Spectrophotometry of Asteroids and Other Small Bodies with the 6-M, 2.5-M, and 2.0-M Russian Telescopes
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Shepard Et Al., 2008; 7 Shepard Et Al., 2017] All Support the Hypothesis That Its Surface to Near- 8 Surface Is Dominated by Metal (I.E., Iron and Nickel)
Asteroid 16 Psyche: Shape, Features, and Global Map Michael K. Shepard12, Katherine de Kleer3, Saverio Cambioni3, Patrick A. Taylor4, Anne K. Virkki4, Edgard G. Rívera-Valentin4, Carolina Rodriguez Sanchez-Vahamonde4, Luisa Fernanda Zambrano-Marin5, Christopher Magri5, David Dunham6, John Moore7, Maria Camarca3 Abstract We develop a shape model of asteroid 16 Psyche using observations acquired in a wide range of wavelengths: Arecibo S-band delay-Doppler imaging, Atacama Large Millimeter Array (ALMA) plane-of-sky imaging, adaptive optics (AO) images from Keck and the Very Large Telescope (VLT), and a recent stellar occultation. Our shape model has dimensions 278 (–4/+8 km) x 238(–4/+6 km) x 171 km (–1/+5 km), an effective spherical diameter Deff = 222 -1/+4 km, and a spin axis (ecliptic lon, lat) of (36°, -8°) ± 2°. We survey all the features previously reported to exist, tentatively identify several new features, and produce a global map of Psyche. Using 30 calibrated radar echoes, we find Psyche’s overall radar albedo to be 0.34 ± 0.08 suggesting that the upper meter of regolith has a significant metal (i.e., Fe-Ni) content. We find four regions of enhanced or complex radar albedo, one of which correlates well with a previously identified feature on Psyche, and all of which appear to correlate with patches of relatively high optical albedo. Based on these findings, we cannot rule out a model of Psyche as a remnant core, but our preferred interpretation is that Psyche is a differentiated world with a regolith composition analogous to enstatite or CH/CB chondrites and peppered with localized regions of high metal concentrations. -
The Composition of M-Type Asteroids II: Synthesis of Spectroscopic and Radar Observations ⇑ J.R
Icarus 238 (2014) 37–50 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The composition of M-type asteroids II: Synthesis of spectroscopic and radar observations ⇑ J.R. Neeley a,b,1, , B.E. Clark a,1, M.E. Ockert-Bell a,1, M.K. Shepard c,2, J. Conklin d, E.A. Cloutis e, S. Fornasier f, S.J. Bus g a Department of Physics, Ithaca College, Ithaca, NY 14850, United States b Department of Physics, Iowa State University, Ames, IA 50011, United States c Department of Geography and Geosciences, Bloomsburg University, Bloomsburg, PA 17815, United States d Department of Mathematics, Ithaca College, Ithaca, NY 14850, United States e Department of Geography, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada f LESIA, Observatoire de Paris, 5 Place Jules Janssen, F-92195 Meudon Principal Cedex, France g Institute for Astronomy, 2680 Woodlawn Dr., Honolulu, HI 96822, United States article info abstract Article history: This work updates and expands on results of our long-term radar-driven observational campaign of Received 7 February 2012 main-belt asteroids (MBAs) focused on Bus–DeMeo Xc- and Xk-type objects (Tholen X and M class Revised 7 May 2014 asteroids) using the Arecibo radar and NASA Infrared Telescope Facilities (Ockert-Bell, M.E., Clark, B.E., Accepted 9 May 2014 Shepard, M.K., Rivkin, A.S., Binzel, R.P., Thomas, C.A., DeMeo, F.E., Bus, S.J., Shah, S. [2008]. Icarus 195, Available online 16 May 2014 206–219; Ockert-Bell, M.E., Clark, B.E., Shepard, M.K., Issacs, R.A., Cloutis, E.A., Fornasier, S., Bus, S.J. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
Occultation Newsletter Volume 8, Number 4
Volume 12, Number 1 January 2005 $5.00 North Am./$6.25 Other International Occultation Timing Association, Inc. (IOTA) In this Issue Article Page The Largest Members Of Our Solar System – 2005 . 4 Resources Page What to Send to Whom . 3 Membership and Subscription Information . 3 IOTA Publications. 3 The Offices and Officers of IOTA . .11 IOTA European Section (IOTA/ES) . .11 IOTA on the World Wide Web. Back Cover ON THE COVER: Steve Preston posted a prediction for the occultation of a 10.8-magnitude star in Orion, about 3° from Betelgeuse, by the asteroid (238) Hypatia, which had an expected diameter of 148 km. The predicted path passed over the San Francisco Bay area, and that turned out to be quite accurate, with only a small shift towards the north, enough to leave Richard Nolthenius, observing visually from the coast northwest of Santa Cruz, to have a miss. But farther north, three other observers video recorded the occultation from their homes, and they were fortuitously located to define three well- spaced chords across the asteroid to accurately measure its shape and location relative to the star, as shown in the figure. The dashed lines show the axes of the fitted ellipse, produced by Dave Herald’s WinOccult program. This demonstrates the good results that can be obtained by a few dedicated observers with a relatively faint star; a bright star and/or many observers are not always necessary to obtain solid useful observations. – David Dunham Publication Date for this issue: July 2005 Please note: The date shown on the cover is for subscription purposes only and does not reflect the actual publication date. -
The Sky This Week
The sky this week April 20 to April 26, 2020 By Joe Grida, Technical Informaon Officer, ASSA ([email protected]) elcome to the fourth edion of The Sky this Week. It is designed to keep you looking up during these rather uncertain mes. We can’t get together for Members’ Viewing Nights, so I thought I’d write this W to give you some ideas of observing targets that you can chase on any clear night this coming week. As I said in my recent Starwatch* column in The Adverser newspaper: “Even with the restricons in place, stargazing is something that you can do easily on your own. It helps to relieve stress and will keep your sense of perspecve. It’s prey hard to walk away from a night under the stars without a jusfiable sense of awe. And also without sensing a real, albeit tenuous, connecon with the cosmos at large”. * Published on the last Friday of each month Naked eye star walk Over in the eastern late evening sky, Scorpius, the Scorpion (one of the few constellaons in our sky that actually resembles what it is supposed to represent) is difficult to miss. He will keep us company over the coming chilly winter months. Its brightest star, Antares, is a huge star of gargantuan proporons. If we replaced our Sun with it, then all the planets from Mercury through to Jupiter would all find themselves engulfed within it! Just below the tail of Scorpius, you can find the star clusters designated M6 and M7. Take the trouble to observe these with binoculars. -
And X-Class Asteroids. II. Summary and Synthesis
Icarus 208 (2010) 221–237 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus A radar survey of M- and X-class asteroids II. Summary and synthesis Michael K. Shepard a,*, Beth Ellen Clark b, Maureen Ockert-Bell b, Michael C. Nolan c, Ellen S. Howell c, Christopher Magri d, Jon D. Giorgini e, Lance A.M. Benner e, Steven J. Ostro e, Alan W. Harris f, Brian D. Warner g, Robert D. Stephens h, Michael Mueller i a Bloomsburg University, 400 E. Second St., Bloomsburg, PA 17815, USA b Ithaca College, 267 Center for Natural Sciences, Ithaca, NY 14853, USA c NAIC/Arecibo Observatory, HC 3 Box 53995, Arecibo, PR 00612, USA d University of Maine at Farmington, 173 High Street, Preble Hall, ME 04938, USA e Jet Propulsion Laboratory, Pasadena, CA 91109, USA f Space Science Institute, La Canada, CA 91011-3364, USA g Palmer Divide Observatory/Space Science Institute, Colorado Springs, CO 80908, USA h Santana Observatory, 11355 Mount Johnson Court, Rancho Cucamonga, CA 91737, USA i Observatoire de la Côte d’Azur, B.P. 4229, 06304 NICE Cedex 4, France article info abstract Article history: Using the S-band radar at Arecibo Observatory, we observed six new M-class main-belt asteroids (MBAs), Received 21 September 2009 and re-observed one, bringing the total number of Tholen M-class asteroids observed with radar to 19. Revised 12 January 2010 The mean radar albedo for all our targets is r^ OC ¼ 0:28 Æ 0:13, significantly higher than the mean radar Accepted 14 January 2010 albedo of every other class (Magri, C., Nolan, M.C., Ostro, S.J., Giorgini, J.D. -
Small Bodies Science with the Twinkle Space Telescope
Small bodies science with the Twinkle space telescope Billy Edwards Sean Lindsay Giorgio Savini Giovanna Tinetti Claudio Arena Neil Bowles Marcell Tessenyi Billy Edwards, Sean Lindsay, Giorgio Savini, Giovanna Tinetti, Claudio Arena, Neil Bowles, Marcell Tessenyi, “Small bodies science with the Twinkle space telescope,” J. Astron. Telesc. Instrum. Syst. 5(3), 034004 (2019), doi: 10.1117/1.JATIS.5.3.034004. Journal of Astronomical Telescopes, Instruments, and Systems 5(3), 034004 (Jul–Sep 2019) Small bodies science with the Twinkle space telescope Billy Edwards,a,* Sean Lindsay,b Giorgio Savini,a,c Giovanna Tinetti,a,c Claudio Arena,a Neil Bowles,d and Marcell Tessenyia,c aUniversity College London, Department of Physics and Astronomy, London, United Kingdom bUniversity of Tennessee, Department of Physics and Astronomy, Knoxville, Tennessee, United States cBlues Skies Space Ltd., London, United Kingdom dUniversity of Oxford, Atmospheric, Oceanic, and Planetary Physics, Clarendon Laboratory, Oxford, United Kingdom Abstract. Twinkle is an upcoming 0.45-m space-based telescope equipped with a visible and two near-infrared spectrometers covering the spectral range 0.4 to 4.5 μm with a resolving power R ∼ 250 (λ < 2.42 μm) and R ∼ 60 (λ > 2.42 μm). We explore Twinkle’s capabilities for small bodies science and find that, given Twinkle’s sensitivity, pointing stability, and spectral range, the mission can observe a large number of small bodies. The sensitivity of Twinkle is calculated and compared to the flux from an object of a given visible magnitude. The number, and brightness, of asteroids and comets that enter Twinkle’s field of regard is studied over three time periods of up to a decade. -
Main-Belt Asteroids with Wise/Neowise: Near-Infrared Albedos
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Caltech Authors The Astrophysical Journal, 791:121 (11pp), 2014 August 20 doi:10.1088/0004-637X/791/2/121 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. MAIN-BELT ASTEROIDS WITH WISE/NEOWISE: NEAR-INFRARED ALBEDOS Joseph R. Masiero1, T. Grav2, A. K. Mainzer1,C.R.Nugent1,J.M.Bauer1,3, R. Stevenson1, and S. Sonnett1 1 Jet Propulsion Laboratory/Caltech, 4800 Oak Grove Drive, MS 183-601, Pasadena, CA 91109, USA; [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] 2 Planetary Science Institute, Tucson, AZ, USA; [email protected] 3 Infrared Processing and Analysis Center, Caltech, Pasadena, CA, USA Received 2014 May 14; accepted 2014 June 25; published 2014 August 6 ABSTRACT We present revised near-infrared albedo fits of 2835 main-belt asteroids observed by WISE/NEOWISE over the course of its fully cryogenic survey in 2010. These fits are derived from reflected-light near-infrared images taken simultaneously with thermal emission measurements, allowing for more accurate measurements of the near- infrared albedos than is possible for visible albedo measurements. Because our sample requires reflected light measurements, it undersamples small, low-albedo asteroids, as well as those with blue spectral slopes across the wavelengths investigated. We find that the main belt separates into three distinct groups of 6%, 16%, and 40% reflectance at 3.4 μm. -
THE UNUSUAL ALEXANDRA FAMILY J. G. Williams, Jet Propulsion Laboratory, Calif
LPSC XIX 1277 THE UNUSUAL ALEXANDRA FAMILY J. G. Williams, Jet Propulsion Laboratory, Calif. Inst. Technology, Pasadena, CA 91109 The Alexandra family does not fit the normal pattern for an asteroid family. It contains three large C-t pe asteroids: 54 Alexandra, 70 Panopaea, and 145 Adeona. T eir respective IRAS-determined diameters are 171 km, 127 krn, and 155 km. AS can be seen in the first figure, in the three dimensional proper element space (a, e, sin i) the three large objects (filled symbols) are approximately aligned and Alexandra and Panopaea are at the extreme ends of the elongated family as though the other family members spilled out between them when the family was formed. Since the proper element differences are a mapping of the original velocity differences at the time of breakup it can be determined that the two end members must have separated by at least 500 m/sec and that typical speeds for the fragments were a few hundred m/sec. After the three large members, the largest fragment is 67 km in diameter and IRAS determined that most of the members are dark (number 504 is an exception with a 16% albedo). I....,... I I I 0 0 0 N 0 N 0 C? - 0 0 2 - 0 The presence of three large, nearly aligned objects was enough to mark this family as unusual, but the a-sin 1 plot shows curious structure. Many of the fragments distribute themselves around Adeona in a pattern which is tilted with respect to the alignment of the three large objects. -
The Minor Planet Bulletin (Warner Et Al
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 4, A.D. 2008 OCTOBER-DECEMBER 143. THE LIGHTCURVE OF ASTEROID 5331 ERIMOMISAKI 05 and Jan 09, respectively. The Vincent data were taken under poor conditions, which is reflected by the large error bars. Caleb Boe, Russell I. Durkee However, the data support the proposed period and were crucial in Shed of Science Observatory completing the curve. Analysis was performed using MPO 5213 Washburn Ave S. Minneapolis, MN 55410, USA Canopus. Silvano Casulli Acknowledgments Vallemare Di Borbona Observatory, Vallemare di Borbona, ITALY Thanks to Raoul Behrend for posting Casulli’s results on his website and for coordinating the exchange of data. Dr. Fiona Vincent School of Physics & Astronomy Special thanks to the Tzec Maun Foundation and its founder, University of St. Andrews Michael K. Wilson, for providing free access to telescopes for North Haugh, St. Andrews KY16 9SS, Scotland, UK students and researchers. David Higgins References Hunters Hill Observatory Ngunnawal, Canberra 2913 Behrend, R. (2007). Observatoire de Geneve web site, AUSTRALIA http://obswww.unige.ch/~behrend/page1cou.html (Received: 2008 June 1) Warner, B.D., Harris A.W. , Pravec, P. Kaasalainen, M., and Benner, L.A.M. (2007). Lightcurve Photometry Opportunities October-December 2007 Asteroid 5331 Erimomisaki was observed between 2007 http://minorplanetobserver.com/astlc/default.htm Nov. 30 and 2008 Jan. 9. A synodic period of 24.26 ± 0.02 h with a mean amplitude of 0.27 ± 0.02 mag was derived. Observations of 5331 Erimomisaki were carried out over ten nights between 2007 November and 2008 January. -
C.H.F. Peters
NATIONAL ACADEMY OF SCIENCES Ch RISTIAN HEINRIC H F RIEDRIC H PETERS A Biographical Memoir by W I L L I A M ShEE H AN Any opinions expressed in this memoir are those of the author(s) and do not necessarily reflect the views of the National Academy of Sciences. Biographical Memoir COPYRIGHT 1999 NATIONAL ACADEMIES PRESS WASHINGTON D.C. CHRISTIAN HEINRICH FRIEDRICH PETERS September 19, 1813–July 18, 1890 BY WILLIAM SHEEHAN N THE MID-NINETEENTH century the discovery of new aster- Ioids was still far from routine. These objects had not yet grown so numerous as to earn for themselves the contemp- tuous label later applied, “vermin of the skies,” and those who excelled in claiming the starlike wanderers from the camouflage of background stars were honored with renown. Hind, de Gasparis, Goldschmidt, Chacornac, Pogson, and Peters were foremost among the early discoverers. Even on this short list C. H. F. Peters stood out. On May 29, 1861—just weeks after the American Civil War began at Fort Sumter—Peters discovered his first aster- oid (72 Feronia). It was the fifth asteroid discovered in North America (others had been found by Ferguson and Searle). Feronia was the first of forty-eight such discoveries that made Peters the most prolific finder of minor planets of his generation, and even today he remains second only to Johann Palisa among visual discoverers of asteroids. Dur- ing his colorful career, he also compiled meticulous star charts of the zodiac, collated observations from manuscripts of Ptolemy, and embroiled himself in a series of often bitter controversies with other astronomers, notably over the ex- istence of an intra-Mercurial planet. -
A New Approach to Stellar Occultations in the Gaia Era Joao Ferreira
A new approach to stellar occultations in the Gaia era Joao Ferreira To cite this version: Joao Ferreira. A new approach to stellar occultations in the Gaia era. Astrophysics [astro-ph]. Université Côte d’Azur; Universidade de Lisboa. Faculdade de ciências (Lisboa, Portugal), 2020. English. NNT : 2020COAZ4084. tel-03185433 HAL Id: tel-03185433 https://tel.archives-ouvertes.fr/tel-03185433 Submitted on 30 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE DE DOCTORAT Occultations stellaires: une nouvelle approche grâce à la mission Gaia João FERREIRA Laboratoire J-L. Lagrange – Observatoire de la Côte d’Azur ; Instituto de Astrofísica e Ciências do Espaço, Lisboa Présentée en vue de l’obtention Devant le jury, composé de : du grade de docteur en Sciences de la Planète Felipe BRAGA-RIBAS (Universidade Tecnológica Federal do et de l’Univers Paraná) d’Université Côte d’Azur René DUFFARD (Instituto de Astrofisica de Andalucía) et de Faculdade de Ciências da Universidade de Guy LIBOUREL (Université Côte d’Azur) Lisboa Pedro MACHADO (Instituto