Occuttm'on@Newstetter
Total Page:16
File Type:pdf, Size:1020Kb

Load more
Recommended publications
-
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 36, NUMBER 3, A.D. 2009 JULY-SEPTEMBER 77. PHOTOMETRIC MEASUREMENTS OF 343 OSTARA Our data can be obtained from http://www.uwec.edu/physics/ AND OTHER ASTEROIDS AT HOBBS OBSERVATORY asteroid/. Lyle Ford, George Stecher, Kayla Lorenzen, and Cole Cook Acknowledgements Department of Physics and Astronomy University of Wisconsin-Eau Claire We thank the Theodore Dunham Fund for Astrophysics, the Eau Claire, WI 54702-4004 National Science Foundation (award number 0519006), the [email protected] University of Wisconsin-Eau Claire Office of Research and Sponsored Programs, and the University of Wisconsin-Eau Claire (Received: 2009 Feb 11) Blugold Fellow and McNair programs for financial support. References We observed 343 Ostara on 2008 October 4 and obtained R and V standard magnitudes. The period was Binzel, R.P. (1987). “A Photoelectric Survey of 130 Asteroids”, found to be significantly greater than the previously Icarus 72, 135-208. reported value of 6.42 hours. Measurements of 2660 Wasserman and (17010) 1999 CQ72 made on 2008 Stecher, G.J., Ford, L.A., and Elbert, J.D. (1999). “Equipping a March 25 are also reported. 0.6 Meter Alt-Azimuth Telescope for Photometry”, IAPPP Comm, 76, 68-74. We made R band and V band photometric measurements of 343 Warner, B.D. (2006). A Practical Guide to Lightcurve Photometry Ostara on 2008 October 4 using the 0.6 m “Air Force” Telescope and Analysis. Springer, New York, NY. located at Hobbs Observatory (MPC code 750) near Fall Creek, Wisconsin. -
The Minor Planet Bulletin 44 (2017) 142
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 44, NUMBER 2, A.D. 2017 APRIL-JUNE 87. 319 LEONA AND 341 CALIFORNIA – Lightcurves from all sessions are then composited with no TWO VERY SLOWLY ROTATING ASTEROIDS adjustment of instrumental magnitudes. A search should be made for possible tumbling behavior. This is revealed whenever Frederick Pilcher successive rotational cycles show significant variation, and Organ Mesa Observatory (G50) quantified with simultaneous 2 period software. In addition, it is 4438 Organ Mesa Loop useful to obtain a small number of all-night sessions for each Las Cruces, NM 88011 USA object near opposition to look for possible small amplitude short [email protected] period variations. Lorenzo Franco Observations to obtain the data used in this paper were made at the Balzaretto Observatory (A81) Organ Mesa Observatory with a 0.35-meter Meade LX200 GPS Rome, ITALY Schmidt-Cassegrain (SCT) and SBIG STL-1001E CCD. Exposures were 60 seconds, unguided, with a clear filter. All Petr Pravec measurements were calibrated from CMC15 r’ values to Cousins Astronomical Institute R magnitudes for solar colored field stars. Photometric Academy of Sciences of the Czech Republic measurement is with MPO Canopus software. To reduce the Fricova 1, CZ-25165 number of points on the lightcurves and make them easier to read, Ondrejov, CZECH REPUBLIC data points on all lightcurves constructed with MPO Canopus software have been binned in sets of 3 with a maximum time (Received: 2016 Dec 20) difference of 5 minutes between points in each bin. -
~XECKDING PAGE BLANK WT FIL,,Q
1,. ,-- ,-- ~XECKDING PAGE BLANK WT FIL,,q DYNAMICAL EVIDENCE REGARDING THE RELATIONSHIP BETWEEN ASTEROIDS AND METEORITES GEORGE W. WETHERILL Department of Temcltricrl kgnetism ~amregie~mtittition of Washington Washington, D. C. 20025 Meteorites are fragments of small solar system bodies (comets, asteroids and Apollo objects). Therefore they may be expected to provide valuable information regarding these bodies. How- ever, the identification of particular classes of meteorites with particular small bodies or classes of small bodies is at present uncertain. It is very unlikely that any significant quantity of meteoritic material is obtained from typical ac- tive comets. Relatively we1 1-studied dynamical mechanisms exist for transferring material into the vicinity of the Earth from the inner edge of the asteroid belt on an 210~-~year time scale. It seems likely that most iron meteorites are obtained in this way, and a significant yield of complementary differec- tiated meteoritic silicate material may be expected to accom- pany these differentiated iron meteorites. Insofar as data exist, photometric measurements support an association between Apollo objects and chondri tic meteorites. Because Apol lo ob- jects are in orbits which come close to the Earth, and also must be fragmented as they traverse the asteroid belt near aphel ion, there also must be a component of the meteorite flux derived from Apollo objects. Dynamical arguments favor the hypothesis that most Apollo objects are devolatilized comet resiaues. However, plausible dynamical , petrographic, and cosmogonical reasons are known which argue against the simple conclusion of this syllogism, uiz., that chondri tes are of cometary origin. Suggestions are given for future theoretical , observational, experimental investigations directed toward improving our understanding of this puzzling situation. -
Accurate Positions of Pluto and Asteroids Observed in Bucharest During the Year 1932
ACCURATE POSITIONS OF PLUTO AND ASTEROIDS OBSERVED IN BUCHAREST DURING THE YEAR 1932 GHEORGHE BOCŞA, PETRE POPESCU, MIHAELA LICULESCU Astronomical Institute of the Romanian Academy Str. Cuţitul de Argint 5, 040557 Bucharest, Romania E-mail: [email protected] Abstract. The paper contains the observations of minor planets performed in Bucharest Astronomical Observatory in the year 1932 with the 380/6000 mm astrograph. Both Turner’s (constants) and Schlesinger’s (dependences) methods were used in the computation of the normal coordinates of the objects. Keywords: photographic astrometry – minor planets. 1. INTRODUCTION The article is a continuation of the complete investigation of Bucharest Wide-Field Plates Archive initiated in 2010; it contains the plates with asteroids observed in 1932. That year 185 plates were exposed and were stored in the archive, but were not reduced. After analysing them, 98 plates were detected to contain measurable minor planets. The first observed positions in this year were of planet Pluto. They were exposed on 1318cm plates, with 52 minutes exposure .The observations were performed by the famous Romanian astronomer Professor Gheorghe Demetrescu. The most difficult problem was the identification of the planet, the three plates obtained in 1932 having dozens of stars with up to 15 magnitudes. As all the observations were performed in the same month and the planet did not have a great proper motion, it was possible to superpose two plates and to identify Pluto. The values (O–C)α and (O–C)δ were calculated by M. Svechnikov from the Institute of Applied Astronomy in Sankt Petersburg on the basis of precise positions obtained in Bucharest, which we integrated in Pluto’s orbit. -
Aqueous Alteration on Main Belt Primitive Asteroids: Results from Visible Spectroscopy1
Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 1 LESIA, Observatoire de Paris, CNRS, UPMC Univ Paris 06, Univ. Paris Diderot, 5 Place J. Janssen, 92195 Meudon Pricipal Cedex, France 2 Univ. Paris Diderot, Sorbonne Paris Cit´e, 4 rue Elsa Morante, 75205 Paris Cedex 13 3 Department of Physics and Astronomy of the University of Padova, Via Marzolo 8 35131 Padova, Italy Submitted to Icarus: November 2013, accepted on 28 January 2014 e-mail: [email protected]; fax: +33145077144; phone: +33145077746 Manuscript pages: 38; Figures: 13 ; Tables: 5 Running head: Aqueous alteration on primitive asteroids Send correspondence to: Sonia Fornasier LESIA-Observatoire de Paris arXiv:1402.0175v1 [astro-ph.EP] 2 Feb 2014 Batiment 17 5, Place Jules Janssen 92195 Meudon Cedex France e-mail: [email protected] 1Based on observations carried out at the European Southern Observatory (ESO), La Silla, Chile, ESO proposals 062.S-0173 and 064.S-0205 (PI M. Lazzarin) Preprint submitted to Elsevier September 27, 2018 fax: +33145077144 phone: +33145077746 2 Aqueous alteration on main belt primitive asteroids: results from visible spectroscopy1 S. Fornasier1,2, C. Lantz1,2, M.A. Barucci1, M. Lazzarin3 Abstract This work focuses on the study of the aqueous alteration process which acted in the main belt and produced hydrated minerals on the altered asteroids. Hydrated minerals have been found mainly on Mars surface, on main belt primitive asteroids and possibly also on few TNOs. These materials have been produced by hydration of pristine anhydrous silicates during the aqueous alteration process, that, to be active, needed the presence of liquid water under low temperature conditions (below 320 K) to chemically alter the minerals. -
76 Minor Planet Bulletin 45 (2018) TWENTY-ONE ASTEROID LIGHTCURVES at ASTEROIDS OBSERVERS (OBAS)
76 TWENTY-ONE ASTEROID LIGHTCURVES needed confirmation. All the targets were selected from the AT ASTEROIDS OBSERVERS (OBAS) - MPPD: Collaborative Asteroid Lightcurve (CALL) website at NOV 2016 - MAY 2017 http://www.minorplanet.info/call.html, paying special attention to keeping the asteroid’s magnitude within reach of the telescopes Vicente Mas, G. Fornas being used. We tried to observe asteroids at a phase angle of less CAAT, Centro Astronómico del Alto Turia, SPAIN than 14°, but this was not always possible. [email protected] Images were measured using MPO Canopus (Bdw Publishing) Juan Lozano with a differential photometry technique. For more information Elche Observatory, Alicante, SPAIN about methods and techniques used, see Aznar Macias et al. (2015). Table II lists the individual results along with the range of Onofre Rodrigo dates for the observations and the number of nights that Bétera Observatory, Valencia, SPAIN observations were made. A. Fornas 589 Croatia, Observed on nine nights from 2016 Nov to 2017 Jan. Oropesa Observatory, Castellón, SPAIN Period: 24.73 ± 0.013 h. Amplitude: 0.47 mag. This result is consistent with Behrend (2013), who found 24.821 h, but not with A. Carreño Waszczak et al. (2015) who found 16.385 h. Zonalunar Observatory,Valencia, SPAIN 593 Titania. Observed during five nights 2017 Apr. Period: 9.930 Enrique Arce ± 0.009 h. Amplitude: 0.21 mag. This period is consistent with Vallbona Observatory, Valencia, SPAIN Zappala (1983, 9.89 h), Harris (1989, 9.899 h), and Behrend (2017, 9.8968 h). Pedro Brines TRZ Observatory, Valencia, SPAIN 728 Leonisis. Observed on two nights in 2017 March-April. -
The Minor Planet Bulletin 37 (2010) 45 Classification for 244 Sita
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 2, A.D. 2010 APRIL-JUNE 41. LIGHTCURVE AND PHASE CURVE OF 1130 SKULD Robinson (2009) from his data taken in 2002. There is no evidence of any change of (V-R) color with asteroid rotation. Robert K. Buchheim Altimira Observatory As a result of the relatively short period of this lightcurve, every 18 Altimira, Coto de Caza, CA 92679 (USA) night provided at least one minimum and maximum of the [email protected] lightcurve. The phase curve was determined by polling both the maximum and minimum points of each night’s lightcurve. Since (Received: 29 December) The lightcurve period of asteroid 1130 Skuld is confirmed to be P = 4.807 ± 0.002 h. Its phase curve is well-matched by a slope parameter G = 0.25 ±0.01 The 2009 October-November apparition of asteroid 1130 Skuld presented an excellent opportunity to measure its phase curve to very small solar phase angles. I devoted 13 nights over a two- month period to gathering photometric data on the object, over which time the solar phase angle ranged from α = 0.3 deg to α = 17.6 deg. All observations used Altimira Observatory’s 0.28-m Schmidt-Cassegrain telescope (SCT) working at f/6.3, SBIG ST- 8XE NABG CCD camera, and photometric V- and R-band filters. Exposure durations were 3 or 4 minutes with the SNR > 100 in all images, which were reduced with flat and dark frames. -
The Minor Planet Bulletin
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 35, NUMBER 3, A.D. 2008 JULY-SEPTEMBER 95. ASTEROID LIGHTCURVE ANALYSIS AT SCT/ST-9E, or 0.35m SCT/STL-1001E. Depending on the THE PALMER DIVIDE OBSERVATORY: binning used, the scale for the images ranged from 1.2-2.5 DECEMBER 2007 – MARCH 2008 arcseconds/pixel. Exposure times were 90–240 s. Most observations were made with no filter. On occasion, e.g., when a Brian D. Warner nearly full moon was present, an R filter was used to decrease the Palmer Divide Observatory/Space Science Institute sky background noise. Guiding was used in almost all cases. 17995 Bakers Farm Rd., Colorado Springs, CO 80908 [email protected] All images were measured using MPO Canopus, which employs differential aperture photometry to determine the values used for (Received: 6 March) analysis. Period analysis was also done using MPO Canopus, which incorporates the Fourier analysis algorithm developed by Harris (1989). Lightcurves for 17 asteroids were obtained at the Palmer Divide Observatory from December 2007 to early The results are summarized in the table below, as are individual March 2008: 793 Arizona, 1092 Lilium, 2093 plots. The data and curves are presented without comment except Genichesk, 3086 Kalbaugh, 4859 Fraknoi, 5806 when warranted. Column 3 gives the full range of dates of Archieroy, 6296 Cleveland, 6310 Jankonke, 6384 observations; column 4 gives the number of data points used in the Kervin, (7283) 1989 TX15, 7560 Spudis, (7579) 1990 analysis. Column 5 gives the range of phase angles. -
Active Asteroid P/2017 S5 (ATLAS)
The Astronomical Journal, 157:54 (8pp), 2019 February https://doi.org/10.3847/1538-3881/aaf563 © 2019. The American Astronomical Society. All rights reserved. Active Asteroid P/2017 S5 (ATLAS) David Jewitt1,2, Yoonyoung Kim3 , Jayadev Rajagopal4, Susan Ridgway4, Ralf Kotulla5 , Wilson Liu4, Max Mutchler6 , Jing Li1 , Harold Weaver7 , and Stephen Larson8 1 Department of Earth, Planetary and Space Sciences, UCLA, 595 Charles Young Drive East, Los Angeles, CA 90095-1567, USA; [email protected] 2 Departmentof Physics and Astronomy, University of California at Los Angeles, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA 3 Max Planck Institute for Solar System Research, Justus-von-Liebig-Weg 3, D-37077 Göttingen, Germany 4 NOAO, 950 North Cherry Avenue, Tucson, AZ 85719, USA 5 Department of Astronomy, University of Wisconsin-Madison, 475 N. Charter Steet, Madison, WI 53706, USA 6 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA 7 The Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723, USA 8 Lunar and Planetary Laboratory, University of Arizona, 1629 E. University Boulevard, Tucson, AZ 85721-0092, USA Received 2018 November 5; revised 2018 November 27; accepted 2018 November 30; published 2019 January 18 Abstract Observations of active asteroid P/2017 S5 when near perihelion reveal the ejection of large (102–104 μm) particles at 0.2–2ms−1 speeds, with estimated mass-loss rates of a few kg s−1. The protracted nature of the mass loss (continuous over ∼150 days) is compatible with a sublimation origin, meaning that this object is likely an ice- bearing main-belt comet. -
The Minor Planet Bulletin Is Open to Papers on All Aspects of 6500 Kodaira (F) 9 25.5 14.8 + 5 0 Minor Planet Study
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 32, NUMBER 3, A.D. 2005 JULY-SEPTEMBER 45. 120 LACHESIS – A VERY SLOW ROTATOR were light-time corrected. Aspect data are listed in Table I, which also shows the (small) percentage of the lightcurve observed each Colin Bembrick night, due to the long period. Period analysis was carried out Mt Tarana Observatory using the “AVE” software (Barbera, 2004). Initial results indicated PO Box 1537, Bathurst, NSW, Australia a period close to 1.95 days and many trial phase stacks further [email protected] refined this to 1.910 days. The composite light curve is shown in Figure 1, where the assumption has been made that the two Bill Allen maxima are of approximately equal brightness. The arbitrary zero Vintage Lane Observatory phase maximum is at JD 2453077.240. 83 Vintage Lane, RD3, Blenheim, New Zealand Due to the long period, even nine nights of observations over two (Received: 17 January Revised: 12 May) weeks (less than 8 rotations) have not enabled us to cover the full phase curve. The period of 45.84 hours is the best fit to the current Minor planet 120 Lachesis appears to belong to the data. Further refinement of the period will require (probably) a group of slow rotators, with a synodic period of 45.84 ± combined effort by multiple observers – preferably at several 0.07 hours. The amplitude of the lightcurve at this longitudes. Asteroids of this size commonly have rotation rates of opposition was just over 0.2 magnitudes. -
Acrostic Dictionary
ACROSTIC DICTIONARY C O NTA IN I NG M O R E TH A N TH IR TY TIJO USA JVD WOR DS T H E IR INI TI ALS A N D FINALS ALP HAB E TI CALLY AR RANGE D A Y R IL P E A R SO N’ M RS . C L ON DON G E O R G E R O U T L E D G E A N D S O N S BR DW Y LUDG E H LL OA A , AT I P N EW YORK : 9 LAFAYETTE LACE D W RK S F REFERE N CE STANDAR O O . 0 + ’ ' ’ 5 /z / . ac c oZ/z J rz a 6d. e 3 , ’ H C R A BB S E N G LIS S YN O N YM S . ’ - \VA L K E R S R IIYM IN G DI CT I O N A RY . ' F BA RTL ETT S A M I L I A R Q UO TAT I O N S . IE R E ' A D L E M P R S C L SSI CAL I CTI O N AR Y. ice 25 . ( lo/b P r . N UTTA L L ’ S P R O N O UN CI N G DI CTI O N AR Y & TH E E N H A N G UA E O I G LIS L G . I n c lu d in g m W o r s man y Th o u san d M o d e d c o n n e c te d w ith c ie n c e t e ratu re an l A rt. -
The Minor Planet Bulletin 36, 188-190
THE MINOR PLANET BULLETIN OF THE MINOR PLANETS SECTION OF THE BULLETIN ASSOCIATION OF LUNAR AND PLANETARY OBSERVERS VOLUME 37, NUMBER 3, A.D. 2010 JULY-SEPTEMBER 81. ROTATION PERIOD AND H-G PARAMETERS telescope (SCT) working at f/4 and an SBIG ST-8E CCD. Baker DETERMINATION FOR 1700 ZVEZDARA: A independently initiated observations on 2009 September 18 at COLLABORATIVE PHOTOMETRY PROJECT Indian Hill Observatory using a 0.3-m SCT reduced to f/6.2 coupled with an SBIG ST-402ME CCD and Johnson V filter. Ronald E. Baker Benishek from the Belgrade Astronomical Observatory joined the Indian Hill Observatory (H75) collaboration on 2009 September 24 employing a 0.4-m SCT PO Box 11, Chagrin Falls, OH 44022 USA operating at f/10 with an unguided SBIG ST-10 XME CCD. [email protected] Pilcher at Organ Mesa Observatory carried out observations on 2009 September 30 over more than seven hours using a 0.35-m Vladimir Benishek f/10 SCT and an unguided SBIG STL-1001E CCD. As a result of Belgrade Astronomical Observatory the collaborative effort, a total of 17 time series sessions was Volgina 7, 11060 Belgrade 38 SERBIA obtained from 2009 August 20 until October 19. All observations were unfiltered with the exception of those recorded on September Frederick Pilcher 18. MPO Canopus software (BDW Publishing, 2009a) employing 4438 Organ Mesa Loop differential aperture photometry, was used by all authors for Las Cruces, NM 88011 USA photometric data reduction. The period analysis was performed using the same program. David Higgins Hunter Hill Observatory The data were merged by adjusting instrumental magnitudes and 7 Mawalan Street, Ngunnawal ACT 2913 overlapping characteristic features of the individual lightcurves.