(Plum Pox Virus) En Especies Frutales Del Género Prunus

Total Page:16

File Type:pdf, Size:1020Kb

(Plum Pox Virus) En Especies Frutales Del Género Prunus Centro de Edafología y Biología Aplicada de Segura Tesis Doctoral Resistencia a la sharka (Plum pox virus) en especies frutales del género Prunus Directores Dr. Federico Dicenta López-Higuera Dr. Pedro Martínez Gómez Manuel Rubio Angulo Ingeniero Agrónomo Murcia, 2006 ÍNDICE GENERAL 1. ANTECEDENTES, JUSTIFICACIÓN Y OBJETIVOS..................................... 3 1.1. El cultivo de frutales del género Prunus ................................................. 3 1.1.1. Descripción taxonómica y botánica................................................ 3 1.1.2. Origen y situación actual del cultivo .............................................. 5 1.2. El virus causante de la sharka ............................................................. 10 1.2.1. Taxonomía y descripción del virus............................................... 10 1.2.2. Origen y situación actual de la virosis en España.......................... 14 1.2.3. Detección y localización del virus ................................................ 14 1.2.4. Epidemiología y control de la virosis ............................................ 19 1.3. Susceptibilidad varietal, sintomatología y fuentes de resistencia............. 21 1.4. Justificación y objetivos ...................................................................... 29 2. MATERIAL Y MÉTODOS........................................................................... 33 2.1. Material vegetal.................................................................................. 33 2.1.1. Plantas indicadoras .................................................................... 34 2.1.2. Variedades de frutales del género Prunus .................................... 35 2.1.2.1. Albaricoqueros .................................................................. 35 2.1.2.2. Ciruelos ............................................................................ 38 2.1.2.3. Melocotoneros y nectarinas................................................ 40 2.1.2.4. Almendros ........................................................................ 42 2.1.3. Patrones de frutales del género Prunus ....................................... 45 2.1.4. Cruzamientos inter e intraespecíficos........................................... 48 2.1.4.1. Albaricoquero x albaricoquero ............................................ 49 2.1.4.2. P. mandshurica x albaricoquero.......................................... 50 2.1.4.3. Melocotonero x almendro................................................... 50 2.2. Aislado del Plum pox virus .................................................................. 51 2.3. Evaluación de la resistencia a la sharka................................................ 51 2.3.1. Evaluación en condiciones controladas en invernadero ................. 52 2.3.2. Evaluación en condiciones de campo........................................... 57 2.4. Técnicas de detección del virus ........................................................... 58 2.4.1. ELISA-DASI ............................................................................... 58 2.4.2. Hibridación molecular no radioactiva ........................................... 59 2.4.3. RT-PCR ..................................................................................... 60 2.5. Localización del virus .......................................................................... 62 2.5.1. Inmunoimpresión de la proteína de la cápsida ............................. 62 2.5.2. Impresión del ácido nucleico....................................................... 63 2.6. Clasificación del nivel de resistencia..................................................... 64 3. EVALUACIÓN DE LA RESISTENCIA A LA SHARKA EN ESPECIES DEL GÉNERO PRUNUS .......................................................................................................69 3.1. Introducción ...................................................................................... 69 3.2. Material ensayado .............................................................................. 73 3.3. Metodología ....................................................................................... 74 3.3.1. Comparación de las técnicas de detección del virus ...................... 74 3.3.2. Comparación de las técnicas de localización del virus en los tejidos . 74 3.3.3. Estudio del movimiento del virus a larga distancia ........................ 75 3.3.4. Evaluación de la resistencia en invernadero y en campo ............... 77 3.3.5. Optimización de la evaluación de la resistencia en invernadero...... 77 3.4. Resultados y discusión ........................................................................ 78 3.4.1. Comparación de las técnicas de detección del virus ...................... 78 3.4.2. Comparación de las técnicas de localización del virus en los tejidos . 81 3.4.3. Estudio del movimiento del virus a larga distancia ........................ 86 3.4.4. Comparación de la evaluación en invernadero y campo ................ 89 3.4.5. Optimización de la evaluación de la resistencia en invernadero...... 94 3.5. Conclusiones .................................................................................... 102 4. COMPORTAMIENTO FRENTE A LA SHARKA EN ESPECIES DEL GÉNERO PRUNUS ..................................................................................................... 105 4.1. Introducción .................................................................................... 105 4.2. Material ensayado ............................................................................ 106 4.3. Metodología ..................................................................................... 107 4.4. Resultados y discusión ...................................................................... 108 4.4.1. Variedades de frutales del género Prunus .................................. 108 4.4.1.1. Albaricoqueros ................................................................ 108 4.4.1.2. Ciruelos .......................................................................... 112 4.4.1.3. Melocotoneros y nectarinas .............................................. 114 4.4.1.4. Almendros ...................................................................... 118 4.4.2. Patrones de frutales del género Prunus ..................................... 121 4.5. Conclusiones .................................................................................... 128 5. TRANSMISIÓN DE LA RESISTENCIA A LA SHARKA EN ESPECIES DEL GÉNERO PRUNUS ...................................................................................... 131 5.1. Introducción .................................................................................... 131 5.2. Material ensayado ............................................................................ 134 5.3. Métodología ..................................................................................... 135 5.3.1. Evaluación de la resistencia ...................................................... 135 5.3.2. Hípotesis de herencia y ánalisis estadístico................................. 135 5.4. Resultados y discusión ...................................................................... 136 5.4.1. Herencia de la resistencia en albaricoquero................................ 136 5.4.2. Prunus mandshurica como fuente de resistencia en albaricoquero ..... 142 5.4.3. El almendro como fuente de resistencia en melocotonero ........... 144 5.5. Conclusiones .................................................................................... 148 6. RESUMEN Y CONCLUSIONES GENERALES............................................151 7. BIBLIOGRAFÍA.......................................................................................157 8. ANEXOS ..................................................................................................179 1. Cultivo de plantas en invernadero..........................................................179 2. Técnica ELISA-DASI .............................................................................180 3. Hibridación molecular no radioactiva......................................................182 3.1. Síntesis de la sonda .....................................................................182 3.2. Hibridación molecular no radioactiva .............................................183 4. Extracción de ARN con Kit Qiagen® .......................................................185 5. Técnica RT-PCR ...................................................................................186 6. Inmunoimpresión para la localización de la proteina del virus ..................188 7. Impresión para la localización del ácido nucleico del virus .......................190 8. Tablas optimización de la evaluación de la resistencia en invernadero......192 INDICE DE TABLAS 2. MATERIAL Y MÉTODOS Tabla 2.1. Clasificación botánica y uso agrícola de las especies del género Prunus estudiadas................................................................................................. 33 3. EVALUACIÓN DE LA RESISTENCIA A LA SHARKA EN ESPECIES DEL GÉNERO PRUNUS Tabla 3.1. Comparación de tres métodos diferentes para la detección del PPV: ELISA-DASI, hibridación molecular no radioactiva y RT-PCR ............................. 80 Tabla 3.2. Verificación de la presencia de sharka mediante observación visual de síntomas y la técnica ELISA-DASI ................................................................. 82 Tabla 3.3. Localización del PPV en secciones de tallo y pecíolo en diferentes especies del género Prunus mediante inmunoimpresión
Recommended publications
  • TREES for WESTERN NEBRASKA Justin Evertson & Bob Henrickson
    THE NEBRASKA STATEWIDE ARBORETUM PRESENTS TREES FOR WESTERN NEBRASKA Justin Evertson & Bob Henrickson. For more plant information, visit plantnebraska.org or retreenbraska.unl.edu The following species are recommended for areas in the western half of Nebraska and/or typically receive less than 20” of moisture per year. Size Range: The size range indicated for each plant is the expected average mature height x spread for Nebraska. Large Deciduous Trees (typically over 40 feet tall at maturity) NOTE ON ASH SPECIES: Native American ash trees are being decimated by Emerald Ash Borer (EAB) and the insect is now in Nebraska. NSA recommends that native ash species no longer be planted in Nebraska. 1. Ash, Manchurian - Fraxinus mandshurica (from Asia; upright growth; drought tolerant; may be resistant to EAB; 40’x 30’) 2. Catalpa, Northern - Catalpa speciosa (native; tough tree; large, heart-shaped leaves, showy flowers and long seed pods; 50’x 35’) 3. Coffeetree, Kentucky - Gymnocladus dioicus (native; amazingly adaptable; beautiful winter form; 50’x 40’) 4. Cottonwood, Eastern - Populus deltoides (majestic native; not for extremely dry sites; avoid most cultivars; 80’x 60’) 5. Cottonwood, Lanceleaf - Populus acuminata (native; naturally occurring hybrid; narrow leaves; for west. G.P.; 50’x 35’) 6. Elm, American - Ulums americana (disease resistant varieties include ‘Valley Forge’ and ‘New Harmony’; 50’x50’) 7. Elm, Japanese - Ulmus davidiana var. japonica (cold tolerant; rounded; glossy green; ‘Discovery’ is a cultivar from Manitoba Canada; 45’x 45’) 8. Elm, Rock - Ulmus thomasii (distinctive corky stems; upright habit; DED resistance in west; 50-60’x 30-40’) New Elm, Hybrids - many disease resistant hybrid elms have been developed and show promise, including: 9.
    [Show full text]
  • TREES for WESTERN NEBRASKA Justin Evertson & Bob Henrickson
    THE NEBRASKA STATEWIDE ARBORETUM PRESENTS TREES FOR WESTERN NEBRASKA Justin Evertson & Bob Henrickson. For more plant information, visit plantnebraska.org or retreenbraska.unl.edu The following species are recommended for areas in the western half of Nebraska and/or typically receive less than 20” of moisture per year. Size Range: The size range indicated for each plant is the expected average mature height x spread for Nebraska. Large Deciduous Trees (typically over 40 feet tall at maturity) 1. Ash, Black ‐ Fraxinus nigra (good on wet sites; very cold tolerant; Fallgold a common form; 45’x 35’) 2. Ash, Green ‐ Fraxinus pennsylvanica (native; very adaptable; good on wet or dry sites; over‐planted; 40‐60’x 25‐40’; 3. Ash, White ‐ Fraxinus americana (native eastern G.P.; good purple/yellow fall color; 40‐50’x 40‐50’) NOTE ON ASH SPECIES: Native American ash trees including those above are being decimated by Emerald Ash Borer (EAB) and the insect is now in Nebraska. NSA recommends that native ash species no longer be planted in Nebraska. 4. Ash, Manchurian ‐ Fraxinus mandshurica (from Asia; upright growth; drought tolerant; may be resistant to EAB; 40’x 30’) 5. Catalpa, Northern ‐ Catalpa speciosa (native; tough tree; large, heart‐shaped leaves, showy flowers and long seed pods; 50’x 35’) 6. Coffeetree, Kentucky ‐ Gymnocladus dioicus (native; amazingly adaptable; beautiful winter form; 50’x 40’) 7. Cottonwood, Eastern ‐ Populus deltoides (majestic native; not for extremely dry sites; avoid most cultivars; 80’x 60’) 8. Cottonwood, Lanceleaf ‐ Populus acuminata (native; naturally occurring hybrid; narrow leaves; for west. G.P.; 50’x 35’) 9.
    [Show full text]
  • The Ornamental Trees of South Dakota N.E
    South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange South Dakota State University Agricultural Bulletins Experiment Station 4-1-1931 The Ornamental Trees of South Dakota N.E. Hansen Follow this and additional works at: http://openprairie.sdstate.edu/agexperimentsta_bulletins Recommended Citation Hansen, N.E., "The Ornamental Trees of South Dakota" (1931). Bulletins. Paper 260. http://openprairie.sdstate.edu/agexperimentsta_bulletins/260 This Bulletin is brought to you for free and open access by the South Dakota State University Agricultural Experiment Station at Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Bulletins by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. Bulletin 260 April, 1931 The Ornamental Trees of South Dakota Figure I-The May Day Tree. Horticulture Department Agricultural Experiment Station South Dakota State College of Agriculture and Mechanic Arts Brookings, S. Dak. The Ornamental Trees of South Dakota N. E. Hansen This bulletin describes the deciduous trees. By deciduous trees is meant those that shed their leaves in winter. The evergreens of South Dakota are described in bulletin 254, October 1930. A bulletin on "The Ornamental Shrubs of South Dakota" is ready for early publication. The following list should be studied in connection with the trees described in South Dakota bulletin 246, "'The Shade, Windbreak and Timber Trees of South Dakota," 48 pages, March 1930. All the trees in both bulletins have ornamental value in greater or less degree.
    [Show full text]
  • Karyotypic Characteristics and Genetic Relationships of Apricot Accessions from Different Ecological Groups
    J. AMER.SOC.HORT.SCI. 146(1):68–76. 2021. https://doi.org/10.21273/JASHS04956-20 Karyotypic Characteristics and Genetic Relationships of Apricot Accessions from Different Ecological Groups Wenwen Li, Liqiang Liu, Weiquan Zhou, Yanan Wang, and Xiang Ding College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China Guoquan Fan and Shikui Zhang Luntai National Fruit Germplasm Resources Garden of Xinjiang Academy of Agricultural Sciences, Luntai, Xinjiang 841600, China Kang Liao College of Horticulture and Forestry, Xinjiang Agricultural University, Urumqi, Xinjiang 830052, China ADDITIONAL INDEX WORDS. chromosome number, diversity, karyotype analysis, P. armeniaca ABSTRACT. The present study aims to reveal the karyotypic characteristics and genetic relationships of apricot (Prunus armeniaca L.) accessions from different ecological groups. Fourteen, 9, and 30 accessions from the Central Asian ecological group, North China ecological group, and Dzhungar-Ili ecological group, respectively, were analyzed according to the conventional pressing plate method. The results showed that all the apricot accessions from the different ecological groups were diploid (2n =2x = 16). The total haploid length of the chromosome set of the selected accessions ranged from 8.11 to 12.75 mm, which was a small chromosome, and no satellite chromosomes were detected. All accessions had different numbers of median-centromere chromosomes or sub-median-centromere chromosomes. The karyotypes of the selected accessions were classified as 1A or 2A. Principal component analysis revealed that the long-arm/short-arm ratio (0.968) and the karyotype symmetry index (L0.979) were the most valuable parameters, and cluster analysis revealed that the accessions from the Central Asian ecological group and Dzhungar-Ili ecological group clustered together.
    [Show full text]
  • Phylogeography of Prunus Armeniaca L. Revealed by Chloroplast DNA And
    www.nature.com/scientificreports OPEN Phylogeography of Prunus armeniaca L. revealed by chloroplast DNA and nuclear ribosomal sequences Wen‑Wen Li1, Li‑Qiang Liu1, Qiu‑Ping Zhang2, Wei‑Quan Zhou1, Guo‑Quan Fan3 & Kang Liao1* To clarify the phytogeography of Prunus armeniaca L., two chloroplast DNA fragments (trnL‑trnF and ycf1) and the nuclear ribosomal DNA internal transcribed spacer (ITS) were employed to assess genetic variation across 12 P. armeniaca populations. The results of cpDNA and ITS sequence data analysis showed a high the level of genetic diversity (cpDNA: HT = 0.499; ITS: HT = 0.876) and a low level of genetic diferentiation (cpDNA: FST = 0.1628; ITS: FST = 0.0297) in P. armeniaca. Analysis of molecular variance (AMOVA) revealed that most of the genetic variation in P. armeniaca occurred among individuals within populations. The value of interpopulation diferentiation (NST) was signifcantly higher than the number of substitution types (GST), indicating genealogical structure in P. armeniaca. P. armeniaca shared genotypes with related species and may be associated with them through continuous and extensive gene fow. The haplotypes/genotypes of cultivated apricot populations in Xinjiang, North China, and foreign apricot populations were mixed with large numbers of haplotypes/ genotypes of wild apricot populations from the Ili River Valley. The wild apricot populations in the Ili River Valley contained the ancestral haplotypes/genotypes with the highest genetic diversity and were located in an area considered a potential glacial refugium for P. armeniaca. Since population expansion occurred 16.53 kyr ago, the area has provided a suitable climate for the population and protected the genetic diversity of P.
    [Show full text]
  • „Фитохемијска Анализа И Биолошка Активност Екстраката Prunus Mahaleb L., P
    УНИВЕРЗИТЕТ У БЕОГРАДУ БИОЛОШКИ ФАКУЛТЕТ Ивона З. Величковић „Фитохемијска анализа и биолошка активност екстраката Prunus mahaleb L., P. spinosa L., Rubus discolor Weihe & Nees и R. serpens Weihe ex Lej & Court (Rosaceae)“ докторска дисертација Београд, 2021 UNIVERSITY OF BELGRADE FACULTY OF BIOLOGY Ivona Z. Veličković „Phytochemical analysis and biological activity of Prunus mahaleb L., P. spinosa L., Rubus discolor Weihe & Nees and R. serpens Weihe ex Lej & Court extracts (Rosaceae)“ Doctoral Dissertation Belgrade, 2021 Комисија за оцену и одбрану докторске дисертације: Др Славица Грујић, доцент, ментор Универзитет у Београду – Биолошки факултет _____________________________________ Др Жељко Жижак, виши научни сарадник, ментор Институт за онкологију и радиологију Србије ____________________________________ Др Наташа Симин, ванредни професор, члан Универзитет у Новом Саду – Природно-математички факултет _____________________________________ Др Марија Иванов, научни сарадник, члан Универзитет у Београду – Институт за биолошка истраживања „Синиша Станковић“, Институт од Националног значаја за Републику Србију _____________________________________ Др Соња Дулетић-Лаушевић, редовни професор, члан Универзитет у Београду – Биолошки факултет _____________________________________ Датум одбране: _____________________ Захвалница Овом приликом бих желела да искажем захвалност свима који су дали допринос приликом израде ове докторске дисертације. Најпре бих захвалила својим менторима – Др Славици Грујић на дугогодишњој сарадњи, на помоћи приликом конципирања теме, великој подршци и стручним саветима приликом писања докторске дисертације чиме је њен квалитет знатно побољшан; Др Жељку Жишку на увек јасним и прецизним одговорима на сва моја питања у вези са антипролиферативном активношћу, као и на корисним сугестијама приликом писања радова и тезе. Др Марији Иванов захваљујем на помоћи приликом одређивања антимикробне активности екстраката, на стручним саветима и ведрини којом је олакшала и улепшала наш рад у лабораторији.
    [Show full text]
  • Intoduction to Ethnobotany
    Intoduction to Ethnobotany The diversity of plants and plant uses Draft, version November 22, 2018 Shipunov, Alexey (compiler). Introduction to Ethnobotany. The diversity of plant uses. November 22, 2018 version (draft). 358 pp. At the moment, this is based largely on P. Zhukovskij’s “Cultivated plants and their wild relatives” (1950, 1961), and A.C.Zeven & J.M.J. de Wet “Dictionary of cultivated plants and their regions of diversity” (1982). Title page image: Mandragora officinarum (Solanaceae), “female” mandrake, from “Hortus sanitatis” (1491). This work is dedicated to public domain. Contents Cultivated plants and their wild relatives 4 Dictionary of cultivated plants and their regions of diversity 92 Cultivated plants and their wild relatives 4 5 CEREALS AND OTHER STARCH PLANTS Wheat It is pointed out that the wild species of Triticum and rela­ted genera are found in arid areas; the greatest concentration of them is in the Soviet republics of Georgia and Armenia and these are regarded as their centre of origin. A table is given show- ing the geographical distribution of 20 species of Triticum, 3 diploid, 10 tetraploid and 7 hexaploid, six of the species are endemic in Georgia and Armenia: the diploid T. urarthu, the tetraploids T. timopheevi, T. palaeo-colchicum, T. chaldicum and T. carthlicum and the hexaploid T. macha, Transcaucasia is also considered to be the place of origin of T. vulgare. The 20 species are described in turn; they comprise 4 wild species, T. aegilopoides, T. urarthu (2n = 14), T. dicoccoides and T. chaldicum (2n = 28) and 16 cultivated species. A number of synonyms are indicated for most of the species.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 7,973,216 B2 Espley Et Al
    US007973216 B2 (12) United States Patent (10) Patent No.: US 7,973,216 B2 Espley et al. (45) Date of Patent: Jul. 5, 2011 (54) COMPOSITIONS AND METHODS FOR 6,037,522 A 3/2000 Dong et al. MODULATING PGMENT PRODUCTION IN 6,074,877 A 6/2000 DHalluin et al. 2004.0034.888 A1 2/2004 Liu et al. PLANTS FOREIGN PATENT DOCUMENTS (75) Inventors: Richard Espley, Auckland (NZ); Roger WO WOO1, 59 103 8, 2001 Hellens, Auckland (NZ); Andrew C. WO WO O2/OO894 1, 2002 WO WO O2/O55658 T 2002 Allan, Auckland (NZ) WO WOO3,0843.12 10, 2003 WO WO 2004/096994 11, 2004 (73) Assignee: The New Zealand Institute for Plant WO WO 2005/001050 1, 2005 and food Research Limited, Auckland (NZ) OTHER PUBLICATIONS Bovy et al. (Plant Cell, 14:2509-2526, Published 2002).* (*) Notice: Subject to any disclaimer, the term of this Wells (Biochemistry 29:8509-8517, 1990).* patent is extended or adjusted under 35 Guo et al. (PNAS, 101: 9205-9210, 2004).* U.S.C. 154(b) by 0 days. Keskinet al. (Protein Science, 13:1043-1055, 2004).* Thornton et al. (Nature structural Biology, structural genomics (21) Appl. No.: 12/065,251 supplement, Nov. 2000).* Ngo et al., (The Protein Folding Problem and Tertiary Structure (22) PCT Filed: Aug. 30, 2006 Prediction, K. Merz., and S. Le Grand (eds.) pp. 492-495, 1994).* Doerks et al., (TIG, 14:248-250, 1998).* (86). PCT No.: Smith et al. (Nature Biotechnology, 15:1222-1223, 1997).* Bork et al. (TIG, 12:425-427, 1996).* S371 (c)(1), Vom Endt et al.
    [Show full text]
  • Host Plant List of the Scale Insects (Hemiptera: Coccomorpha) in South Korea
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 3-27-2020 Host plant list of the scale insects (Hemiptera: Coccomorpha) in South Korea Soo-Jung Suh Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. March 27 2020 INSECTA 26 urn:lsid:zoobank. A Journal of World Insect Systematics org:pub:FCE9ACDB-8116-4C36- UNDI M BF61-404D4108665E 0757 Host plant list of the scale insects (Hemiptera: Coccomorpha) in South Korea Soo-Jung Suh Plant Quarantine Technology Center/APQA 167, Yongjeon 1-ro, Gimcheon-si, Gyeongsangbuk-do, South Korea 39660 Date of issue: March 27, 2020 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Soo-Jung Suh Host plant list of the scale insects (Hemiptera: Coccomorpha) in South Korea Insecta Mundi 0757: 1–26 ZooBank Registered: urn:lsid:zoobank.org:pub:FCE9ACDB-8116-4C36-BF61-404D4108665E Published in 2020 by Center for Systematic Entomology, Inc. P.O. Box 141874 Gainesville, FL 32614-1874 USA http://centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e.
    [Show full text]
  • AVALIAÇÃO DE PORTA ENXERTOS CLONAIS DO GÊNERO Prunus Spp
    UNIVERSIDADE FEDERAL DA FRONTEIRA SUL CAMPUS ERECHIM PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIA E TECNOLOGIA AMBIENTAL CURSO DE MESTRADO EM CIÊNCIA E TECNOLOGIA AMBIENTAL MATEUS VELHO DOS SANTOS AVALIAÇÃO DE PORTA ENXERTOS CLONAIS DO GÊNERO Prunus spp. PARA PESSEGUEIRO, NAS CONDIÇÕES EDAFOCLIMÁTICAS DE CHAPECÓ ERECHIM 2019 MATEUS VELHO DOS SANTOS AVALIAÇÃO DE PORTA ENXERTOS CLONAIS DO GÊNERO Prunus spp. PARA PESSEGUEIRO, NAS CONDIÇÕES EDAFOCLIMÁTICAS DE CHAPECÓ Dissertação apresentada ao Programa de Pós- Graduação em Ciência e Tecnologia Ambiental da Universidade Federal da Fronteira Sul - UFFS como requisito parcial para obtenção do título de Mestre em Ciência e Tecnologia Ambiental. Orientador Prof. Dr. Clevison Luiz Giacobbo e Coorientadores Prof. D. Sc. Leandro Galon e Prof. Dr. Jorge Luís Mattias. ERECHIM 2019 UNIVERSIDADE FEDERAL DA FRONTEIRA SUL ERS 135 – KM 72, nº 200 CEP: 99700-970 Caixa Postal 764 Erechim RS Brasil ii MATEUS VELHO DOS SANTOS AVALIAÇÃO DE PORTA ENXERTOS CLONAIS DO GÊNERO Prunus spp. PARA PESSEGUEIRO, NAS CONDIÇÕES EDAFOCLIMÁTICAS DE CHAPECÓ Dissertação apresentada ao Programa de Pós-Graduação em Ciência e Tecnologia Ambiental da Universidade Federal da Fronteira Sul - UFFS como requisito parcial para obtenção do título de Mestre em Ciência e Tecnologia Ambiental, defendido em banca examinadora em 22/03/2019. Orientador: Prof. Dr. Clevison Luiz Giacobbo Aprovado em:____/____/____. BANCA EXAMINADORA _______________________________________________ Prof. Dr. Clevison Luiz Giacobbo - UFFS _______________________________________________
    [Show full text]
  • Population Genomics of Apricots Unravels Domestication History and Adaptive Events
    ARTICLE https://doi.org/10.1038/s41467-021-24283-6 OPEN Population genomics of apricots unravels domestication history and adaptive events Alexis Groppi 1,2,19, Shuo Liu3,4,19, Amandine Cornille 5,19, Stéphane Decroocq3, Quynh Trang Bui3, David Tricon3, Corinne Cruaud6,7, Sandrine Arribat8, Caroline Belser 6,7, William Marande8, Jérôme Salse9, Cécile Huneau9, Nathalie Rodde 8, Wassim Rhalloussi8, Stéphane Cauet 8, Benjamin Istace 6,7, Erwan Denis 6,7, Sébastien Carrère10, Jean-Marc Audergon11, Guillaume Roch11,12, Patrick Lambert11, Tetyana Zhebentyayeva13, Wei-Sheng Liu4, Olivier Bouchez14, Céline Lopez-Roques14, Rémy-Félix Serre14, Robert Debuchy 15, Joseph Tran16, Patrick Wincker 6,7, Xilong Chen 5, Pierre Pétriacq 3, Aurélien Barre1, 1,2 6,7 17 18✉ 1234567890():,; Macha Nikolski , Jean-Marc Aury , Albert Glenn Abbott , Tatiana Giraud & ✉ Véronique Decroocq 3 Among crop fruit trees, the apricot (Prunus armeniaca) provides an excellent model to study divergence and adaptation processes. Here, we obtain nearly 600 Armeniaca apricot gen- omes and four high-quality assemblies anchored on genetic maps. Chinese and European apricots form two differentiated gene pools with high genetic diversity, resulting from independent domestication events from distinct wild Central Asian populations, and with subsequent gene flow. A relatively low proportion of the genome is affected by selection. Different genomic regions show footprints of selection in European and Chinese cultivated apricots, despite convergent phenotypic traits, with predicted functions in both groups involved in the perennial life cycle, fruit quality and disease resistance. Selection footprints appear more abundant in European apricots, with a hotspot on chromosome 4, while admixture is more pervasive in Chinese cultivated apricots.
    [Show full text]
  • Popular Information
    ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION NEW SERIES. VOLUME IX 1923 NEW SERIES VOL. IX NO. I ARNOLD ARBORETUM HARVARD UNIVERSITY BULLETIN OF POPULAR INFORMATION JAMAICA PLAIN, MASS. MAY 1. 1923 Compared with those of recent years it is a "late spring" in the Arboretum after a winter remarkable in the large amount of snow which has fallen and which has covered the ground continuously from the middle of December to the middle of March. The deep cover of snow has successfully protected low growing plants; it has protected, too, field mice which have injured some valuable shrubs by stripping the bark from their stems and branches. The cold was not unusually severe. Covered by the deep snow the ground was free or nearly so of frost during the winter, and in March there was promise of an ex- ceptionally early spring, but on the morning of March 29th the ther- mometer registered two degrees below zero and the prospect of an early spring was ended. Fortunately this extreme cold at the end of March had not been preceded by days of high temperature, and com- paratively little damage to plants in the Arboretum was caused by it. Rhododendrons with persistent leaves have suffered here more than any other plants by the low temperature at the end of March. There are dead branches on many plants of the Catawbiense Hybrids which have grown uninjured here for years; and some of the large plants of the native Rhododendron maximum have suffered even more than the Cataw- biense Hybrids. The hybrid Rhododendron myrtifolium (R.
    [Show full text]