Generalized Colonel Blotto Game

Total Page:16

File Type:pdf, Size:1020Kb

Generalized Colonel Blotto Game Generalized Colonel Blotto Game Aidin Ferdowsi1,∗, Anibal Sanjab1,∗, Walid Saad1, and Tamer Bas¸ar2 Abstract— Competitive resource allocation between adver- many variants of the CBG have been studied including those sarial decision makers arises in a wide spectrum of real- with homogeneous valuations [8], [10], symmetric resources, world applications such as in communication systems, cyber- multiple players [4], and heterogeneous resources [11]–[13]. physical systems security, as well as financial and political competition. Hence, developing analytical tools to model and This existing body of literature has primarily focused analyze competitive resource allocation is crucial for devising on analyzing the existence of the equilibrium in a CBG. optimal allocation strategies and anticipating the potential For instance, the seminal work in [9] has proven that an outcomes of the competition. To this end, the Colonel Blotto equilibrium in deterministic strategies (i.e. pure-strategies) game is one of the most popular game-theoretic frameworks for of the Blotto game does not exist when the number of modeling and analyzing such competitive resource allocation problems. However, in many practical competitive situations, considered battlefields is greater than two. As a result, most the Colonel Blotto game does not admit solutions in determin- of the literature has henceforth focused on analyzing the istic strategies and, hence, one must rely on analytically complex mixed-strategy equilibrium of the CBG, which essentially mixed-strategies with their associated tractability, applicability, corresponds to a multi-variate probability distribution over and practicality challenges. In this regard, in this paper, the resources to be allocated over each of the battlefields. In a generalization of the Colonel Blotto game which enables the derivation of deterministic, practical, and implementable this regard, the works in [9], [12], [13] have studied uniform equilibrium strategies is proposed while accounting for scenar- marginal distributions of resources on each battlefield. ios with heterogeneous battlefields. In addition, the proposed However, relying on mixed strategies, as has been the case generalized game factors in the consumed/destroyed resources in all of the CBG literature [8]–[13], presents serious chal- in each battlefield, a feature that is not considered in the lenges to the tractability, applicability, and implementability classical Blotto game. For this generalized game, the existence of a Nash equilibrium in pure strategies is shown. Then, closed- of the derived solutions in real-world environments. In fact, form analytical expressions of the equilibrium strategies are deriving such mixed strategies is often overly complex re- derived and the outcome of the game is characterized, based quiring various mathematical simplifications along the way on the number of each player’s resources and each battlefield’s for tractability [1]–[4], [14], [15]. Moreover, in terms of valuation. The generated results provide invaluable insights on applicability, the optimality of such mixed strategies assumes the outcome of the competition. For example, the results show that, when both players are fully rational, the more resourceful that the game is actually played for an infinitely large number player can achieve a better total payoff at the Nash equilibrium, of times [16]. In addition, previous CBG models assume a result that is not mimicked in the classical Blotto game. win-or-lose settings over each battlefield. In other words, I. INTRODUCTION the player that allocates more resources over a battlefield wins all of its valuation and the other player receives Game-theoretic resource allocation models have become nothing. However, given that resources are consumed over prevalent across a variety of domains such as wireless com- a certain battlefield, even when this battlefield is won or munications [1] and [2], cyber-physical security [3]–[5], fi- lost, these consumed resources must be accounted for in the nancial markets, and political/electoral competitions [6]–[8]. game model. For instance, even when losing a battlefield, One of the mostly adopted game-theoretic frameworks for destroying a portion of the resources of the opponent can be modeling and analyzing such competitive resource allocation considered a gain for the non-winner. arXiv:1710.01381v2 [cs.GT] 2 Mar 2018 problems is the so-called Colonel Blotto game (CBG) [9]. The main contribution of this paper is therefore to develop The CBG captures the competitive interactions between two a fundamentally novel generalization of the CBG dubbed players that seek to allocate resources across a set of battle- as the Generalized Colonel Blotto Game (GCBG) which fields. The player who allocates more resources to a certain captures the rich and broad settings of the classical CBG, battlefield wins it and receives a corresponding valuation. and, yet enables the derivation of tractable, deterministic, The fundamental question that each player seeks to answer and practical solutions to the two-player competitive resource in a CBG is how to allocate its resources to maximize the allocation problem while not being limited to studying win- valuations acquired from the won battlefields. In recent years, or-lose settings over each battlefield. To this end, we first introduce the basics of the proposed GCBG and, then, we This research was supported by the U.S. National Science Foundation under Grants OAC-1541105 and CNS-1446621, and by the Army Research compare its features to the classical CBG. Subsequently, we Laboratory under IoBT Cooperative Agreement Number W911NF-17-2- prove the existence of an equilibrium to the GCBG – a pure- 0196. strategy Nash equilibrium (NE) – and provide a detailed 1Aidin Ferdowsi∗, Anibal Sanjab∗ and Walid Saad are with Wireless@VT, Bradley Department of Electrical and derivation as well as closed-form analytical expressions of Computer Engineering, Virginia Tech, Blacksburg, VA, USA, the pure NE strategies of the GCBG. In addition, using the {aidin,anibals,walids}@vt.edu derived NE strategies, we prove that when both players are 2Tamer Bas¸ar is with the Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, IL, USA, [email protected] fully rational, the more resourceful player is able to achieve ∗The first two authors have equally contributed to this paper. an overall payoff that is greater than that of its opponent, and hence, win the game. In contrast with the classical CBG, in For the CBG, it has been proven [9] that for Rb > Ra and our proposed GCBG: nRa > Rb, there exists no pure-strategy NE. As a result, • We derive deterministic equilibrium strategies which for solving the CBG, a common methodology is to explore are practical, in the sense that the players can derive mixed strategies based on which each player j chooses a ∈P exact optimal strategies and do not need to randomize probability distribution (or a multi-variate probability density between possible strategies, function) over j to maximize its potential expected payoff. Q • We characterize low complexity solutions even for a However, the reliance on such mixed strategies introduces large number of battlefields with heterogeneous valua- high analytical complexity and presents challenges in terms tions, of the tractability of the derivation of the solutions as well • We model realistic applications of competitive resource as to the practicality and applicability of these solutions. allocation problems by taking into consideration partial Hence, to enable the derivation of tractable, deterministic, winning and losing over a battlefield. and practical solutions to the competitive resource allocation Finally, we provide a numerical example which showcases problem, we next propose a generalization of the CBG the effect of the number of resources of each player on the dubbed generalized Colonel Blotto game. NE strategies and outcomes of the GCBG. B. Proposed Generalized Colonel Blotto Game II. PROPOSED GENERALIZED COLONEL BLOTTO GAME j j n ˜ j A GCBG , j∈P , R j∈P , , vi i=1, U j∈P , A. Classical Colonel Blotto Game P {Q } { } N { } { } n j j n k is defined by seven components that include the players, A standard CBG [9] , ∈P , R ∈P , , v , P {Q }j { }j N { i}i=1 strategy spaces, available resources, battlefields, and valua- j o U j∈P is defined byn six components: a) the players in the tion of battlefields as is the case in the CBG. However, we { } ˜ j set , , b) the strategy spaces j for , c) the define a new utility function U j∈P as an approximation to oa,b j { } availableP { resource} Rj for j , d) aQ set of n ∈Pbattlefields, the utility function of the CBG. This approximation is based ∈ P , e) the normalized value of each battlefield, vi for i , on a continuous differentiable function and an approximation andN f) the utility function, U j, for each player. The set∈ N of parameter, k. When k increases, the GCBG will very closely possible strategies for each player, j , corresponds to the resemble the CBG. At the limit, when k goes to infinity, the different possible distributions of its QRj resources across the GCBG converges to the CBG. However, in contrast with the battlefields. Hence, j is defined as CBG, the differentiability of the approximate utility function Q n enables the derivation of deterministic equilibrium strategies. j = rj rj Rj , rj 0 , (1) In this respect, as defined in (2), the payoff from each Q i ≤ i ≥ ( i=1 ) battlefield resembles a step function. Hence, we propose an X − j j j j where r is the number of allocated resource units by player approximation of this function, u˜i (ri , ri , k), referred to i j to battlefield i, and rj j is the vector of these allocated hereinafter as k approximation, defined as follows: ∈Q − resources (an allocation strategy of player j) . To this end, − vi − vi u˜j (rj , r j , k) , arctan k(rj r j ) + , (5) the payoff of player j, for a battlefield i, is defined as: i i i π i − i 2 − j j j vi, if ri > ri , and the utility function of each player U˜ is the summation − − uj(rj , r j )= vi , if rj = r j , (2) of the k approximation payoffs from each battlefield.
Recommended publications
  • A Class of N-Player Colonel Blotto Games with Multidimensional Private Information
    University of Zurich Department of Economics Working Paper Series ISSN 1664-7041 (print) ISSN 1664-705X (online) Working Paper No. 336 A Class of N-Player Colonel Blotto Games with Multidimensional Private Information Christian Ewerhart and Dan Kovenock Revised version, February 2021 A Class of N-Player Colonel Blotto Games With Multidimensional Private Information Christian Ewerhart Dan Kovenocky Department of Economics Economic Science Institute University of Zurich Chapman University Revised version: February 1, 2021 Abstract. In this paper, we study N-player Colonel Blotto games with incomplete information about battlefield valuations. Such games arise in job markets, research and development, electoral competition, security analysis, and conflict resolution. For M N + 1 battlefields, we identify a Bayes-Nash equilibrium in which the resource ≥ allocation to a given battlefield is strictly monotone in the valuation of that battlefield. We also explore extensions such as heterogeneous budgets, the case M N, full-support ≤ type distributions, and network games. Keywords. Colonel Blotto games Private information Bayes-Nash equilibrium · · · Generalized Dirichlet distributions Networks · *) Corresponding author. Postal address: Schönberggasse 1, 8001 Zurich, Switzerland. E-mail address: [email protected]. ) E-mail address: [email protected]. y 1 Introduction In a Colonel Blotto game, players simultaneously and independently allocate their en- dowments of a resource across a set of battlefields. The player that deploys the largest amount of the resource to a given battlefield scores a win and enjoys a gain in utility equivalent to her valuation of that battlefield. Thus, a player’s utility corresponds to the sum of the valuations of all battlefields won by the player.
    [Show full text]
  • Campaigning Is Hard but Approximately Manageable
    Computational Analyses of the Electoral College: Campaigning Is Hard But Approximately Manageable Sina Dehghani,1 Hamed Saleh,2 Saeed Seddighin,3 Shang-Hua Teng4 1 Institute for Research in Fundamental Sciences 2 University of Maryland 3 TTIC 4 University of Southern California [email protected], [email protected], [email protected], [email protected] Abstract Electoral College, Political Campaigns, and In the classical discrete Colonel Blotto game—introduced Multi-Battleground Resource Allocation by Borel in 1921—two colonels simultaneously distribute their troops across multiple battlefields. The winner of each The president of the United States is elected by the Electoral battlefield is determined by a winner-take-all rule, indepen- College, which consists of electors selected based on 51 con- dently of other battlefields. In the original formulation, each current elections. The number of electors each of the 50 colonel’s goal is to win as many battlefields as possible. The states and D. C. can select is determined every 10 years by Blotto game and its extensions have been used in a wide the United States Census. All but two states1 use a winner- range of applications from political campaign—exemplified take-all system, and in typical election without any third- by the U.S presidential election—to marketing campaign, party candidate, the ticket that wins the majority votes in the from (innovative) technology competition to sports compe- state earns the right to have their slate of electors from that tition. Despite persistent efforts, efficient methods for find- state chosen to vote in the Electoral College. Thus, in prin- ing the optimal strategies in Blotto games have been elu- sive for almost a century—due to exponential explosion in ciple, the team that receives the majority of electoral votes the organic solution space—until Ahmadinejad, Dehghani, wins the race and its main candidate is elected as president.
    [Show full text]
  • Optimal Power Allocation Strategy Against Jamming Attacks Using the Colonel Blotto Game
    Optimal Power Allocation Strategy Against Jamming Attacks Using the Colonel Blotto Game Yongle Wu, Beibei Wang, and K. J. Ray Liu Department of Electrical and Computer Engineering, University of Maryland, College Park, MD 20742, USA. {wuyl, bebewang, kjrliu}@umd.edu Abstract—Cognitive radio technologies have become a promis- adversaries. So far, there have been only a few papers regard- ing approach to increase the efficiency of spectrum utilization. ing security issues. For instance, the primary user emulation Although cognitive radio has been intensively studied in recent attack was described and a transmitter verification scheme was years, only a few works have discussed security aspects. In this paper, we focus on the jamming attack, one of major threats to proposed to test whether the given signal came from a primary cognitive radio networks, where a malicious user wants to jam user in [8]; [9] employed a Hammer model to identify, analyze the communications of secondary users by injecting interference. and assess denial of service attacks; in [10], security issues Aware of the absence of several primary users and the presence of the IEEE 802.22 standard were addressed; [11] discussed of a malicious user, a secondary user can allocate power to those an attack that malicious users attempted to affect an artificial- fallow bands with a randomized strategy, in hope of alleviating the damage caused by the malicious user. We model this scenario intelligence-based secondary user’s behavior by misleading the into a two-player zero-sum game, and derive its unique Nash learning process. Equilibrium under certain conditions using the Colonel Blotto In this paper, we mainly focus on one kind of malicious at- game approach, which provides a minimax strategy that the tacks in cognitive radio networks, namely, the jamming attack secondary user should adopt in order to minimize the worst- [12], where a malicious user, or the “jammer”, wants to prevent case damage caused by the malicious user.
    [Show full text]
  • 0<GFGEB<J &&%, 5GDBKB<:D 0<GFGEO 11
    Economics 221: Political Economy II Winter 2006-2007 Professor Matthew Jackson Oce: 241; Phone: 723-3544 Email: [email protected] Web site: http://www.stanford.edu/ jacksonm Overview: This course examines political processes and the studies how the design of political in- stitutions a ect societal welfare and economic outcomes. The course starts by examining the motivations for and challenges of forming political states and institutions, and how the structure and workings of political institutions a ect economic outcomes and societal welfare. Topics include: the origins of states, anarchy and the social contract, liberalism, wars and arms races, constitutional design, federalism, models of strategic voting behavior, asymme- tries of information and voting behavior, agenda formation and control, logrolling, lobbying, vote-buying and political in uence, nomination processes, and the politics of federations of states. Prerequisite: Economics 220. Requirements: You will be continuing the work on the projects that you began in Economics 220. This will involve re ning a model and producing some results if the problem you proposed in 220 was theoretical in nature, and if the work is empirical, then you should begin or continue your analysis of data. There will be several di erent due dates of updates on the project. The projects will be judged based on the progress made past what was completed in 220. In the latter part of the course, there will also be student presentations and discussions of some of the papers. A note on the readings and class discussions: Reading the papers before class is critical to the course, as much of the emphasis of the course will not only be on \what" the papers tell us, but also on \why" these are interesting issues and \how" the research was conducted.
    [Show full text]
  • Generalizations on the Colonel Blotto Game
    Generalizations on the Colonel Blotto Game Dan Kovenock∗and Brian Robersony Abstract In this paper we characterize the equilibrium in a relaxed version of the Colonel Blotto game in which battlefield valuations maybe heterogeneous across battlefields and asymmetric across players and the, possibly asymmetric, budget constraints hold only on average, and then show how this characterization partially extends to the full Colonel Blotto game, in which the budget constraints must be satisfied with probability one. For the non-constant-sum generalization of the Colonel Blotto game examined, we find that there exist non-pathological parameter configurations with multiple, payoff inequivalent, equilibria. ∗Dan Kovenock, Economic Science Institute, Argyros School of Business and Economics, Chapman Uni- versity, One University Drive, Orange, CA 92866 USA t:714-628-7226 E-mail: [email protected] yBrian Roberson, Purdue University, Department of Economics, Krannert School of Management, 403 W. State Street, West Lafayette, IN 47907 USA t: 765-494-4531 E-mail: [email protected] (Correspondent) 1 1 Introduction The Colonel Blotto game is a two-player resource allocation game in which each player is endowed with a level of resources to allocate across a set of battlefields, within each battlefield the player that allocates the higher level of resources wins the battlefield, and each player's payoff is the sum of the valuations of the battlefields won. This simple game, that originates with Borel (1921), illustrates the fundamental strategic considerations that arise in multi- dimensional resource allocation competition such as: political campaign resource allocation, research and development competition where innovation involves obtaining a collection of interrelated patents, attack and defense of a collection of targets, etc.
    [Show full text]
  • Faster and Simpler Algorithm for Optimal Strategies of Blotto Game
    Faster and Simpler Algorithm for Optimal Strategies of Blotto Game Soheil Behnezhad∗, Sina Dehghani∗, Mahsa Derakhshan∗, MohammadTaghi HajiAghayi∗, Saeed Seddighin∗ Department of Computer Science, University of Maryland fsoheil, dehghani, mahsaa, hajiagha, [email protected] Abstract In the Colonel Blotto game, which was initially introduced by Borel in 1921, two colonels simultaneously distribute their troops across different battlefields. The winner of each battlefield is determined independently by a winner-take-all rule. The ultimate payoff of each colonel is the number of battlefields he wins. The Colonel Blotto game is commonly used for analyzing a wide range of applications from the U.S presidential election, to innovative technology competitions, to advertisement, to sports, and to politics. There has been persistent efforts for finding the optimal strategies for the Colonel Blotto game. After almost a century Ahmadinejad, Dehghani, Hajiaghayi, Lucier, Mahini, and Seddighin [2] provided an algorithm for finding the optimal strategies in polynomial time. Ahmadinejad et al. [2] first model the problem by a Linear Program (LP) with both an expo- nential number of variables and an exponential number of constraints which makes the problem intractable. Then they project their solution to another space to obtain another exponential-size LP, for which they can use Ellipsoid method. However, despite the theoretical importance of their algorithm, it is highly impractical. In general, even Simplex method (despite its exponen- tial running time in practice) performs better than Ellipsoid method in practice. In this paper, we provide the first polynomial-size LP formulation of the optimal strategies for the Colonel Blotto game. We use linear extension techniques.
    [Show full text]
  • Political Game Theory Nolan Mccarty Adam Meirowitz
    Political Game Theory Nolan McCarty Adam Meirowitz To Liz, Janis, Lachlan, and Delaney. Contents Acknowledgements vii Chapter 1. Introduction 1 1. Organization of the Book 2 Chapter 2. The Theory of Choice 5 1. Finite Sets of Actions and Outcomes 6 2. Continuous Outcome Spaces* 10 3. Utility Theory 17 4. Utility representations on Continuous Outcome Spaces* 18 5. Spatial Preferences 19 6. Exercises 21 Chapter 3. Choice Under Uncertainty 23 1. TheFiniteCase 23 2. Risk Preferences 32 3. Learning 37 4. Critiques of Expected Utility Theory 41 5. Time Preferences 46 6. Exercises 50 Chapter 4. Social Choice Theory 53 1. The Open Search 53 2. Preference Aggregation Rules 55 3. Collective Choice 61 4. Manipulation of Choice Functions 66 5. Exercises 69 Chapter 5. Games in the Normal Form 71 1. The Normal Form 73 2. Solutions to Normal Form Games 76 3. Application: The Hotelling Model of Political Competition 83 4. Existence of Nash Equilibria 86 5. Pure Strategy Nash Equilibria in Non-Finite Games* 93 6. Application: Interest Group Contributions 95 7. Application: International Externalities 96 iii iv CONTENTS 8. Computing Equilibria with Constrained Optimization* 97 9. Proving the Existence of Nash Equilibria** 98 10. Strategic Complementarity 102 11. Supermodularity and Monotone Comparative Statics* 103 12. Refining Nash Equilibria 108 13. Application: Private Provision of Public Goods 109 14. Exercises 113 Chapter 6. Bayesian Games in the Normal Form 115 1. Formal Definitions 117 2. Application: Trade restrictions 119 3. Application: Jury Voting 121 4. Application: Jury Voting with a Continuum of Signals* 123 5. Application: Public Goods and Incomplete Information 126 6.
    [Show full text]
  • A Class of N-Player Colonel Blotto Games with Multidimensional Private Information
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Ewerhart, Christian; Kovenock, Daniel J. Working Paper A class of N-player Colonel Blotto games with multidimensional private information Working Paper, No. 336 Provided in Cooperation with: Department of Economics, University of Zurich Suggested Citation: Ewerhart, Christian; Kovenock, Daniel J. (2019) : A class of N-player Colonel Blotto games with multidimensional private information, Working Paper, No. 336, University of Zurich, Department of Economics, Zurich, http://dx.doi.org/10.5167/uzh-176995 This Version is available at: http://hdl.handle.net/10419/206852 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu University of Zurich Department of Economics Working Paper Series ISSN 1664-7041 (print) ISSN 1664-705X (online) Working Paper No.
    [Show full text]
  • Mathematical Game Theory and Applications
    Mathematical Game Theory and Applications Vladimir Mazalov www.allitebooks.com www.allitebooks.com Mathematical Game Theory and Applications www.allitebooks.com www.allitebooks.com Mathematical Game Theory and Applications Vladimir Mazalov Research Director of the Institute of Applied Mathematical Research, Karelia Research Center of Russian Academy of Sciences, Russia www.allitebooks.com This edition first published 2014 © 2014 John Wiley & Sons, Ltd Registered office John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex, PO19 8SQ, United Kingdom For details of our global editorial offices, for customer services and for information about how to applyfor permission to reuse the copyright material in this book please see our website at www.wiley.com. The right of the author to be identified as the author of this work has been asserted in accordance withthe Copyright, Designs and Patents Act 1988. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, without the prior permission of the publisher. Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books. Designations used by companies to distinguish their products are often claimed as trademarks. All brand names and product names used in this book are trade names, service marks, trademarks or registered trademarks of their respective owners. The publisher is not associated with any product or vendor mentioned in this book.
    [Show full text]
  • From Duels to Battefields: Computing Equilibria of Blotto and Other Games
    From Duels to Battlefields: Computing Equilibria of Blotto and Other Games∗ AmirMahdi Ahmadinejad1, Sina Dehghani2, MohammadTaghi Hajiaghayi2, Brendan Lucier3, Hamid Mahini2, and Saeed Seddighin2 1Department of Management Science and Engineering, Stanford University [email protected] 2Department of Computer Science, Univeristy of Maryland dehghani,hajiagha,hmahini,[email protected] 3Microsoft Research [email protected] Abstract We study the problem of computing Nash equilibria of zero-sum games. Many natural zero- sum games have exponentially many strategies, but highly structured payoffs. For example, in the well-studied Colonel Blotto game (introduced by Borel in 1921), players must divide a pool of troops among a set of battlefields with the goal of winning (i.e., having more troops in) a majority. The Colonel Blotto game is commonly used for analyzing a wide range of applications from the U.S presidential election, to innovative technology competitions, to advertisement, to sports. However, because of the size of the strategy space, standard methods for computing equilibria of zero-sum games fail to be computationally feasible. Indeed, despite its importance, only a few solutions for special variants of the problem are known. In this paper we show how to compute equilibria of Colonel Blotto games. Moreover, our approach takes the form of a general reduction: to find a Nash equilibrium of a zero-sum game, it suffices to design a separation oracle for the strategy polytope of any bilinear game that is payoff-equivalent. We then apply this technique to obtain the first polytime algorithms for a variety of games. In addition to Colonel Blotto, we also show how to compute equilibria in an infinite-strategy variant called the General Lotto game; this involves showing how to prune the strategy space to a finite subset before applying our reduction.
    [Show full text]
  • From Duels to Battlefields: Computing Equilibria of Blotto and Other Games
    Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI-16) From Duels to Battlefields: Computing Equilibria of Blotto and Other Games∗ AmirMahdi Ahmadinejad,∗ Sina Dehghani,† MohammadTaghi Hajiaghayi,† Brendan Lucier,‡ Hamid Mahini,†, Saeed Seddighin† ∗Stanford University †Univeristy of Maryland, ‡Microsoft Research [email protected], [email protected], {dehghani, hajiagha, hmahini, sseddigh}@umd.edu Abstract ily obvious how to find an equilibrium. Indeed, the conclu- sions to date have been largely negative: computing a Nash We study the problem of computing Nash equilibria of zero- equilibrium of a normal-form game is known to be PPAD- sum games. Many natural zero-sum games have exponen- complete (Daskalakis, Goldberg, and Papadimitriou 2009; tially many strategies, but highly structured payoffs. For ex- ample, in the well-studied Colonel Blotto game (introduced Goldberg and Papadimitriou 2006), even for two-player games (Chen and Deng 2006). In fact, it is PPAD-complete by Borel in 1921), players must divide a pool of troops among 1 a set of battlefields with the goal of winning (i.e., having more to find an nO(1) approximation to a Nash equilibrium (Chen, troops in) a majority. The Colonel Blotto game is commonly Deng, and Teng 2006). These results call into question the used for analyzing a wide range of applications from the U.S predictiveness of Nash equilibrium as a solution concept. presidential election, to innovative technology competitions, This motivates the study of classes of games for which to advertisement, to sports. However, because of the size of equilibria can be computed efficiently. It has been found that the strategy space, standard methods for computing equilib- many natural and important classes of games have struc- ria of zero-sum games fail to be computationally feasible.
    [Show full text]
  • Coalitional Colonel Blotto Games with Application to the Economics of Alliances Dan Kovenock Chapman University, [email protected]
    Chapman University Chapman University Digital Commons Economics Faculty Articles and Research Economics 2012 Coalitional Colonel Blotto Games with Application to the Economics of Alliances Dan Kovenock Chapman University, [email protected] Brian Roberson Purdue University Follow this and additional works at: http://digitalcommons.chapman.edu/economics_articles Part of the Economics Commons, and the Military Studies Commons Recommended Citation Kovenock, Dan, and Brian Roberson. "Coalitional Colonel Blotto Games with Application to the Economics of Alliances." Journal of Public Economic Theory 14 (2012): 653-676. DOI:10.1111/j.1467-9779.2012.01556.x This Article is brought to you for free and open access by the Economics at Chapman University Digital Commons. It has been accepted for inclusion in Economics Faculty Articles and Research by an authorized administrator of Chapman University Digital Commons. For more information, please contact [email protected]. Coalitional Colonel Blotto Games with Application to the Economics of Alliances Comments This is a pre-copy-editing, author-produced PDF of an article accepted for publication in Journal of Public Economic Theory, 14, 2012 following peer review. The final publication is available at Springer via DOI: 10.1111/j.1467-9779.2012.01556.x. Copyright Springer This article is available at Chapman University Digital Commons: http://digitalcommons.chapman.edu/economics_articles/141 Coalitional Colonel Blotto Games with Application to the Economics of Alliances1 Dan Kovenock2 and Brian
    [Show full text]