The Neural Basis of Head Direction and Spatial Context in the Insect Central Complex

Total Page:16

File Type:pdf, Size:1020Kb

The Neural Basis of Head Direction and Spatial Context in the Insect Central Complex THE NEURAL BASIS OF HEAD DIRECTION AND SPATIAL CONTEXT IN THE INSECT CENTRAL COMPLEX by ADRIENN G. VARGA Submitted in partial fulfillment of requirements For the degree of Doctor of Philosophy Advisor: Dr. Roy E. Ritzmann Department of Biology CASE WESTERN RESERVE UNIVERSITY May 2017 CASE WESTERN RESERVE UNIVERSITY SCHOOL OF GRADUATE STUDIES We hereby approve the thesis/dissertation of Adrienn G. Varga Candidate for the Doctor of Philosophy degree*. Committee Chair: Hillel J. Chiel Committee Member: Roy E. Ritzmann Committee Member: Mark A. Willis Committee Member: Jessica L. Fox Committee Member: David Friel Date of Defense: November 18th, 2016 *We also certify that written approval has been obtained for any proprietary material contained therein. Copyright © by Adrienn G. Varga All rights reserved Dedication For my Family Table of Contents Thesis Summary ................................................................................................................ 1 Chapter 1: Introduction ................................................................................................... 3 Mammalian navigation circuits ................................................................................... 6 Adaptive navigation .................................................................................................... 6 Head direction cells .................................................................................................. 10 Sensory cues underlying the head direction signal ................................................. 13 Head direction network ............................................................................................ 16 Relationship with other networks in the navigation system .................................... 17 Neural control of insect navigation in the central complex ..................................... 19 Central complex anatomy ......................................................................................... 19 Cellular composition of the central complex ........................................................... 21 Directional sensory signal processing in the central complex ................................ 23 Selection and maintenance of behavior ................................................................... 26 Visual and spatial memory ....................................................................................... 29 Visual pattern recognition .................................................................................. 29 Detour paradigm and spatial working memory ................................................. 31 Visual place learning .......................................................................................... 32 The physiological correlates of orientation in the central complex ....................... 33 i Local Field Potentials .................................................................................................. 35 The origin and function of local field potentials ..................................................... 35 Local field potentials in mammalian navigation circuits ......................................... 37 Rats rely on theta rhythm to synchronize navigational circuits ............................. 38 Bat navigational network activity ............................................................................. 39 Local field potentials in the arthropod brain ........................................................... 41 Oscillations in the insect brain ................................................................................. 41 Crayfish central complex network activity............................................................... 42 Summary ...................................................................................................................... 44 Chapter 2: Cellular Basis of Head Direction and Contextual Cues in the Insect Brain ................................................................................................................................. 47 Summary ...................................................................................................................... 48 Introduction ................................................................................................................. 49 Materials and Methods ............................................................................................... 53 Surgical procedures .................................................................................................. 53 Recording procedures ............................................................................................... 54 Spike sorting and data analysis ................................................................................ 57 Results .......................................................................................................................... 61 Central complex neurons encode head direction .................................................... 61 Tuning characteristics of head direction encoding neurons .................................. 62 Head direction encoding CX neurons rely upon allothetic and/or idiothetic cues 67 Head direction coding persists even in the absence of visual landmarks .............. 73 Central complex units encode rotation direction history ........................................ 75 ii Discussion ..................................................................................................................... 79 Chapter 3: Modulation of Central Complex Local Field Potentials by Head Direction and Spatial Context........................................................................................ 85 Summary ...................................................................................................................... 86 Introduction ................................................................................................................. 87 Materials and Methods ............................................................................................... 92 Experimental Procedures ......................................................................................... 92 Experimental subjects ............................................................................................... 92 Recording procedures ............................................................................................... 93 Data analysis and statistics ....................................................................................... 95 Results .......................................................................................................................... 98 Description of spontaneous LFPs in the cockroach central complex .................... 98 Head direction modulation of central complex network activity .......................... 101 Delta-band activity encodes head direction independent of the underlying sensory cues .......................................................................................................................... 104 Sensory context does not affect relative response magnitudes in the delta-band 106 Sensory context modulates the average power of central complex network activity in the theta-, beta- and gamma-bands, but not in the delta-band ......................... 111 Discussion ................................................................................................................... 114 Chapter 4: Conclusion .................................................................................................. 120 Considerations of the neural basis of navigation ................................................... 121 iii Broad discussion of major findings and their significance to the field of neurobiology .............................................................................................................. 123 Single neurons and LFPs encode head direction in the insect CX ...................... 124 Single neurons and LFPs encode spatial context cues in the insect CX .............. 128 Conclusions and Future Directions ......................................................................... 130 Appendix ........................................................................................................................ 131 Bibliography .................................................................................................................. 135 iv List of Tables Chapter 2: Table 2.1: . Landmark rotation experiment results indicate that CX units utilize five sensory strategies when encoding head direction. ....................................................... 70 Chapter 3: Table 3.1: Summary of LFP analysis results. ........................................................... 114 v List of Figures Chapter 1: Figure 1.1: Schematic illustration of the neural circuitry underlying mammalian navigation and context discrimination. ........................................................................ 12 Figure 1.2: Schematic illustration of the cockroach brain and the central complex (CX). ............................................................................................................................ 21 Chapter 2: Figure 2.1: Experimental design and paradigms to test head direction coding in the cockroach. .................................................................................................................... 55 Figure 2.2: CX units encode head direction by changes in firing rate.
Recommended publications
  • Representation of Spatial Orientation by the Intrinsic Dynamics of the Head-Direction Cell Ensemble: a Theory
    The Journal of Neuroscience, March 15, 1996, 16(6):2112-2126 Representation of Spatial Orientation by the Intrinsic Dynamics of the Head-Direction Cell Ensemble: A Theory Kechen Zhang Department of Cognitive Science, University of California at San Diego, La Jolla, California 92093-05 15 The head-direction (HD) cells found in the limbic system in disturbances to its shape, and the shift speed can be controlled freely moving rats represent the instantaneous head direction accurately by the strength of the odd-weight component. The of the animal in the horizontal plane regardless of the location generic formulation of the shift mechanism is determined of the animal. The internal direction represented by these cells uniquely within the current theoretical framework. The attractor uses both self-motion information for inet-tially based updating dynamics of the system ensures modality-independence of the and familiar visual landmarks for calibration. Here, a model of internal representation and facilitates the correction for cumu- the dynamics of the HD cell ensemble is presented. The sta- lative error by the putative local-view detectors. The model bility of a localized static activity profile in the network and a offers a specific one-dimensional example of a computational dynamic shift mechanism are explained naturally by synaptic mechanism in which a truly world-centered representation can weight distribution components with even and odd symmetry, be derived from observer-centered sensory inputs by integrat- respectively. Under symmetric weights or symmetric reciprocal ing self-motion information. connections, a stable activity profile close to the known direc- Key words: head-direction cell; spatial orientation; attractor tional tuning curves will emerge.
    [Show full text]
  • The Brain Compass: a Perspective on How Self-Motion Updates the Head Direction Cell Attractor
    bioRxiv preprint doi: https://doi.org/10.1101/189464; this version posted September 17, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. The brain compass: a perspective on how self-motion updates the head direction cell attractor Jean Laurens, Dora E. Angelaki Dept. of Neuroscience, Baylor College of Medicine, Houston, TX, 77030, USA This study was supported by National Institutes of Health grants R21 NS098146 and R01- DC004260. Address for correspondence: Angelaki, Dora Department of Neuroscience Baylor College of Medicine One Baylor Plaza Houston, TX 77030 Office: (713) 798-1469 E-mail: [email protected] ABSTRACT Head Direction cells form an internal compass that signals head azimuth orientation even in the absence of visual landmarks. It is well accepted that head direction properties are generated through a ring attractor that is updated using rotation self-motion cues. The properties and origin of this self-motion velocity drive remain, however, unknown. We propose a unified, quantitative framework whereby the attractor velocity input represents a multisensory self-motion estimate computed through an internal model that uses sensory prediction error based on vestibular, visual, and somatosensory cues to improve on-line motor drive. We show how context- dependent strength of recurrent connections within the attractor itself, rather than the self- motion input, explain differences in head direction cell firing between free foraging and restrained movements. We also summarize recent findings on how head tilt relative to gravity influences the azimuth coding of head direction cells, and explain why and how these effects reflect an updating self-motion velocity drive that is not purely egocentric.
    [Show full text]
  • Head Direction Cells: Properties and Functional Significance Robert U Mullet-L, James B Ranck Jr* and Jeffrey S Taubea
    196 Head direction cells: properties and functional significance Robert U Mullet-l, James B Ranck Jr* and Jeffrey S Taubea The strong signal carried by head direction cells in the Under all known circumstances, postsubicular HD cells, postsubiculum complements the positional signal carried the first class to be discovered, discharge only as a by hippocampal place cells; together, the directional and function of the direction in which the rat’s head points positional signals provide the information necessary to permit in the horizontal plane, independent of head location. rats to generate and carry out intelligent, efficient solutions Postsubicular HD cell discharge is rapid only when the to spatial problems. Our opinion is that the hippocampal head points in an -90” sector of headings centered on a positional system acts as a cognitive map and that the role ‘preferred direction’. The relationship between direction of the directional system is to put the map into register with and discharge rate is steep; the function is triangular, the environment. In this way, paths found using the map can so that firing rate decreases linearly in both directions be properly executed. Head direction cells have recently been away from the preferred direction, to be nearly zero when discovered in parts of the thalamus reciprocally connected 45” away from the peak [2,3’]. In contrast to place cells, with the postsubiculum; such cells provide important clues to the reliability of postsubicular HD cell firing is very the organization of the directional system. high. (Some of the properties of HD cells are shown in Figure 2c.) Addresses tg2Department of Physiology, SUNY Health Science Center at In this review, we will first briefly recapitulate what is Brooklyn, 450 Clarkson Avenue, Brooklyn, New York 11203, USA known about HD cells (also called directional cells), t e-mail: [email protected] and then summarize what has been learned about them se-mail: [email protected] during the past two years.
    [Show full text]
  • Flesh Flies (Diptera: Sarcophagidae) of Sandy and Marshy Habitats of the Polish Baltic Coast
    © Entomologica Fennica. 30 March 2009 Flesh flies (Diptera: Sarcophagidae) of sandy and marshy habitats of the Polish Baltic coast Elibieta Kaczorowska Kaczorowska, E. 2009: Flesh flies (Diptera: Sarcophagidae) of sandy and marshy habitats of the Polish Baltic coast. — Entomol. Fennica 20: 61—64. The results ofa seven-year study on flesh flies (Diptera: Sarcophagidae) in sandy and marshy habitats ofthe Polish Baltic coast are presented. During this research, carried out in 20 localities, 25 species of Sarcophagidae were collected, ofwhich 24 were new for the study areas. Based on these results, flesh fly abundance and trophic groups are described. E. Kaczorowska, Department ofInvertebrate Zoology, University ofGdansk, Al. Marszalka Pilsadskiego 46, 81—3 78 Gdynia, Poland; E—mail.‘ saline@ocean. aniv.gda.pl, telephone: 0048 58 5236642 Received 1 1 December 200 7, accepted 19 March 2008 1. Introduction menoptera, while others are predators or para- sitoids on insects and snails (Povolny & Verves Sarcophagidae is a species-rich family, distri- 1997). Therefore, flesh flies occur in various buted worldwide and comprising over 2500 de- kinds of biotopes, including coastal marshy and scribed species. At present more than 150 species sandy habitats. On the Polish Baltic coast, species of flesh flies are known from central Europe of Sarcophagidae have been found in low abun- (Povolny & Verves 1997) and 129 from Poland. dance, and only one species, Sarcophaga (Myo— The Polish fauna of Sarcophagidae is relatively rlzina) nigriventris Meigen, has so far been re- well known, but the state of knowledge about corded (Draber—Monko 1973). Szadziewski these flies is uneven for particular regions of the (1983), carrying out research on Diptera ofthe sa- country.
    [Show full text]
  • The Influence of Common Drugs and Drug Combinations on The
    The influence of Methylphenidate Hydrochloride on the development of the forensically significant blow fly Chrysomya chloropyga (Diptera: Calliphoridae) in the Western Cape, South Africa by Hartwig Visser VSSHAR002 SUBMITTED TO THE UNIVERSITY OF CAPE TOWN In partial fulfilment of the requirements for the degree MPhil (Biomedical Forensic Science) Faculty of Health Sciences Division of Forensic Medicine and Toxicology UNIVERSITY OF CAPE TOWN 2016 Supervisor: Dr Marise Heyns Co-supervisor: Ms Bronwen Davies University ofape Town Division of Forensic Medicine and Toxicology University of Cape Town The copyright of this thesis vests in the author. No quotation from it or information derived from it is to be published without full acknowledgement of the source. The thesis is to be used for private study or non- commercial research purposes only. Published by the University of Cape Town (UCT) in terms of the non-exclusive license granted to UCT by the author. University of Cape Town University ofape Town ii iii iv v vi vii Table of Contents Title page ......................................................................................................................... i Declaration ...................................................................................................................... ii TurnItIn report ................................................................................................................. iii Table of contents .........................................................................................................
    [Show full text]
  • May-Britt Moser Norwegian University of Science and Technology (NTNU), Trondheim, Norway
    Grid Cells, Place Cells and Memory Nobel Lecture, 7 December 2014 by May-Britt Moser Norwegian University of Science and Technology (NTNU), Trondheim, Norway. n 7 December 2014 I gave the most prestigious lecture I have given in O my life—the Nobel Prize Lecture in Medicine or Physiology. Afer lectures by my former mentor John O’Keefe and my close colleague of more than 30 years, Edvard Moser, the audience was still completely engaged, wonderful and responsive. I was so excited to walk out on the stage, and proud to present new and exciting data from our lab. Te title of my talk was: “Grid cells, place cells and memory.” Te long-term vision of my lab is to understand how higher cognitive func- tions are generated by neural activity. At frst glance, this seems like an over- ambitious goal. President Barack Obama expressed our current lack of knowl- edge about the workings of the brain when he announced the Brain Initiative last year. He said: “As humans, we can identify galaxies light years away; we can study particles smaller than an atom. But we still haven’t unlocked the mystery of the three pounds of matter that sits between our ears.” Will these mysteries remain secrets forever, or can we unlock them? What did Obama say when he was elected President? “Yes, we can!” To illustrate that the impossible is possible, I started my lecture by showing a movie with a cute mouse that struggled to bring a biscuit over an edge and home to its nest. Te biscuit was almost bigger than the mouse itself.
    [Show full text]
  • Flies Matter: a Study of the Diversity of Diptera Families
    OPEN ACCESS The Journaf of Threatened Taxa fs dedfcated to buffdfng evfdence for conservafon gfobaffy by pubffshfng peer-revfewed arfcfes onffne every month at a reasonabfy rapfd rate at www.threatenedtaxa.org . Aff arfcfes pubffshed fn JoTT are regfstered under Creafve Commons Atrfbufon 4.0 Internafonaf Lfcense unfess otherwfse menfoned. JoTT affows unrestrfcted use of arfcfes fn any medfum, reproducfon, and dfstrfbufon by provfdfng adequate credft to the authors and the source of pubffcafon. Journaf of Threatened Taxa Buffdfng evfdence for conservafon gfobaffy www.threatenedtaxa.org ISSN 0974-7907 (Onffne) | ISSN 0974-7893 (Prfnt) Communfcatfon Fffes matter: a study of the dfversfty of Dfptera famfffes (Insecta: Dfptera) of Mumbaf Metropofftan Regfon, Maharashtra, Indfa, and notes on thefr ecofogfcaf rofes Anfruddha H. Dhamorfkar 26 November 2017 | Vof. 9| No. 11 | Pp. 10865–10879 10.11609/jot. 2742 .9. 11. 10865-10879 For Focus, Scope, Afms, Poffcfes and Gufdeffnes vfsft htp://threatenedtaxa.org/About_JoTT For Arfcfe Submfssfon Gufdeffnes vfsft htp://threatenedtaxa.org/Submfssfon_Gufdeffnes For Poffcfes agafnst Scfenffc Mfsconduct vfsft htp://threatenedtaxa.org/JoTT_Poffcy_agafnst_Scfenffc_Mfsconduct For reprfnts contact <[email protected]> Pubffsher/Host Partner Threatened Taxa Journal of Threatened Taxa | www.threatenedtaxa.org | 26 November 2017 | 9(11): 10865–10879 Flies matter: a study of the diversity of Diptera families (Insecta: Diptera) of Mumbai Metropolitan Region, Communication Maharashtra, India, and notes on their ecological roles ISSN 0974-7907 (Online) ISSN 0974-7893 (Print) Aniruddha H. Dhamorikar OPEN ACCESS B-9/15, Devkrupa Soc., Anand Park, Thane (W), Maharashtra 400601, India [email protected] Abstract: Diptera is one of the three largest insect orders, encompassing insects commonly known as ‘true flies’.
    [Show full text]
  • Neuronal Properties and Synaptic Connectivity in Rodent Presubiculum Jean Simonnet
    Neuronal properties and synaptic connectivity in rodent presubiculum Jean Simonnet To cite this version: Jean Simonnet. Neuronal properties and synaptic connectivity in rodent presubiculum. Neurons and Cognition [q-bio.NC]. Université Pierre et Marie Curie - Paris VI, 2014. English. NNT : 2014PA066435. tel-02295014 HAL Id: tel-02295014 https://tel.archives-ouvertes.fr/tel-02295014 Submitted on 24 Sep 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Spécialité Neurosciences École doctorale Cerveau – Cognition – Comportement Présentée par : Jean Simonnet Pour obtenir le grade de DOCTEUR DE L’UNIVERSITÉ PIERRE ET MARIE CURIE Sujet de la thèse : Neuronal properties and synaptic connectivity in rodent presubiculum Soutenue le 23.09.2014 devant le jury composé de : Dr Jean-Christophe Poncer Président Dr Dominique Debanne Rapporteur Dr Maria Cecilia Angulo Rapportrice Pr Hannah Monyer Examinatrice Dr Bruno Cauli Examinateur Dr Desdemona Fricker Directrice de thèse Université Pierre & Marie Curie - Paris 6 Tél. Secrétariat : 01 42 34 68 35 Bureau d’accueil, inscription des doctorants Fax : 01 42 34 68 40 et base de données Tél. pour les étudiants de A à EL : 01 42 34 68 41 Esc.
    [Show full text]
  • Jekyll Island Conservation Plan Floral and Faunal Lists
    DRAFT 13 June 2007 JEKYLL ISLAND CONSERVATION PLAN FLORAL AND FAUNAL LISTS Submitted To: The Jekyll Island State Park Authority 381 Riverview Drive Jekyll Island, Georgia 31527 By: Cabin Bluff Land Management P.O. Box 999 Woodbine, Georgia 31569 912-673-9309 - Telephone 912-576-7154 – Facsimile H-1 DRAFT 13 June 2007 JEKYLL ISLAND CONSERVATION PLAN FLORAL & FAUNAL LISTS INTRODUCTION This section of the plan contains lists of plants, selected invertebrate, fish, amphibian, reptile, bird, mammal species that may be associated with Jekyll Island. For some taxonomic groups, specifically the invertebrates, fish, birds, and marine mammals, the area includes Jekyll Island and the nearshore waters, while for the other groups the list is pretty much a list of species that may actually occur on the island. For most of the lists, the species are labeled as verified to occur on the island, probably occur on the island (but not verified), or could occur on the island. Verification in this instance was through simple observation by one of the team member or other reliable person with a background in the species being considered, available field notes, literature review, or historically collected specimen. Released animals from the Jekyll Island Club and plantation eras that are not extant today, but have historic records are also noted in some of the lists. H-2 DRAFT 13 June 2007 PLANTS This list of vascular plants occurring in the undeveloped portions of Jekyll Island was compiled from literature reviews, limited herbarium records, and visits to the island. The roughly 845 species on this list have either been verified (V) to occur on the island, probably (P) occur on the island and can be verified with additional field work, or could (C) occur on the island.
    [Show full text]
  • Encoding of 3D Head Direction Information in the Human Brain
    Received: 31 May 2018 Revised: 30 October 2018 Accepted: 26 November 2018 DOI: 10.1002/hipo.23060 RESEARCH ARTICLE Encoding of 3D head direction information in the human brain Misun Kim | Eleanor A. Maguire Wellcome Centre for Human Neuroimaging, Queen Square Institute of Neurology, Abstract University College London, London, United Head direction cells are critical for navigation because they convey information about which Kingdom direction an animal is facing within an environment. To date, most studies on head direction Correspondence encoding have been conducted on a horizontal two-dimensional (2D) plane, and little is known Eleanor Maguire, Wellcome Centre for Human Neuroimaging, Queen Square Institute of about how three-dimensional (3D) direction information is encoded in the brain despite humans Neurology, University College London, and other animals living in a 3D world. Here, we investigated head direction encoding in the 12 Queen Square, London WC1N 3AR, United human brain while participants moved within a virtual 3D “spaceship” environment. Movement Kingdom. was not constrained to planes and instead participants could move along all three axes in volu- Email: [email protected] metric space as if in zero gravity. Using functional magnetic resonance imaging (fMRI) multivoxel Funding information Wellcome, Grant/Award Numbers: 101759/ pattern similarity analysis, we found evidence that the thalamus, particularly the anterior por- Z/13/Z, 102263/Z/13/Z, 203147/Z/16/Z; tion, and the subiculum encoded the horizontal component of 3D head direction (azimuth). In Samsung Scholarship contrast, the retrosplenial cortex was significantly more sensitive to the vertical direction (pitch) than to the azimuth.
    [Show full text]
  • Filth Flies General Information There Are About 160,000 Known Species of Flies
    Status ☑ Can transmit pathogens on its body ☑ Possible health threat Filth Flies General Information There are about 160,000 known species of flies. They are found everywhere in the world — even in Antarctica. Flies have only two wings and belong to the order of insects called Diptera, which means “two wings.” Many flies are beneficial; several are involved in plant pollination, others are predators or parasites of other insects. Flies that reproduce in animal excrement, food waste, and garbage are called filth flies. Two common species are house flies and bottle flies. Filth flies are a nuisance as well as carriers of organisms that cause diseases in humans and domestic animals. Life Cycle Flies have four stages in their life cycle: egg, larva, pupa, and adult. In a period of two weeks, one filth fly may lay more than 1,000 eggs in animal excrement, garbage, kitchen refuse, piled lawn clippings, and other decomposing plant and Green Bottle Fly animal matter. In warm weather, the life cycle (egg to adult) usually takes eight days. Due to this amazing reproductive capacity, tremendous populations can occur when the right environmental conditions are present. In situations where flies are breeding prolifically, their populations can quickly reach How Can I Get Rid of Filth Flies? very high numbers and they become major nuisance pests in • Eliminate potential sources of food and odors. parks, schools, and neighborhoods. • Place garbage in plastic bags inside of trash cans. • Keep trash lids closed. • Dispose of trash at least every seven days. • Pick up outdoor pet droppings regularly and place them in sealed plastic bags.
    [Show full text]
  • Johnston Atoll Species List Ryan Rash
    Johnston Atoll Species List Ryan Rash Birds X: indicates species that was observed but not Anatidae photographed Green-winged Teal (Anas crecca) (DOR) Northern Pintail (Anas acuta) X Kingdom Ardeidae Cattle Egret (Bubulcus ibis) Phylum Charadriidae Class Pacific Golden-Plover (Pluvialis fulva) Order Fregatidae Family Great Frigatebird (Fregata minor) Genus species Laridae Black Noddy (Anous minutus) Brown Noddy (Anous stolidus) Grey-Backed Tern (Onychoprion lunatus) Sooty Tern (Onychoprion fuscatus) White (Fairy) Tern (Gygis alba) Phaethontidae Red-Tailed Tropicbird (Phaethon rubricauda) White-Tailed Tropicbird (Phaethon lepturus) Procellariidae Wedge-Tailed Shearwater (Puffinus pacificus) Scolopacidae Bristle-Thighed Curlew (Numenius tahitiensis) Ruddy Turnstone (Arenaria interpres) Sanderling (Calidris alba) Wandering Tattler (Heteroscelus incanus) Strigidae Hawaiian Short-Eared Owl (Asio flammeus sandwichensis) Sulidae Brown Booby (Sula leucogaster) Masked Booby (Sula dactylatra) Red-Footed Booby (Sula sula) Fish Acanthuridae Achilles Tang (Acanthurus achilles) Achilles Tang x Goldrim Surgeonfish Hybrid (Acanthurus achilles x A. nigricans) Black Surgeonfish (Ctenochaetus hawaiiensis) Blueline Surgeonfish (Acanthurus nigroris) Convict Tang (Acanthurus triostegus) Goldrim Surgeonfish (Acanthurus nigricans) Gold-Ring Surgeonfish (Ctenochaetus strigosus) Orangeband Surgeonfish (Acanthurus olivaceus) Orangespine Unicornfish (Naso lituratus) Ringtail Surgeonfish (Acanthurus blochii) Sailfin Tang (Zebrasoma veliferum) Yellow Tang (Zebrasoma flavescens)
    [Show full text]