The Bathurst Mining Camp, New Brunswick: Data Integration, Geophysical Modelling and Implications for Exploration

Total Page:16

File Type:pdf, Size:1020Kb

The Bathurst Mining Camp, New Brunswick: Data Integration, Geophysical Modelling and Implications for Exploration Canadian Journal of Earth Sciences The Bathurst Mining Camp, New Brunswick: Data Integration, Geophysical Modelling and Implications for Exploration Journal: Canadian Journal of Earth Sciences Manuscript ID cjes-2018-0048.R2 Manuscript Type: Article Date Submitted by the 31-Aug-2018 Author: Complete List of Authors: Ugalde, Hernan; Brock University, Earth Sciences Morris, William; School of Geography and Geology van Staal, DraftCees; Natural Resources Canada, Geological Survey of Canada Bathurst Mining Camp, Geophysical compilation, Geophysical Keyword: interpretation, Geophysical modelling, 3D Geological Modelling Is the invited manuscript for consideration in a Special Geophysics applied to mineral exploration Issue? : https://mc06.manuscriptcentral.com/cjes-pubs Page 1 of 50 Canadian Journal of Earth Sciences 1 2 3 4 5 6 7 The Bathurst Mining Camp, New Brunswick: Data Integration, Geophysical Modelling and 8 Implications for Exploration 9 10 Ugalde, H.1, Morris, W.A.2, van Staal, C.3 11 1Brock University, Department of Earth Sciences, St. Catharines, ON 12 2McMaster University, School of Geography and Earth Sciences, Hamilton, ON 13 3Geological Survey of Canada, Vancouver, BC 14 15 16 Draft 1 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 2 of 50 17 ABSTRACT 18 The Bathurst Mining Camp (BMC) is one of Canada's oldest mining districts for volcanogenic 19 massive sulfide (VMS) deposits. Most of the 46 known deposits were discovered in the 1950s 20 using a combination of geological and geophysical methods. However, renewed exploration 21 efforts over the past 15 years have not been as successful as one would expect for the level 22 of expenditure the camp has gone through. Nevertheless, this has created a large database 23 of high resolution airborne geophysical data (magnetics, electromagnetics, radiometrics, full 24 tensor gravity gradiometry) which makes Bathurst a unique case. We show data compilation 25 and map view interpretation, followed by 2.5D gravity and magnetic modelling. From this, we 26 provide constraints on the folded structure of the mafic and felsic volcanic units, and we 27 interpret a large gravity anomaly in the Draftsouth-east as a possible ophiolite or a dense thick 28 package of basaltic rocks. Finally, we show an example of 3D modelling in the northwestern 29 part of the camp, where we combine map view interpretation with section-based modelling 30 and 3D geophysical inversion. 31 32 KEY WORDS: Bathurst Mining Camp; Geophysical data compilation; Geophysical data 33 interpretation; Geophysical modelling; 3D geological modelling 34 35 2 https://mc06.manuscriptcentral.com/cjes-pubs Page 3 of 50 Canadian Journal of Earth Sciences 36 INTRODUCTION 37 38 The Bathurst Mining Camp (BMC) is one of Canada's oldest mining districts for volcanogenic 39 massive sulfide (VMS) deposits. The BMC is host to 46 massive sulphide deposits, 25 of 40 which include resources of 1 million metric tons (Mt) or more (McCutcheon et al., 2003). 41 Approximately 70% of those were discovered in the 1950s using a combination of geological 42 and geophysical methods (McCutcheon et al., 2003). Almost every deposit and occurrence, 43 except for satellite lenses drilled during underground development of major deposits, were 44 found at the surface or below a generally thin and discontinuous layer of glacial sediments 45 (Goodfellow and McCutcheon, 2003). In the quest for finding new orebodies at depth, federal 46 and provincial government programs (ExplorationDraft Science and Technology Initiative, 47 EXTECH II; Targeted Geoscience Initiative 3, TGI3, and Targeted Geoscience Initiative 4, 48 TGI4) put considerable emphasis on geophysical data acquisition (Thomas et al., 2000; 49 Keating et al., 2003; Thomas et al., 2008; Tschirhart and Morris, 2015). This makes the BMC 50 a great work area where multiple airborne geophysical datasets can be integrated, modelled 51 and interpreted to determine what are the best practices for interpreting geology in 3D from 52 geophysical data. 53 This contribution presents an overview of 2D and 3D modelling and interpretation routines 54 applied to the existing datasets. We start with an overview of the regional geophysical data 55 available at Natural Resources Canada’s Geoscience Data Repository, followed by a map 56 (2D) interpretation, 2.5D section modelling from the gravity magnetic data, as well as 57 published geology, and finally a 3D geological modelling exercise in the NW part of the camp. 58 3 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 4 of 50 59 REGIONAL GEOLOGY 60 The Bathurst Mining Camp (BMC) encompasses an area of approximately 70 x 70 km in the 61 Miramichi Highlands of northern New Brunswick. Figure 1 shows a regional geology map of 62 the camp (Thomas et al., 2000; van Staal et al., 2002, 2003a). In general terms the BMC 63 consists of a Middle Ordovician predominantly felsic volcanic sequence structurally overlain 64 by Middle to Upper Ordovician mafic volcanic and minor interbedded pelagic sedimentary 65 rocks. The felsic volcanics rocks range in composition from dacite to rhyolite, locally 66 interbedded with tholeiitic basalts, whereas the structurally overlying mafic pile comprises 67 oceanic tholeiitic to alkali pillow basalts (Rogers and van Staal, 2003). The dominantly felsic 68 volcanic pile was erupted onto an older sequence of clastic sedimentary rocks (Miramichi 69 Group). Sedimentary rocks are intercalatedDraft with the volcanic rocks.There is a distinctive post- 70 volcanic turbidite succession ( e.g. Tomogonops Formation), which was deposited during 71 backarc closure (Wilson et al., 2015). The BMC comprises several distinct tectonic blocks 72 and slivers, each characterized by unique volcanic stratigraphies, reflecting deposition in 73 separate parts of the Tetagouche back-arc basin. These blocks developed during the Early to 74 Middle Ordovician in response to protracted rifting of the peri-Gondwanan west-facing 75 Popelogan arc. Subsequent closure of the Tetagouche back-arc basin and incorporation in 76 the Brunswick subduction complex in the Late Ordovician to Early Silurian resulted in 77 juxtaposition and imbrication of the tectonic blocks into a series of large thrust nappes. 78 Deformation was polyphase, complex and long-lived creating the complex structures and 79 tectono-stratigraphic relationships present in the BMC (van Staal et al., 2003b). 80 At least 4 distinct deformation events can be recognized in the area (van Staal et al., 2001, 81 2008; Wilson et al., 2017): 4 https://mc06.manuscriptcentral.com/cjes-pubs Page 5 of 50 Canadian Journal of Earth Sciences 82 D1: thrust faults and overturned isoclinal folds with axial planar foliation (Late Ordovician – 83 Early Silurian), which formed under high pressure greenschist and blueschist facies 84 conditions. 85 D2: tight to isoclinal folds with shallowly to steeply plunging fold axes accompanied by steeply 86 dipping axial planar cleavages formed under greenschist facies conditions (Late Silurian). 87 D3: open to tight recumbent folds (Late Silurian). 88 D4: regional scale, N-NE to S–SW trending folds and cleavages (Early Devonian). 89 The BMC is host to 46 volcanogenic massive sulphide (VMS) deposits, 25 of them with 90 resources over 1Mt, including the supergiant 229 Mt Brunswick No. 12 Mine, and over 141 91 massive sulphide occurrences (McCutcheonDraft et al., 2003). In 2001 the BMC produced 30% of 92 Canada's Zn, 53% of its Pb, and 17% of its Ag (Goodfellow et al., 2003). Thomas et al. (2000) 93 present an excellent overview of the observed geophysical data over some of the known VMS 94 deposits in the camp. Thomas (2003) extends the previous work with an analysis of the 95 gravity signature of massive sulphide deposits, with constraints on the extent of the expected 96 anomalies for buried bodies. However, as pointed out by Tschirhart et al. (2013) and Rogers 97 et al. (2014), in the particular case of Bathurst, most of the observed gravity and magnetic 98 geophysical signal is being driven by regional mafic volcanic units, and not by the ore bodies 99 themselves. Therefore, rather than aiming at direct detection of ore bodies, geophysical data 100 should be used for resolving regional structure and the geometry of the main lithological 101 contacts. A detailed understanding of the distribution of lithologies at depth and the 3D 102 geometry of structures is key in regional exploration targeting. 5 https://mc06.manuscriptcentral.com/cjes-pubs Canadian Journal of Earth Sciences Page 6 of 50 103 104 GEOPHYSICAL DATA 105 A) Magnetic Data 106 The Bathurst Mining Camp is a unique case due to its wealth of airborne geophysical data in 107 the form of multiple overlapping surveys covering the entire camp. Table 1 and Figure 2 show 108 the details of the airborne surveys compiled for this work. The main surveys are two high 109 resolution airborne magnetic, radiometric and frequency domain electromagnetic (FDEM) 110 surveys flown by EXTECH II in 1995 (Wright et al., 1998) and a magnetic and MEGATEM 111 survey flown by Fugro Airborne Surveys for Noranda Inc. in 2004. In order to provide 112 complete aeromagnetic coverage for theDraft entire camp, additional regional magnetic surveys 113 from NRCAN’s Geoscience Data Repository were compiled with the aforementioned two 114 surveys (Table 1; Fig. 2). 115 For the magnetic data, the processing sequence involved downward continuation of all the 116 profile data to a common surface of 60 m above the ground. This was achieved via a 2nd 117 order Taylor expansion of the magnetic data (Pilkington and Thurston, 2001). The objective of 118 this correction is the normalization of observed amplitudes to a common datum above the 119 ground. Then the data were microlevelled to reduce corrugations associated to line-to-line 120 leveling artifacts. The original microlevelling routine involves the generation of a “noise” grid 121 via FFT calculation of a combination of a high-pass and a directional cosine filter in the 122 direction of the flight lines (Minty, 1991), followed by a subtraction of this noise grid from the 123 original one.
Recommended publications
  • CNE DEPOSIT (Mine Lease 251) Bathurst Mining Camp, New
    CNE DEPOSIT (Mine Lease 251) Bathurst Mining Camp, New Brunswick, Canada Environmental Impact Assessment Registration April 5, 2012 Prepared by: Derek Brown, P.Geo Kevin Vienneau Stan Stricker, P. Geol John Duncan, P. Geo 1.0 INTRODUCTION .................................................................................................................... 1 1.1 Project Overview .............................................................................................................. 2 1.2 Proponent......................................................................................................................... 4 1.3 Property Ownership ......................................................................................................... 5 1.4 Background ....................................................................................................................... 5 1.5 Need For The Project........................................................................................................ 9 1.6 Project Schedule ............................................................................................................. 11 2.0 PROJECT DESCRIPTION ............................................................................................................ 12 2.1 Geographic Location and Access ......................................................................................... 12 2.2 Rehabilitation of Previously Registered Project .................................................................. 13 2.3 Resources
    [Show full text]
  • A 3-D Historical Data Integration Study in the Heath Steele Mining Camp, Bathurst New Brunswick, Canada
    3D Theatre Presentation _________________________________________________________________________________________ Paper 123 New Eyes on Old Data: A 3-D Historical Data Integration Study in the Heath Steele Mining Camp, Bathurst New Brunswick, Canada. Vander Most, A. [1], de Kemp, E. A. [2], Hannington, M. D. [1], Goodfellow, W. D. [2], Peter, J. M. [2] _________________________ 1. University of Ottawa 2. Geological Survey of Canada ABSTRACT At a time when mineral deposit discoveries are becoming more challenging, explorationists need to investigate alternative ways for ore targeting. 3-D GIS provides a critical environment for understanding the characteristics and the environments of ore deposits, reducing the risk in exploration. Many larger companies have accumulated extensive databases through past exploration programs or through mergers and acquisitions of other companies. A considerable amount of archived and historical data may be available from developed mines that are now closed; although these data may have been used in earlier exploration programs, they are rarely integrated into linked data sets that can be effectively applied to follow-up ore targeting exercises. When revisiting historical data a systematic approach is required for migrating information from paper records to fully linked data sets suitable for interpretation in 3- D GIS. Examining inherent relationships between data sets, assessing spatial quality and availability of data at various scales and judging their relevance to exploration models are all critical steps in this data characterization process. As an example of the process of restoring historical mine data to a condition suitable for analysis in 3-D GIS, we have compiled records of the distribution of ore- associated iron formation from the massive sulfide deposits at Heath Steele, in the Bathurst Mining Camp, northern New Brunswick.
    [Show full text]
  • The Williams Brook Gold Discovery – Northern New Brunswick
    PROCEEDINGS OF THE 24TH INTERNATIONAL APPLIED GEOCHEMISTRY SYMPOSIUM FREDERICTON, NEW BRUNSWICK, CANADA JUNE 1ST-4TH, 2009 EDITED BY DAVID R. LENTZ, KATHLEEN G. THORNE, & KRISTY-LEE BEAL VOLUME I All rights reserved. This publication may not be reproduced in whole or in part, stored in a retrieval system or transmitted in any form or by any means without permission from the publisher. ISBN 978-1-55131-136-4 ©2009 AAG PROCEEDINGS OF THE 24TH INTERNATIONAL APPLIED GEOCHEMISTRY SYMPOSIUM FREDERICTON, NEW BRUNSWICK CANADA JUNE 1ST-4TH, 2009 EDITED BY DAVID R. LENTZ KATHLEEN G. THORNE KRISTY-LEE BEAL VOLUME I NORTH ATLANTIC MINERALS SYMPOSIUM ................................................................................ 501 Mass change constraints and hydrothermal alteration of felsic volcanic rocks that host the Restigouche Volcanogenic Massive Sulfide Deposit, Bathurst Mining Camp, New Brunswick, Canada ............................................................................................................................................503 Amanuel Bein1 & David R. Lentz1 ..............................................................................................503 Results of 2008 exploration program Mount Pleasant Property: geochemistry, mineralogy, and deposit modeling of Sn-In and WO3-MoS2 zones...........................................................................507 Trevor Boyd1 & Gustaaf Kooiman1 ............................................................................................507 The Nash Creek Zn–Pb–Ag deposit,
    [Show full text]
  • Precious Metal Distribution in the Epigenetic Stringer Sulphide Zone at the Brunswick No
    ATI..ANilc GEOLOGY 87 Precious metal distribution In the Epigenetic Stringer Sulphide Zone at the Brunswick No. 12 deposit, Bathurst, New Brunswick 1 2 3 D. Lentz , P. Giggie , B. Luff2 and W. Goodfellow 1Geo/ogical Survey of Canada, P.O. Box 50, Bathurst, New Brunswick E2A 3Zl, Canada 2Brunswick Mining and Smelting Corporation, P.O. Box 3000, Bathurst, New Brunswick E2A 371J, Canada 3Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario KJA OE8, Canada There has been little published information on the occur­ ( 10 to 50) occur in portions of the stringer sulphide minerali­ rence, distribution, and abundance of gold in massive sulphide zation that exhibits intense silicic alteration. The typical deposits of the Bathurst Mining Camp although it is extracted massive sulphide ore grade is 0.55 to 0.72 g/t Au, although as a byproduct during the smelting of both the Cu and Pb the secondary Pb-oxide-bearing ore contains up to 2.25 g/t concentrates (4.1 and 0.9 g/t, respectively) from the Brun­ Au resulting in a high Ag/Au (140) ratio. The As/S ratio is swickNo. 12 deposit, with a total annual production of280 to high (0.02 to 0.2) but irregular in the stringer mineralization 310 kg representing a 12% recovery. Gold is commonly compared to 0.01 for the typical ore. This is consistent with enriched in the hydrothermal feeder system (stringer sulphides) the pronounced decrease in As solubility as arsenopyrite with to the exhalative sulphide ores. Therefore, as part of a larger decreasing temperatures and increasing oxygen fugacity.
    [Show full text]
  • Bathurst Mining Camp Site Visit Presentation October 2018
    Bathurst Mining Camp Site Visit Presentation October 2018 TSX: TV | www.trevali.com TSX: TV | www.trevali.com Cautionary Note Regarding Forward-Looking Statements: This presentation contains “forward-looking information” (also referred to herein as “forward-looking statements”) under the provisions of applicable Canadian securities legislation. Generally, these forward-looking statements can be identified by the use of words such as “plans”, “expects”, “is expected”, “budget”, “scheduled”, “estimates”, “forecasts”, “intends”, “anticipates”, “believes” or variations of such words and phrases or statements that certain actions, events or results “may”, “could”, “would”, “might” or “will”, “occur” or “be achieved” or the negative connotation thereof. Forward-looking statements include, but are not limited to, those in respect of: the economic outlook for the mining industry; expectations regarding metal prices; the timing and amount of estimated future production; the current and planned commercial operations, initiatives and objectives in respect of certain projects of Trevali Mining Corporation (“Trevali” or “TV”), including the Caribou mine, the Restigouche project, the Murray Brook deposit and the Halfmile and Stratmat deposits (collectively, the “Projects”); the estimation of mineral reserves and mineral resources; the realization of mineral reserve estimates, changes in mineral resources and conversion of mineral resources to proven and probable mineral reserves; Trevali’s current and planned exploration initiatives; strategies and
    [Show full text]
  • Siluro-Devonian Tectonostratigraphic Relationships in the Portage Brook
    Atlantic Geology 19 Siluro-Devonian tectonostratigraphic relationships in the Portage Brook area, northern New Brunswick: implications for timing of deformational events in the Bathurst Mining Camp S J. Gower and S.R. McCutcheon Geological Surveys Branch, New Brunswick Department of Natural Resources and Energy, P.O. Box 50, Bathurst, New BrunswickE2A 3Z1, Canada Date Received April 9, 1996 Date Accepted October 9, 1996 In the Portage Brook area, Siluro-Devonian rocks of the Chaleurs Bay Synclinorium are juxtaposed against polydeformed Cambro-Ordovician rocks of the Bathurst Mining Camp along the northerly trending Portage Brook Fault. Rocks of the Chaleurs Group have been identified for the first time west of the Portage Brook Fault, and are subdivided into four lithological units: conglomerate, sandstone and siltstone of the Simpsons Field Formation; mafic volcanic rocks of the Bryant Point Formation; felsic volcanic rocks of the Benjamin Formation; and thickly bedded, brownish grey to reddish grey sandstone of the Greys Gulch Formation. The presence of two pre-deposi- tional cleavages in Ordovician pebbles in the middle Wenlockian to late Ludlovian Simpsons Field Formation indicates that D2 deformation in the Bathurst Mining Camp started prior to the Late Silurian, i.e., earlier than considered by some workers. This observation is supported by the truncation of at least two strong fabrics in Cambro-Ordovician rocks by Late Silurian/Early Devonian mafic intrusions. An alkali granite (radiometrically dated at 414 +11/-1 Ma) clearly intruded, and altered to hornfels, clastic rocks of the Simpsons Field Formation. The granite appears to grade laterally into and to be coeval with volcanic rocks of the Benjamin Formation, thus suggesting that the age of the intrusion is close to the lower error limit.
    [Show full text]
  • Abundance and Speciation of Gold in Massive Sulfides of the Bathurst Mining Camp, New Brunswick, Canada
    851 The Canadian Mineralogist Vol. 42, pp. 851-871 (2004) ABUNDANCE AND SPECIATION OF GOLD IN MASSIVE SULFIDES OF THE BATHURST MINING CAMP, NEW BRUNSWICK, CANADA SEAN H. McCLENAGHAN§ AND DAVID R. LENTZ Department of Geology, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada LOUIS J. CABRI 99 Fifth Avenue, Suite 122, Ottawa, Ontario K1S 5P5, and Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland A1B 3X5, Canada ABSTRACT Massive sulfide deposits of Zn–Pb–Cu–Ag type in the Bathurst Mining Camp, New Brunswick, are hosted within a Middle Ordovician bimodal volcanic and sedimentary sequence that has undergone complex polyphase deformation and associated regional metamorphism to the lower- to upper-greenschist grade. These factors are partly responsible for the present geometry and textural modification of these hydrothermal deposits, originally formed on the seafloor. Despite the importance of heteroge- neous ductile deformation, some primary features are evident, in particular fine-grained colloform pyrite and base- and precious- metal zonation within many of these deposits. The average Au content (bulk instrumental neutron-activation analyses; n = 215) of massive sulfides from 43 deposits in the Bathurst Mining Camp is 0.85 ppm, with values as high as 6.86 ppm. Positive correlations of Au content with Ag (r’ = 0.53), As (r’ = 0.57) and Sb = (r’ = 0.65) suggest that Au is mainly associated with arsenian pyrite and a distal suite of elements (Au + Sb + As ± Ag). The submicroscopic Au contents of pyrite and arsenopyrite in eight deposits with elevated bulk Au contents were investigated using a Cameca IMS–4f secondary-ion mass spectrometer.
    [Show full text]
  • Trevali Provides Bathurst Mining Camp Update
    Trevali Mining Corporation 1400 – 1199 West Hastings Street Vancouver, British Columbia, CANADA V6E 3T5 Telephone: (604) 488-1661 www.trevali.com NEWS RELEASE Trevali Provides Bathurst Mining Camp Update Restigouche Drill Highlights: 15 metres grading 8% Zn, 6.4% Pb & 44 g/t Ag; 21.3 metres grading 6.5% Zn, 5.2% Pb & 65 g/t Ag; and 17.2 metres grading 8.7% Zn, 7.2% Pb & 199 g/t Ag TV-NR-18-13 July 5, 2018 Vancouver, British Columbia: Trevali Mining Corporation (“Trevali” or the “Company”) (TSX: TV, BVL: TV; OTCQX: TREVF, Frankfurt: 4TI) provides an update on exploration and development activities to support its Bathurst Mining Camp “Life-of-Mill” strategy in New Brunswick, Canada (Figure 1). Figure 1: Trevali Projects in the Bathurst Mining Camp (New Brunswick) (Note: Red stars are 100%-owned by Trevali; Blue stars are advanced properties under option). Trevali Mining Corporation 2 July 5, 2018 NR-18-13 – Continued “The combination of ongoing exploration success and strategic acquisitions in the Bathurst Mining Camp has delivered a strong pipeline to support our life-of-mill plan at Caribou,” stated Dr. Mark Cruise, Trevali President and CEO. “Trevali has solidified a dominant land position in order to optimize milling operations in the region for the benefit of all stakeholders.” Trevali currently owns four deposits and has the option to acquire two advanced deposits in the Bathurst Mining Camp (“BMC”) (Figure 1). Anchored by the Caribou Mill and related infrastructure, the Company’s focus is to complete advanced geological and engineering studies in order to facilitate long- term production based on the Company’s life-of-mill strategy (Figure 2).
    [Show full text]
  • Unleashing Canada's Zinc Potential
    UNLEASHING CANADA’S ZINC POTENTIAL “A Unique and Strategic Zinc Exploration Portfolio” Corporate Presentation – July 2019 CSE:EZNC OTC:CSE:ETZCFEZNC OTC:ETZCF www.easternzinc.comwww.easternzinc.com CAUTIONARY STATEMENT ON FORWARD-LOOKING INFORMATION All statements in this presentation, other than statements of historical fact, are "forward-looking information" with respect to Eastern Zinc Corp within the meaning of applicable securities laws including, without limitation economic estimates and any statements related to estimated mining costs. Eastern Zinc Corp provides forward-looking statements for the purpose of conveying information about current expectations and plans relating to the future and readers are cautioned that such statements may not be appropriate for other purposes. By its nature, this information is subject to inherent risks and uncertainties that may be general or specific and which give rise to the possibility that expectations, forecasts, predictions, projections or conclusions will not prove to be accurate, that assumptions may not be correct and that objectives, strategic goals and priorities will not be achieved. These risks and uncertainties include but are not limited to exploration findings, results and recommendations, as well as those risks and uncertainties identified and reported in Eastern Zinc Corp’s public filings under its SEDAR profile at www.sedar.com. Although Eastern Zinc Corp has attempted to identify important factors that could cause actual actions, events or results to differ materially from those described in forward-looking information, there may be other factors that cause actions, events or results not to be as anticipated, estimated or intended. There can be no assurance that such information will prove to be accurate as actual results and future events could differ materially from those anticipated in such statements.
    [Show full text]
  • Chemostratigraphy and Depositional Environment of an Ordovician Sedimentary Section Across the Miramichi Group - Tetagouche Group Contact, Northeastern New Brunswick
    Atlantic Geology 101 Chemostratigraphy and depositional environment of an Ordovician sedimentary section across the Miramichi Group - Tetagouche Group contact, northeastern New Brunswick David R. Lentz1, Wayne D. Goodfellow2, and Earnest Brooks3 'New Brunswick Geological Surveys Branch, P.O. Box 50, Bathurst, New BrunswickE2A 3Z1, Canada 2Geological Survey of Canada, 601 Booth Street, Ottawa, Ontario K1A 0E8, Canada 3Geological Consultant, 1235 Johnson Avenue, Bathurst, New Brunswick E2A 3T4, Canada Date Received June 23, 1995 Date Accepted November 3, 1995 A thick section of Ordovician sedimentary rocks underlies and overlies felsic to mafic volcanic rocks of the Tetagouche Group, Bathurst Mining Camp. The dark grey quartzose slates and siltstones of the Patrick Brook Formation (Miramichi Group) occur below the volcanic rocks, whereas the dark grey to black slates and siltstones of the Boucher Brook Formation (Tetagouche Group) are intercalated with the volcanic rocks and overlie the sequence. The Miramichi-Tetagouche contact represents the interpreted Gander-Dunnage boundary in northeast­ ern New Brunswick. Distinguishing between these two similar formations is important for stratigraphic and geo- tectonic interpretations of the Bathurst Mining Camp and for exploration in these sequences. The geochemical composition of a semi-conformable section of rocks from the Boucher Brook (Middle to Late? Ordovician) and Patrick Brook (Early to Middle Ordovician) formations was determined to identify geochemical chemostratigraphic discriminants, as well as to determine the depositional environment in which these were deposited. The high AI2O3 and distinctly higher high-field-strength elements (LREE, Th, HREE, and Y) in the Patrick Brook rocks are characteristic of mature sedimentary rocks and indicate intense chemical weathering (tropical environment) in the source regions, which is consistent with their compositional similarity to Avalon-derived shales analogous to Gander Zone sedimentary rocks.
    [Show full text]
  • Form and Distribution of Gold in the Brunswick No.12 Volcanogenic Massive Sulphide Deposit, Bathurst Mining Camp, New Brunswick
    Atlantic Geology 203 Form and distribution of gold in the Brunswick No.12 volcanogenic massive sulphide deposit, Bathurst mining camp, New Brunswick Jillian Martin, Sean McClenaghan, and David Lentz Department of Geology, University of New Brunswick, P.O. Box 4400, Fredericton, NB, Canada, E3B 5A3 The giant Brunswick No. 12 deposit is one of the world’s largest Zn-Pb-Cu-Ag-type volcanogenic massive sulphide de- posits. Since 1964, this 230 Mt deposit has produced over 106 Mt of massive sulphides grading 3.49 % Pb, 8.85 % Zn, 0.36 % Cu, 102 ppm Ag and has an average Au grade of 0.67 ppm, with Au values locally exceeding 30 ppm in pyretic sulphides at the north end of the Main Zone ore body. Brunswick No. 12 mas- sive sulphides are hosted by middle Ordovician volcaniclastic rocks atop the Nepisiguit Falls Formation of the Tetagouche Group. Polyphase deformation and greenschist facies meta- morphism have resulted in structural thickening of the massive sulphides, and have created four major sulphide lenses which merge with depth. Massive sulphides at the north end of the Main zone con- sist of numerous pyritic lenses with variable base metal and elevated gold contents. These lenses consist predominately of thinly layered fi ne- to medium-grained pyrite, sphalerite, galena, and arsenopyrite with lesser barite, chalcopyrite, tet- rahedrite, bismuthinite, molybdenite, and cassiterite/stannite. The shape and distribution of these pyritic lenses relative to the Main ore zone suggests that the north end lenses likely represent a fold repetition of a distal sulphide facies formed on the fl anks of a giant hydrothermal system.
    [Show full text]
  • Halifax 2005
    GAC-MAC-CSPG-CSSS Pre-conference Field Trips A1 Contamination in the South Mountain Batholith and Port Mouton Pluton, southern Nova Scotia HALIFAX Building Bridges—across science, through time, around2005 the world D. Barrie Clarke and Saskia Erdmann A2 Salt tectonics and sedimentation in western Cape Breton Island, Nova Scotia Ian Davison and Chris Jauer A3 Glaciation and landscapes of the Halifax region, Nova Scotia Ralph Stea and John Gosse A4 Structural geology and vein arrays of lode gold deposits, Meguma terrane, Nova Scotia Rick Horne A5 Facies heterogeneity in lacustrine basins: the transtensional Moncton Basin (Mississippian) and extensional Fundy Basin (Triassic-Jurassic), New Brunswick and Nova Scotia David Keighley and David E. Brown A6 Geological setting of intrusion-related gold mineralization in southwestern New Brunswick Kathleen Thorne, Malcolm McLeod, Les Fyffe, and David Lentz A7 The Triassic-Jurassic faunal and floral transition in the Fundy Basin, Nova Scotia Paul Olsen, Jessica Whiteside, and Tim Fedak Post-conference Field Trips B1 Accretion of peri-Gondwanan terranes, northern mainland Nova Scotia Field Trip B4 and southern New Brunswick Sandra Barr, Susan Johnson, Brendan Murphy, Georgia Pe-Piper, David Piper, and Chris White Stratigraphic setting of base-metal deposits in the B2 The Joggins Cliffs of Nova Scotia: Lyell & Co's "Coal Age Galapagos" J.H. Calder, M.R. Gibling, and M.C. Rygel Bathurst Mining Camp, New Brunswick B3 Geology and volcanology of the Jurassic North Mountain Basalt, southern Nova Scotia
    [Show full text]