation has gained healing is different from acute wound TIME acronym was developed in 2002 T international recognition healing. Chronic wounds become ‘stuck’ by a group of wound care experts, as a framework that can provide in the inflammatory and proliferative as a practical guide for use when a structured approach to wound stages of healing (Ennis and Menses, managing patients with wounds (Schultz management.
    [Show full text]
  • Understand Your Chronic Wound
    Patient Information Leaflet Understanding your Chronic Wound Dressings, management and wound infection In this leaflet Health Care Professional (HCP) refers to any member of the team involved in your wound care. This can include treatment room or practice nurse, community, ward or clinic nurse, GP or hospital doctor, podiatrist etc. Chronic Wounds and Dressings What is a Chronic wound? A wound with slow progress towards healing or shows delayed healing. This may be due to underlying issues such as: • Poor blood flow and less oxygen getting to the wound • Other health conditions • Poor diet, smoking, pressure on the wound e.g. footwear/seating. Can my wound be left open to the air? No, the evidence shows that wounds heal better when the surface is kept moist (not too wet or dry). The moisture provides the correct environment to aid your wound to heal. Does my dressing need changed daily? Not usually, your HCP will explain how often it needs changed. This will depend on the level of fluid leaking from your wound. Some dressings can be left in place up to a week. Most wounds have a slight odour, but if a wound smells bad it could be a sign that something is wrong. See section on wound infection. Your dressing may indicate that it needs changed when the dark area in the centre gets close to the edge of the dressing pad. The dark area is fluid from your wound, this is normal. It will be dry to touch. Let your HCP know if your dressing needs changed before your next visit or appointment is due.
    [Show full text]
  • Guideline: Wound Bed Preparation for Healable and Non Healable Wounds
    British Columbia Provincial Nursing Skin and Wound Committee Guideline: Wound Bed Preparation for Healable and Non Healable Wounds Developed by the BC Provincial Nursing Skin and Wound Committee in collaboration with Wound Clinicians from: / TITLE Guideline: Wound Bed Preparation for Healable and Non-Healable Wounds in Adults & Children1 Practice Level Nurses in accordance with health authority and agency policy. Conservative sharp wound debridement (CSWD) is a restricted activity according to the Nurse’s (Registered) and Nurse Practitioner Regulation. 2 CRNBC states that registered nurses must successfully complete additional education and follow an established guideline when carrying out CSWD. Biological debridement therapy is a restricted activity according to the Nurse’s (Registered) and Nurse Practitioner Regulation. 3 CRNBC states that registered nurses must follow an established guideline when carrying out biological debridement. Clients 4 with wounds needing wound bed preparation require an interprofessional approach to provide comprehensive, evidence-based assessment and treatment. This clinical practice guideline focuses solely on the role of the nurse, as one member of the interprofessional team providing care to these clients. Background Factors affecting wound healability include the presence of adequate circulation in the area of the wound, wound related factors such as the size and duration of the wound, the ability to treat the cause of the wound and the presence of risk factors impacting wound healing. While many wounds heal, others are determined to be non-healing or slow-to-heal based on the presence or absence of these factors. Wound healability must be determined prior to debridement and moist wound healing. Although wound healing normally occurs in a predictable fashion, wound healing trajectories can be heterogeneous and non- uniform resulting is delayed wound healing for some clients.
    [Show full text]
  • Reactive Oxygen Species (ROS)
    EuropeanN Bryan etCells al. and Materials Vol. 24 2012 (pages 249-265) Reactive DOI: 10.22203/eCM.v024a18oxygen species in inflammation and ISSN wound 1473-2262 healing REACTIVE OXYGEN SPECIES (ROS) – A FAMILY OF FATE DECIDING MOLECULES PIVOTAL IN CONSTRUCTIVE INFLAMMATION AND WOUND HEALING Nicholas Bryan1*, Helen Ahswin2, Neil Smart3, Yves Bayon2, Stephen Wohlert2 and John A. Hunt1 1Clinical Engineering, UKCTE, UKBioTEC, The Institute of Ageing and Chronic Disease, University of Liverpool, Duncan Building, Daulby Street, Liverpool, L69 3GA, UK 2Covidien – Sofradim Production, 116 Avenue du Formans – BP132, F-01600 Trevoux, France 3Royal Devon & Exeter Hospital, Barrack Road, Exeter, Devon, EX2 5DW, UK Abstract Introduction Wound healing requires a fine balance between the positive The survival and longevity of any animal requires an active and deleterious effects of reactive oxygen species (ROS); vigilant set of defence mechanisms to combat infection, a group of extremely potent molecules, rate limiting in efficiently repair damaged tissue and remove debris successful tissue regeneration. A balanced ROS response associated with apoptotic/necrotic cells. Compromised will debride and disinfect a tissue and stimulate healthy tissue rapidly results in decreased mobility, organ failures, tissue turnover; suppressed ROS will result in infection hypovolaemia, hypermetabolism, and ultimately infection and an elevation in ROS will destroy otherwise healthy and sepsis. Therefore, mammals have evolved an array stromal tissue. Understanding and anticipating the ROS of physiological pathways and mechanisms that enable niche within a tissue will greatly enhance the potential to damaged tissue to return to a basal homeostatic state. In exogenously augment and manipulate healing. an ideal scenario this occurs without compromise of tissue Tissue engineering solutions to augment successful mechanics, scarring or incorporation of microbial material.
    [Show full text]
  • The Role of Antioxidants on Wound Healing: a Review of the Current Evidence
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 15 July 2021 doi:10.20944/preprints202107.0361.v1 Review THE ROLE OF ANTIOXIDANTS ON WOUND HEALING: A REVIEW OF THE CURRENT EVIDENCE. Inés María Comino-Sanz 1*, María Dolores López-Franco1, Begoña Castro2, Pedro Luis Pancorbo-Hidalgo1 1 Department of Nursing, Faculty of Health Sciences, University of Jaén, 23071 Jaén (Spain); [email protected] (IMCS); MDLP ([email protected]); PLPH ([email protected]). 2 Histocell S.L., Bizkaia Science and Technology Park, Derio, Bizkaia (Spain); [email protected] * Correspondence: [email protected]; Tel.: +34-953213627 Abstract: (1) Background: Reactive oxygen species (ROS) play a crucial role in the preparation of the normal wound healing response. Therefore, a correct balance between low or high levels of ROS is essential. Antioxidant dressings that regulate this balance is a target for new therapies. The pur- pose of this review is to identify the compounds with antioxidant properties that have been tested for wound healing and to summarize the available evidence on their effects. (2) Methods: A litera- ture search was conducted and included any study that evaluated the effects or mechanisms of an- tioxidants in the healing process (in vitro, animal models, or human studies). (3) Results: Seven compounds with antioxidant activity were identified (Curcumin, N-acetyl cysteine, Chitosan, Gallic Acid, Edaravone, Crocin, Safranal, and Quercetin) and 46 studies reporting the effects on the healing process of these antioxidants compounds were included. (4) Conclusions: These results highlight that numerous novel investigations are being conducted to develop more efficient systems for wound healing activity. The application of antioxidants is useful against oxidative damage and ac- celerates wound healing.
    [Show full text]
  • Venous Ulcer Assessment and Management: Using the Updated CEAP Classification System
    Practice Points Venous Ulcer Assessment and Management: Using the Updated CEAP Classification System Cathy Thomas Hess, BSN, RN, CWCN ylastcolumn,Classification of Pressure Injuries, Although most leg ulcers are venous ulcers, the clini- discussed the importance of documenting the cian should suspect other causes when the wound looks details of pressure injuries using the updated atypical (presence of necrotic tissue, exposed tendon, M pressure injury classification system. This livedo reticularis on surrounding skin, or a deep, column discusses the updated classification system for “punched-out” ulcer), has been present for longer than venous ulcers, namely, the Clinical Etiology Anatomy 6 months, or has not responded to good care. Do not Pathophysiology (CEAP) classification system. To under- hesitate to take a biopsy when in doubt. stand the use of this classification, let’sbrieflydiscussthe Visual and palpable assessment may not be enough etiology, assessment, and management of venous ulcers. to determine the next steps. Objective testing may be needed to confirm the diagnosis, determine the etiology ETIOLOGY of the problem, and identify the anatomic site and sever- Venous ulcers are believed to account for approximately ity of disease pathway (Table). 70% to 90% of chronic leg ulcers.1 The incidence of ve- nous ulceration increases with age, and women are three times more likely than men to develop venous leg ulcers.2 Table. CLINICAL FINDINGS ASSOCIATED WITH VENOUS In some studies, 50% of patients had venous ulcers that LEG ULCERS persisted for more than 9 months, and 20% had ulcers Wound location 30%–40% occur superior to the medial malleolus (near the that did not heal for more than 2 years.
    [Show full text]
  • Products & Technology Wound Inflammation and the Role of A
    Products & technology Wound inflammation and the role of a multifunctional polymeric dressing Temporary inflammation is a normal response in acute wound healing. However, in chronic wounds, the inflammatory phase is dysfunctional in nature. This results in delayed healing, and causes further problems such as increased pain, odour and Intro high levels of exudate production. It is important to choose a dressing that addresses all of these factors while meeting the patient’s needs. Multifunctional polymeric Authors: Keith F Cutting membrane dressings (e.g. PolyMem®, Ferris) can help to simplify this choice and Authors: Peter Vowden assist healthcare professionals in chronic wound care. The unique actions of xxxxx Cornelia Wiegand PolyMem® have been proven to reduce and prevent inflammation, swelling, bruising and pain to promote rapid healing, working in the deep tissues beneath the skin[1,2]. he mechanism of acute wound healing — the vascular and cellular stages. During is a well-described complex cellular vascular response, immediately on injury there is T interaction[3] that can be divided into an initial transient vasoconstriction that can be several integrated processes: haemostasis, measured in seconds. This is promptly followed inflammation, proliferation, epithelialisation by vasodilation under the influence of histamine and tissue remodeling. Inflammation is a key and nitric oxide (NO) that cause an inflow of blood. component of acute wound healing, clearing An increase in vascular permeability promotes damaged extracellular matrix, cells and debris leakage of serous fluid (protein-rich exudate) into from zones of tissue damage. This is normally a the extravascular compartment, which in turn time-limited orchestrated process. Successful increases the concentration of cells and clotting progression of the inflammatory phase allows factors.
    [Show full text]
  • Peripheral Arterial Occlusive Disease
    Peripheral Arterial Occlusive Disease - ACOI Chicago Hospitalist Meeting Davin Haraway DO,FACOI,FACCWS,RPhS Diplomate – American Board of Venous and Lymphatic Medicine Arterial Issues – Lower extremity encountered by Hospitalists • Acute arterial occlusion • More commonly however • Chronic peripheral vascular disease and manifestations • Ulcers toes, heels,ankles, legs, • Infected ulcers • Cellulitis • Diabetic foot ulcers • Claudication • Edema • Calciphylaxis • Non healing surgical wounds including , BKA,AKA,foot and ankle procedures, • Differentiating from Gout and Charcot Foot Atheroma Prevalence • Dx of PAD ranges from 1–22%, depending on population, risk factors, diagnostic tests • Asymptomatic PAD up to 6 times more common than symptomatic PAD • 8.4 million Americans >40 years old have PAD • High overlap of PAD with CAD and CVD • Prevalence of PAD in persons >70 years 5 times greater than in persons <40 years • Claudication 3-4 times more common in diabetics and 3 times more common in smokers Peripheral Arterial Disease and Intermittent Claudication • Peripheral Arterial Disease (PAD) A disorder caused by atherosclerosis that limits blood flow to the limbs. • Intermittent Claudication (IC) A symptom of PAD characterized by pain, aching, or fatigue in working skeletal muscles. IC arises when there is insufficient blood flow to meet the metabolic demands in leg muscles of ambulating patients. Pathophysiology of Intermittent Claudication • Intermittent claudication is associated with – Metabolic abnormalities stemming from reduced 1 blood flow and O2 delivery – Significant reduction (50%) in muscle fibers compared with controls2 – Smaller type I and II muscle fibers with greater arterial ischemia2 – Hyperplastic mitochondria and demyelination of nerve fibers3 1 Lundgren et al Am J Physiol. 1988;255:H1156-64.
    [Show full text]
  • Wound Bed Preparation in Practice
    POSITION DOCUMENT Wound bed preparation in practice Wound bed preparation: science applied to practice Wound bed preparation for diabetic foot ulcers Wound bed preparation for venous leg ulcers MANAGING EDITOR Suzie Calne SENIOR EDITORIAL ADVISOR Christine Moffatt Professor and Co-director, Centre for Research and Implementation of Clinical Practice, Wolfson Institute of Health Sciences, Thames Valley University, London, UK CONSULTANT EDITOR Madeleine Flanagan Principal Lecturer, Department of Continuing Professional Development, Faculty of Health and Human Sciences, University of Hertfordshire, UK EDITORIAL ADVISORS Vincent Falanga Professor of Dermatology and Biochemistry, Boston University; Chairman and Training Program Director, Roger Williams Medical Centre, Providence, Rhode Island, USA Marco Romanelli Consultant Dermatologist, Department of Dermatology, University of Pisa, Italy J Javier Soldevilla Ágreda Professor of Geriatric Care, EUE University of La Rioja, Logroño, Spain Supported by an educational Luc Téot grant from Smith & Nephew. Assistant Professor of Surgery, University Hospital, Montpellier, France Peter Vowden Consultant in General Surgery, Department of Vascular Surgery, Bradford Royal Infirmary, UK Ulrich E Ziegler The views expressed in this Senior Consultant and Plastic Surgeon, Department of Plastic and Hand Surgery, University of publication are those of the Wuerzburg, Germany authors and do not necessarily reflect those of Smith & Nephew. EDITORIAL PROJECT MANAGER Kathy Day SUB-EDITOR Ann Shuttleworth DESIGNER
    [Show full text]
  • Chronic Venous Ulcers: a Comparative Effectiveness Review of Treatment Modalities Comparative Effectiveness Review Number 127
    Comparative Effectiveness Review Number 127 Chronic Venous Ulcers: A Comparative Effectiveness Review of Treatment Modalities Comparative Effectiveness Review Number 127 Chronic Venous Ulcers: A Comparative Effectiveness Review of Treatment Modalities Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-2007-10061-I Prepared by: Johns Hopkins University Evidence-based Practice Center Baltimore, MD Investigators Jonathan Zenilman, M.D. M. Frances Valle, D.N.P., M.S. Mahmoud B. Malas, M.D., M.H.S. Nisa Maruthur, M.D., M.H.S. Umair Qazi, M.P.H. Yong Suh, M.B.A., M.Sc. Lisa M. Wilson, Sc.M. Elisabeth B. Haberl, B.A. Eric B. Bass, M.D., M.P.H. Gerald Lazarus, M.D. AHRQ Publication No. 13(14)-EHC121-EF December 2013 Erratum January 2014 This report is based on research conducted by the Johns Hopkins University Evidence-based Practice Center (EPC) under contract to the Agency for Healthcare Research and Quality (AHRQ), Rockville, MD (Contract No. 290-2007-10061-I). The findings and conclusions in this document are those of the author(s), who are responsible for its contents; the findings and conclusions do not necessarily represent the views of AHRQ. Therefore, no statement in this report should be construed as an official position of AHRQ or of the U.S. Department of Health and Human Services. The information in this report is intended to help health care decisionmakers—patients and clinicians, health system leaders, and policymakers, among others—make well-informed decisions and thereby improve the quality of health care services.
    [Show full text]
  • Chronic Venous Leg Ulc Treatment: Future Er Research Needs
    Future Research Needs Paper Number 34 Chronic Venous Leg Ulcer Treatment: Future Research Needs Future Research Needs Paper Number 34 Chronic Venous Leg Ulcer Treatment: Future Research Needs Identification of Future Research Needs From Comparative Effectiveness Review No. 127 Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 540 Gaither Road Rockville, MD 20850 www.ahrq.gov Contract No. 290-2007-10061-I Prepared by: Johns Hopkins University Evidence-based Practice Center Baltimore, MD Investigators: Gerald Lazarus, M.D. Fran Valle, D.N.P., M.S., C.R.N.P. Mahmoud Malas, M.D., M.H.S. Umair Qazi, M.D., M.P.H. Nisa Maruthur, M.D., M.H.S. Jonathan Zenilman, M.D. Chad Boult, M.D., M.P.H., M.B.A. David Doggett, Ph.D. Oluwakemi A. Fawole, M.B.C.H.B., M.P.H. Eric B. Bass, M.D., M.P.H. AHRQ Publication No. 13(14)-EHC034-EF November 2013 Addendum added January 2014 Addendum to Future Research Needs Report for Chronic Venous Leg Ulcer Treatment This report was posted for public comment from November 4, 2013 to December 2, 2013 on the Effective Health Care Web site. We received one set of thoughtful comments from the American Physical Therapy Association. The comments were related to gaps outside the scope of the original systematic review and included: the role of exercise to optimize venous pump function, optimization of general fluid balance, occupational strategies to minimize edema, inclusion of strategies for debridement and predisposing factors for venous ulcers which are located at the level of the malleoli and above.
    [Show full text]
  • Skin Substitutes for Treating Chronic Wounds: Technical Brief
    Technology Assessment Program Skin Substitutes for Treating Chronic Wounds Technical Brief Project ID: WNDT0818 February 2, 2020 Technology Assessment Program - Technical Brief Project ID: WNDT0818 Skin Substitutes for Treating Chronic Wounds Prepared for: Agency for Healthcare Research and Quality U.S. Department of Health and Human Services 5600 Fishers Lane Rockville, MD 20857 www.ahrq.gov Contract No. HHSA 290-2015-00005-I Prepared by: ECRI Institute - Penn Medicine Evidence-Based Practice Center Plymouth Meeting / Philadelphia, PA Investigators: D. Snyder, Ph.D. N. Sullivan, B.A. D. Margolis, M.D., Ph.D. K. Schoelles, M.D., S.M. ii Key Messages Purpose of Review To describe skin substitute products commercially available in the United States used to treat chronic wounds, examine systems used to classify skin substitutes, identify and assess randomized controlled trials (RCTs), and suggest best practices for future studies. Key Messages • We identified 76 commercially available skin substitutes to treat chronic wounds. The majority of these do not contain cells and are derived from human placental membrane (the placenta’s inner layer), animal tissue, or donated human dermis. • Included studies (22 RCTs and 3 systematic reviews) and ongoing clinical trials found during our search examine approximately 25 (33%) of these skin substitutes. • Available published studies rarely reported whether wounds recurred after initial healing. Studies rarely reported outcomes important to patients, such as return of function and pain relief. • Future studies may be improved by using a 4-week run-in period before study enrollment and at least a 12-week study period. They should also report whether wounds recur during 6-month followup.
    [Show full text]