<<

Searching for new functional properties in traditional foods of Japan and South America

November 8, 2010 Kazuki Kanazawa Most of functional factors in food are non-.

Nutrients (proteins, sugars and lipids) undergo decomposition to produce energy (catabolism) in liver. This indicates that nutrients cannot exhibit bio-functions.

Contrarily, non-nutrients do not undergo catabolism, and therefore can exist in mostly their unchanged forms in food and can exhibit diverse bio-functions. However, most of non-nutrients undergo a different metabolism, conjugations, in intestinal surface cells.

The conjugations occur on the functional groups, masking with glucuronic acid and/or sulfate, and then invalidate active non-nutrients. A strategy for finding out biofunctional factors

To find out endogenously active functional non-nutrients, difficult forms to undergo the conjugations should be searched according to the following strategy:

1) Compounds retaining the activity even after the conjugations 2) A hard chemical to undergo conjugations 3) Unchanged chemical during absorption process 4) Metabolically activated chemicls when absorbed 5) Available chemicls after de-conjugation with endogenous β-glucuronidase 6) Compounds that can interact with intestinal surface cells and transfer immune signals without absorption The second idea Propolis includes a hard chemical to be conjugated, artepillin C

Conjugate Bee collects from enzymes Baccharis dracunculifolia (chilca)

Prenyls monolayers in Caco-2 artepillin Bioavailability of Free of; Conjugated of; □; Artepillin C △ ○; ; p Artepillin C Ferulic acid p -Coumaric acid -Coumaric acid C C

Phenolics (nmol/well) 0.3 0.6 0.9 1.2 1.5 0.2 0.4 0.6 0.8 1.0 1.0 2.0 5.0 3.0 4.0 0 0 0

0

○ □

Serosal D N D N D N In thecellIn 30

△ △

△ ○ □ *** □ ○ □ ○ ***

D N

D N D N D N 60

△ ***

*** Apical side * △ △ □ ○ *** ○ □ □ ○ **

D N

90 Incubation time (min) Incubation

D N D N D N *** 120 ***

***

△ △ △ □ *** ○ □ ○ D N □ ○ **

D N

0.1 0.2 0.3 0.4 0.6 0.8 1.0 0.2 0.2 0.3 0.4 0.1 0.5 0 0 0

▼ ◆ ▲

● ■ 0

Serosal D N *** ▼ ** ◆ ▲ ▲ ▼ ◆ D N 30 ▼ ▲ ◆ D N ■ ● ● ■ *** D N ■ ●

***

***

D N

In thecellIn

D N

D N

D N Apical side *** *** *** *** ** ◆ ▲ ▼ ▼ ▲ ◆ 60 *** ● D N ▼ ▲ ◆ ** D N ■ ■ ● ● ■ D N ***

***

D N

***

D N D N

90

D N

** *** *** 120 ▼ ▲◆ ▼ ▲ ◆ ** ** D N ■ ● ■ ● ◆ D N ▼ ▲ ** ■ D N *** ● ***

***

**

** D N

D N

D N

Conjugated of; Free of; ▼; Kaempferide ▲; ■; Isosakuranetin ◆ ●; Naringenin ; Kaempferol Kaempferide Isosakuranetin Chrysin Artepillin C can Enter HepG2 Cells and Suppress Oxidative Stress

3 - HepG2 cells Exposed to O2

cells) cells) ○ ○ 7 ○ ○ 2 Artepillin C (µM) Lipid peroxides ○ Artepillin C (nmol/mg protein) △Conjugated Artepillin C 1 0 0.468+0.013 5 0.426+0.010* Artepillin C (nmol/10 Artepillin 10 0.446+0.006* 0 E △ △ △ △ 0 30 60 90 120 150 20 0.392+0.013* Incubation time (min) 8-OHdG/2’-dG X 10-5

0 8.22+1.089 H

O O 5 7.14+0.411 10 5.35+0.724* 20 5.23+0.176* O H Mixed Polyphenols 7.18+0.815 Mixed polyphenol + 10 µM of Artepillin C 4.86+0.481* Speculation Artepillin C daily P. O. ddY mice (♂) 6-weeks old 1st day 8th day 28th day

Azoxymethane (AOM) 10 mg/kg subcutaneously

Artepillin C inhibits formation of aberrant crypt foci Treatment Number of ACF % of Control ACS/Focus Negative control (non-treatment) 0 0 0 Positive control (vehicle alone) 63.25 + 16.5 100 1.50 + 0.18 80 mg/Kg propolis 38.4 + 14.5* 60.8 1.40 + 0.20 160 mg/Kg propolis 35.6 + 6.8* 56.3 1.57 + 0.14 10 mg/Kg artepillin C 35.8 + 15.2* 56.6 1.49 + 0.19 n=5, p<0.05 Artepillin C Induces G0/G1 Arrest in WiDr

Proliferation G0/G1 (%) G0/G1 ■ 0.1% DMSO ● 25 µM 250 ■ S ▲ 50 µM ■ ● 200 ◆ 75 µM ● G2/M ▼ 100 µM ▲ ■ ▲ ◆ ■ ▲● ◆ ◆ ▼ 100 ◆●▲ ▼ ▼ Artepillin C ▼◆●▲■ ▼ (µM) G0/G1 (%) S (%) G2/M (%)

0 h 0 61.6 ±0.8 33.0 ±1.7 5.4 ±1.0 0 0 24 48 72 24 h 0 61.6 ±4.8 29.0 ±4.3 9.4 ±2.2 Incubation time (h) 25 62.5 ±1.7 27.8 ±0.6 9.7 ±1.0 50 68.8 ±0.4 22.1 ±0.4 9.1 ±0.5 100 82.1 ±3.2 13.4 ±2.3 4.5 ±1.0

48 h 0 63.2 ±1.4 29.9 ±1.3 6.9 ±0.1 25 77.9 ±0.6 17.1 ±0.5 5.0 ±0.5 50 80.3 ±0.2 14.4 ±0.5 5.3 ±0.7 100 86.9 ±0.2 6.7 ±0.3 6.4 ±0.1 TGF-β DNA oxidation

Growth factor Rac ATR ATM P Ras proteosome GF-receptor P P P MAPkinase PI3K (JNK) MAP kinase cascade P Smad2/3 P (ERK) P Ser15 P Thr68 P cascade Smad4 P P PIP3 MDM2 Chk2 P Smad2/3 p53 P Ser20 P P FKHR P P PDK P Ser473 Thr308 P Akt Bax INK4 family p15 p21Cip1 p27Kip1 p18 p19 P P Bad GSK-3β p16 Apoptosis

Thr14 P P Cyclin D Thr160 P CDK2 Tyr15 P P Ser123 Apoptosis CDK4/6 Cyclin E cdc25A De-phospjorylation Proteosome INK family Retinoblastoma Proteosome DP E2F Gene expression

P P P P Check point Retinoblastoma G1 phase

S phase Artepillin C Regulates Cell-Cycle Related Proteins

Artepillin C 48 h

0 25 50 100 (µM) P Rb-C fusion protein (Ser 780)

P Rb-C fusion protein (Ser 807/811)

0 h 24 h 48 h

0 25 50 75 100 0 25 50 75 100 (µM)

Cyclin D1

Cyclin D2

Cyclin D3

CDK4

β-actin In up-stream signals

Artepillin C 48 h Control (0.1% DMSO) 50 µM Artepillin C 0 25 50 100 (µM) 0 6 12 24 36 48 6 12 24 36 48 (h)

Cip1/p21 Cip1/p21 1.0 1.73 1.89 2.78 Kip1/p27 Fold (BAS/28S)

0 h 24 h 48 h Kip1/p27 0 25 50 75 100 0 25 50 75 100 (µM) 1.0 1.28 1.27 0.67 Fold (BAS/28S) Cip1/p21

Kip1/p27 28S β-actin

18S In Cip1/p21-deleted cells 80 Vehicle alone

50 µM artepillin C 60 100 µM artepillin C

40

Distribution (%) Distribution 20

0

G0/G1 S G2/M Regulatory events by Artepillin in Colon p21waf p19 p18 ink4a kip1 p16 p15 p57 p27

CDK4 CDK2 Cyclin D Cyclin E

Phosphorylation p

p E2F Rb Rb active E2F p p G0/G1 arrest G0 phase G1 phase G1/S transition Proliferation In Human trial

10

Artepillin C 20.4 µmol (6.12 mg) 8 Ferulic acid 0.3 µmol p-Coumaric acid 3.4 µmol Kaempferol 8.6 µmol x dG

5 6 Naringenin 1.8 µmol

4 3 Capsules per day 8-OHdG/10 For 3 month 2

0 Basal Final Basal Final n=15 n=15 n=15 n=15 Placebo Propolis Dosed amounts were too small 3) Unchanged chemical during absorption process

OCOCH fucoxanthin HO 3 . Japanese kelp Kombu O

O HO In intestinal surface cells

OH fucoxanthinol HO . O Fucoxanthin Contents O In liver of animal Fucoxanthin per HO Brown algae not human 100 g fresh Wakame (Undaria pinnatifida) 11.1 mg OH amarouciaxanthin A HO (Eisenia bicyclis) 7.7 mg . Hondawara (Sargassum fulvellum) 6.5 mg O Kombu (Laminalia japonica) 17.7 mg OH Hijiki (Hizikia fusiformis) 2.2 mg O Hashimoto et al., Br. J.Nutr. (nmol/g) (nmol/g) (nmol/g) 100 200 300 100 200 300 200 400 600 800 0 0 0 0 0 0 Time dose (hr) after 5 5 5 10 10 10 Single dose of fucoxanthin 0.1 mg(160nmol)/mouse Single offucoxanthin dose 15 15 15 kidney liver spleen 20 20 20

25 25 25

(nmol/g) (nmol/g) (nmol/g) 400 600 100 200 300 200 20 40 60 0 0 0 0 0 0 5 5 20 Time dose (hr) after 10 10 40 15 15 lung heart heart tissue tissue Adipose 60 20 20

25 25 80 (nmol/l) (nmol/l) 100 200 300 Fucoxanthin was not detectable. not was Fucoxanthin Amarouciaxanthin A Fucoxanthinol 20 40 60 80 0 0 0 0 5 5 Time dose (hr) after 10 10 (●) 15 15 serum cells blood Red (○) 20 20

25 25 Fucoxanthin Fucoxanthinol 8 80 Amarouciaxanthin A Fucoxanthin-fed mouse

6 60

4 40 mol/l mol/l mol/l mol/l µ µ 2 20 Control 0 0 Serum Liver Lung Kidney Heart Spleen Adipose

Dose of fucoxanthin 3.5 mg (5.6 µmol)/day/mouse for 1 month (equal to 760 g per kg bw of raw kombu)

In another experiments (20 times more), F344 fed rats on 0, 17.5, 35, 70 mg/day/mouse of fucoxanthin for 90 days and found NOAEL was more than 70 mg/day/mouse. 60 No abnormality; more than 8 mg/day for 5 weeks in humans

40 Pharmaceutical parameter in human 20 Cmax 44.2 nml/L 0 Tmax 4 h 0 5 10 15 20 25 t1/2 7.0 h Time after ingestion (h) AUC(∞) 663.7 nmol/L・h Fucoxanthinol (nmol/l) Fucoxanthinol (nmol/l) NoA bloodaccumulation profile of 18 volunteers indicates with 31 mg that produces no side effects and no toxicity. Amarouciaxanthin A Fucoxanthin cis- of fucoxanthinol Fucoxanthinol Internal Standard chemicals standard In humans fucoxanthin and amarouciaxanthin A were In mouse 4 h after dose under the detection limits

In human 4 h after dose

In human before ingestion 0 10 20 30 Fucoxanthin in drinking water ddY mice (♂) 1st day 8th day 28th day 6-weeks old Subcutaneous injection of AOM treatment ACF %

Negative control 0 0 Positive control 85 + 26 100 Fucoxanthin 50 ppm 60 + 10 70 Fucoxanthin 100 ppm 55 + 21* 65 Two step skin cancer 100 Spontaneous hepatic cancer

80

60

40

20 Detectable tumor % tumor Detectable

0 Fucoxanthin showed the strongest activity to prevent form colon, skin and hepatic cancers among . 250 Fucoxanthin (µM) 0 200

150 25 G0/G1 arrest 100 % of control % of control 50 G0/G1 75 100 50 Fucoxanthin

0 S 0 24 48 72 96 G2/M Culture time (h)

Sub-G1(%) G0-G1(%) S (%) G2/M (%) Time Control Fucoxanthin Control Fucoxanthin Control Fucoxanthin Control Fucoxanthin

24h 62.5±3.4 83.7±2.4* 30.1±4.1 11.9±1.9 7.5±0.9 4.25±0.7

48h 69.5±2.7 95.3±0.7* 24.5±1.9 3±0.5 5.8±0.5 1.7±0.4 72h 2.8±0.1 29.3±1* 81.8±0.6 61.2±1 5.3±0.6 3.1 8.7±0.4 4±0.1 96h 4.9±0.1 45.5±1* 78.2±2 48.2±1.9 5.3±0.2 1.8±0.3 9.9 2.2±0.3

Fucoxanthin induced cell cycle arrest at G0/G1 phase in human WiDr cells Fucoxanthin Regulates G1 Cell Cycle Related Proteins

Fucoxanthin ( M) Fucoxanthin (µM) µ 75 0 25 50 75 0 25 50 Phospho-Rb Cdk4 (ser 780) Cyclin D1 Phospho-Rb (ser807/811) Cyclin D2 Rb Cyclin D3

β-actin β-actin

Fucoxanthin (µM) 0 25 50 75 p21 p27

β-actin

Das et al., BBA, 2005 In Cip1/p21(-/-)cells

24 h

wild p21(-/-) G /G : 54.2±1.1 G /G : 48.1±0.1 p21 0 1 0 1 S: 36.3±0.7 S: 45.0±0.3 G2/M: 9.7±1.8 G2/M: 6.7±1.8 Vehicle control control Vehicle

G0/G1: 78.9±1.7 G0/G1: 33.6±1.2 S: 11.2±0.1 S: 56.1±0.2 A target protein is G2/M: 9.8±1.6 G2/M: 6.7±1.6

p21 for fucoxanthinol M) µ (25 Fucoxanthin In HL-60 cells Phase-contrast Fluorescent microscopy microscopy M µ 0 M µ 2

No effects of 4 µM M on peripheral blood µ mononuclear cells of 4 healthy volunteers Was not candidate for a ligand Fas TNFR1, DR5, DR4

C-FLIP Reduction of ΔΨm 50 50 40 40 50 Pro-Caspase8 Pro-Caspase8 Pro-Caspase8 Pro-Caspase8 30 30 40 cells (%) cells cells (%) cells 1 1 20 20 30

10 (%) cells

10 1 Sub-G Sub-G 20 0 0 0 0.01 0.1 1 10 Fucoxanthinol ‐ + + +

Sub-G 10 CHX (ng/ml) CHX (ng/ml) ‐ ‐ 0.01 0.1 0 Protein synthesis did not participate in Fucoxanthinol ‐ + + + + NAC (mM) ‐ ‐ 1 2 4

Mitochondrial pathway did not participate in

Apoptosis Fucoidan 3 hours Caco-2 cells Mineral oil

Apicsal LPS 3 hours RAW264.7 IL-8 cells basolatral GAPDH

** Caco-2 ** RAW Another 3 hours later, 14 * determined IL-8 in 2.0 ** 12 Caco-2 and TNF-α 1.6 10 in RAW 8 1.2 (ng/ml) α 0.8 - 6

(fold increase) (fold 4 0.4 TNF 2

IL-8 mRNA expression mRNA IL-8 0 0 LPS (100 pg/ml) Budesonide (1 µM) Fucoidan (500 µg/ml) Fucoidan modulates over response of macrophages (R) against LPS and Caco-2 (L)

Tanoue et al., Biochemical Biophysical Research Communications, 2008. Raw kombu (Japanese kelp) extract residual fibers

Remove Remove Arsenic Arsenic Salts Salts A part of Iodine A part of Iodine Anti-cancer Reduction of BBA.1726,328,2005 Fucoxanthin Fucoidan Anti-osteoporosisThank you for kind attentionAllergy Reconstruction BBRC. 2008 JAFC.2010 Anti-obesity Wrapping fucoxanthin No waste BBRC.332,392,2005 with fucoidan is super kombu parts

Functional foods being easy to eat

We are making a novel functional food