Correction for Song Et Al., Flat Latitudinal Diversity Gradient Caused

Total Page:16

File Type:pdf, Size:1020Kb

Correction for Song Et Al., Flat Latitudinal Diversity Gradient Caused Correction EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES, EVOLUTION Correction for “Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction,” by Haijun Song, Shan Huang, Enhao Jia, Xu Dai, Paul B. Wignall, and Alexander M. Dunhill, which was first published July 6, 2020; 10.1073/pnas.1918953117 (Proc. Natl. Acad. Sci. U.S.A. 117, 17578–17583). The editors wish to note that the following competing interest statement regarding personal associations with the authors should have been disclosed: Editor M.J.B. shares a research grant with P.B.W. and has coauthored papers with A.M.D. in 2019 and 2020, and with H.S. in 2017 and 2019. The editors apologize for the oversight in failing to disclose this information to readers. The competing interest statement in the article has been corrected. Published under the PNAS license. First published August 10, 2020. www.pnas.org/cgi/doi/10.1073/pnas.2015344117 20334 | PNAS | August 18, 2020 | vol. 117 | no. 33 www.pnas.org Downloaded by guest on September 28, 2021 Flat latitudinal diversity gradient caused by the Permian–Triassic mass extinction Haijun Song (宋海军)a,1, Shan Huangb, Enhao Jia (贾恩豪)a, Xu Dai (代旭)a, Paul B. Wignallc, and Alexander M. Dunhillc aState Key Laboratory of Biogeology and Environmental Geology, School of Earth Sciences, China University of Geosciences, 430074 Wuhan, China; bSenckenberg Biodiversity and Climate Research Center, 60325 Frankfurt am Main, Germany; and cSchool of Earth and Environment, University of Leeds, LS2 9JT Leeds, United Kingdom Edited by Michael J. Benton, University of Bristol, Bristol, UK, and accepted by Editorial Board Member Neil H. Shubin May 21, 2020 (received for review October 29, 2019) The latitudinal diversity gradient (LDG) is recognized as one of the of marine species (16) and caused profound temporary and most pervasive, global patterns of present-day biodiversity. How- permanent ecological restructuring of marine ecosystems (23), ever, the controlling mechanisms have proved difficult to identify which ultimately catalyzed the transformation of marine com- because many potential drivers covary in space. The geological munities dominated by Paleozoic faunas to those dominated by record presents a unique opportunity for understanding the mecha- the Modern fauna (15). The effect of the largest mass extinction nisms which drive the LDG by providing a direct window to deep-time in Earth’s history on global marine biogeography is largely un- biogeographic dynamics. Here we used a comprehensive database known, but the rich marine fossil record from this time can be a containing 52,318 occurrences of marine fossils to show that the shape powerful tool for illuminating the fundamental principles that of the LDG changed greatly during the Permian–Triassic mass extinc- shape global biodiversity. tion from showing a significant tropical peak to a flattened LDG. The LDG dynamics across the P-Tr mass extinction has received flat LDG lasted for the entire Early Triassic (∼5 My) before reverting to little attention except for a few case studies that have all sug- a modern-like shape in the Middle Triassic. The environmental ex- gested a strong impact of environmental changes on global di- tremes that prevailed globally, especially the dramatic warming, likely versity patterns. For example, the early-middle Permian diversity induced selective extinction in low latitudes and accumulation of di- of terrestrial tetrapods reportedly peaked in temperate regions versity in high latitudes through origination and poleward migration, as a result of profound climate-induced biome shift (24). By the EARTH, ATMOSPHERIC, AND PLANETARY SCIENCES which combined together account for the flat LDG of the Early Triassic. Early Triassic, the distribution of terrestrial tetrapods had moved 10 to 15° poleward (25, 26), and the group was apparently absent biogeography | end-Permian mass extinction | global warming | ocean from 40 °S to 30 °N as a result of tropical overheating (18). anoxia | biodiversity Phylogenetic network analysis also found a marked increase in biogeographic connectedness, resulting in a more homogeneous he increase in species richness from the poles to the tropics, composition of diversity across latitudes in tetrapods during this long known as the latitudinal diversity gradient (LDG), is one time (27). Similar poleward migrations were also found in ma- T EVOLUTION of the most pervasive first-order biological patterns on Earth rine invertebrates in the Northern Hemisphere during the Early today (1, 2), both on land (3) and in the oceans (4–6). Yet, the Triassic (28), and a variable LDG during this time was reported relative importance of the diverse ecological and evolutionary mechanisms (e.g., reviews in refs. 7–9) for generating this pattern Significance remains unclear. Paleontological data provide a unique per- spective in the search for the dominant driver(s) of LDGs, The deep-time dynamics of the latitudinal diversity gradient allowing diversity and distribution dynamics to be tracked (LDG), especially through dramatic events like mass extinctions, through the long history of environmental changes (10, 11). In can provide invaluable insights into the biotic responses to particular, climate (e.g., temperature or precipitation) is regar- global changes, yet they remain largely underexplored. Our ded as a key driver of the LDG, and its large-scale changes have study shows that the shape of marine LDGs changed sub- been postulated to have altered the general shape of the LDG stantially and rapidly during the Permian–Triassic mass ex- through time (12, 13). Steep, normal LDGs (i.e., with a signifi- tinction from a modern-like steep LDG to a flat LDG. The flat cant tropical peak like today) have been found primarily during LDG lasted for ∼5 My and was likely a consequence of the icehouse times, whereas bimodal or even reverse LDGs with extreme global environment, including extreme warming and diversity peaks at mid to high latitudes occurred during green- ocean anoxia, which ensured harsh conditions prevailing from house climates (13, 14). These findings call for assessments of the tropics to the poles. Our findings highlight the fundamental the relative importance of climate per se and environmental role of environmental variations in concert with severe bio- stability, especially through comparing the dynamics across sev- diversity loss in shaping the first-order biogeographic patterns. eral time intervals with different environmental templates. The dramatic changes in environmental conditions and the Author contributions: H.S., P.B.W., and A.M.D. designed research; H.S., E.J., and X.D. performed research; H.S., S.H., and X.D. analyzed data; and H.S., S.H., P.B.W., and severe mass extinction at the end of the Permian provide an A.M.D. wrote the paper. excellent opportunity for investigating LDGs and their control- The authors declare no competing interest. – ling mechanisms. The Permian Triassic (P-Tr) mass extinction, This article is a PNAS Direct Submission. M.J.B. is a guest editor invited by the which occurred ca. 252 My ago, was the largest extinction event Editorial Board. of the Phanerozoic (15, 16). This biological crisis was linked to Published under the PNAS license. extreme and prolonged environmental changes, many of which Data deposition: All data used to conduct analyses and plot figures are available for are probably the most serious of the past 500 My. The contem- download at Dryad, https://datadryad.org/stash/dataset/doi:10.5061/dryad.41ns1rn9z. poraneous eruption of the Siberian Traps large igneous province 1To whom correspondence may be addressed. Email: [email protected]. (17) drove ∼10 °C global warming within ca. 30,000 to 60,000 y This article contains supporting information online at https://www.pnas.org/lookup/suppl/ through greenhouse gas emissions (18, 19) and widespread doi:10.1073/pnas.1918953117/-/DCSupplemental. oceanic anoxia (20–22). These disastrous events killed over 90% www.pnas.org/cgi/doi/10.1073/pnas.1918953117 PNAS Latest Articles | 1of6 in ammonoids (29). These findings suggest a great change in 201.3 Rh biogeographic distribution during the P-Tr crisis, which would (Ma) have had a profound impact on LDG. In this study, we in- Late No vestigate LDG dynamics through the P-Tr mass extinction event, Triassic and the later recovery of biodiversity, using the most compre- hensive fossil database thus far for this time period. Ca 237 Global Changes in Biogeography La Middle In order to assess the effect of the P-Tr extinction and associated Triassic environmental extremes on latitudinal diversity patterns, we An 247.2 analyzed biogeographic distributions using a database consisting Sp Sm of occurrences of marine genera (including 20 major clades; see Early Methods for details) from the late Permian (Changhsingian, Triassic Di 254.1 Ma) to the Late Triassic (Rhaetian, 201.3 Ma). This da- Gr tabase is an update of an earlier P-Tr marine fossil database (23) 251.90 Late and includes 52,318 generic occurrences at a substage- or stage- Permian Ch level resolution from 1,768 literature sources (Dataset S1). 254.14 Among these, 7,752, 12,676, 13,456, and 18,634 occurrences are 0-15º 15-30º 30-45º 45-90º in the late Permian and Early, Middle, and Late Triassic, re- spectively. Based on reconstructed paleolatitudes, the collections were binned into four paleolatitudinal zones for each hemi- 46.4 65.5 84.6 103.7 122.8 sphere: 0 to 15°, 15 to 30°, 30 to 45°, and 45 to 90°. The larger size Subsampled diversity of the 45 to 90° bin was chosen to accommodate the relatively Fig. 2. Rarefied genus-level diversity trends related to latitude from the low sample density at higher latitudes in most time intervals. At late Permian to the end of the Triassic. Data are standardized by repeatedly the epoch level, data from the paleolatitudinal zones of the subsampling from a randomly generated set until reaching a quota of 136 Northern and Southern Hemispheres are analyzed separately occurrences in each time bin at each latitudinal interval (SI Appendix, Table (Fig.
Recommended publications
  • USGS Professional Paper 1662, Chapter 4
    Studies by the U.S. Geological Survey in Alaska, 2000 U.S. Geological Survey Professional Paper 1662 Late Triassic (Norian) Mollusks From the Taylor Mountains Quadrangle, Southwestern Alaska By Christopher A. McRoberts1 and Robert B. Blodgett2 Abstract Such paleobiogeographic data as those presented herein are extremely useful in constraining the past geographic positions We describe a diverse molluscan fauna of silicified fossils of these mobile terranes over time, and so are of utmost utility from two localities in the Taylor Mountains D–3 quadrangle of in unraveling the tectonic history of this part of Alaska. southwestern Alaska. The molluscan fauna consists of at least 8 species of bivalves, including 1 new species, Cassianella cordillerana McRoberts n.sp., and at least 11 species of gas- Geologic Setting tropods, including 2 new species, Neritaria nuetzeli Blodgett n.sp. and Andangularia wilsoni Blodgett n.sp. Bivalve and gastropod affinities suggest an early Norian age, with taxo- The Farewell terrane of southwestern and west-central nomic similarities to several southern Alaskan tectonostrati- Alaska (fig. 1) was established by Decker and others (1994) graphic terranes (for example, Alexander and Chulitna), as as a tectonostratigraphic entity incorporating three previously well as to the South American Cordillera of Peru. The mol- named, genetically related terranes (Nixon Fork, Dillinger, lusks are associated with numerous brachiopods that also sup- and Mystic) that are relegated the status of subterranes of the port a Norian
    [Show full text]
  • Lower Permian Through Lower Trassic Paleontology, Stratigraphy, and Chemostratigraphy of the Bilk Creek Mountains of Humboldt County, Nevada
    LOWER PERMIAN THROUGH LOWER TRASSIC PALEONTOLOGY, STRATIGRAPHY, AND CHEMOSTRATIGRAPHY OF THE BILK CREEK MOUNTAINS OF HUMBOLDT COUNTY, NEVADA Christopher Allen Klug A Thesis Submitted to the Graduate College of Bowling Green State University in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE December 2007 Committee: Margaret M. Yacobucci, Advisor James E. Evans John R. Farver © 2007 Christopher Klug All Rights Reserved iii ABSTRACT Margaret M. Yacobucci, Advisor The primary goal of this study was to use paleontological, geochemical ( C), and sedimentological data to determine if a complete Permian-Triassic boundary section is present at the Bilk Creek Mountains of northwestern Nevada. The Bilk Creek Mountains of northwestern Nevada contain a marine record deposited in a back-arc terrane environment, starting in the Lower Permian Bilk Creek Limestone and extending to the Middle Triassic Quinn River Formation. Field work through these units reveals changes in the marine benthic fauna through this interval, including across the Permian-Triassic boundary. Data collected from the Bilk Creek Limestone reveals a diverse benthic marine fauna, with brachiopods being the most abundant. Within the Bilk Creek Limestone, two different faunal signatures are apparent. The transition and separation of these groups are marked by the appearance and the abundance of Boreal brachiopods such as Spiriferella, Neospirifer, Stenoscisma, Muirwoodia transversa, Neophricodothyris sp., and Derbyia, replacing mid-latitude to Tethyan-derived brachiopods such as Crurithyris, Dielasma, Squamularia sp., and Rhynchopora. When the brachiopod faunas of the Bilk Creek were compared statistically with other known Early Permian rocks deposited along northwestern and western Pangea, analysis showed that the Bilk Creek brachiopod fauna was similar to that of the Eastern Klamath and Quesnellia terranes.
    [Show full text]
  • Title Discovery of Claraia and Eumorphotis from Triassic Yakuno
    Discovery of Claraia and Eumorphotis from Triassic Yakuno Title Group, Kyoto Pref., Japan Author(s) Nakazawa, Keiji Memoirs of the College of Science, University of Kyoto. Series Citation B (1953), 20(4): 261-269 Issue Date 1953-12-10 URL http://hdl.handle.net/2433/257980 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University MEnelks oF wma Co-EGE oF SomNeE VMvERs]Ty oF KyoTo, SEwtEg B. Vo}. XX, No. 4•, Article 4t, 1953. ' Discovery of ClaTaia and EzamorPlzot.is from Triassic Yakuno Group, Kyoto Pref., JapaR• By Keiji _NAKAZAWA Ceo]ogical and Mineralosical Institute, University of Kyoto (Received Aug. 3, 1953) Abstract The Yalcuno gro"p distribtited in the ]N(EaizLiru zone has been eonsidered Anisian in age. !Aately the author confi'rmecl that the age oÅí its lower part belongs to the Scytkian by (llseQvering tlie Eo-triasslc pelecypods and ammonoids. Species of Clarai.a and Euntorphoti$ Qf theformer are dieseril)ed. k'efaee The ]VIaizuru(ge#'fggs) clistrlct is cltaraeterized by a zoRal arrangement of the PermiaA Maizuru grotip, t}3e Lower and Middle Triassie Yakuno (lf(fivgeg•) and Kawanishi (•trifY"e) groups, t}ie ILTpper Triassic Nabae (suEva?lr) group and t}ie so-called JctP"X Sea Fig. 1. Index Map of Fossil I,eca}ity 262 Keiji NAKAZAWA Yal<uno basic intrusive rocks as repoxtecl })rlefiy lii the preeeeding pani er (llNIakazawa, 1952a), and is ca}lecl the "Maizuru zone" by S. -"'{atsashita <1950, p. 4Al; 1953, pp. 3,<k). (See rlrextfigure 1) . This zone is new confirrned to continue into Okayama(s-rfipt) Pref., about 130km FVSW from liiaizuru (Nalcazawa, 1952b, p.
    [Show full text]
  • Early Triassic Disaster and Opportunistic Foraminifers in South China
    This is a repository copy of Early Triassic disaster and opportunistic foraminifers in South China. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/90242/ Version: Accepted Version Article: Song, H, Tong, J, Wignall, PB et al. (5 more authors) (2016) Early Triassic disaster and opportunistic foraminifers in South China. Geological Magazine, 153 (2). pp. 298-315. ISSN 0016-7568 https://doi.org/10.1017/S0016756815000497 Reuse Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher’s website. Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ 1 Early Triassic disaster and opportunistic 2 foraminifers in South China 3 Haijun Song*à , Jinnan Tong* , Paul B. Wignall§, 4 Mao Luo||, Li Tian*, Huyue Song*, YunFei Huang¶, Daoliang Chu* 5 *State Key Laboratory of Biogeology
    [Show full text]
  • Evidence for Sea-Level Falls in the Permian-Triassic Transition in the Ziyun Area, South China
    GEOLOGICAL JOURNAL Geol. J. 45: 170–185 (2010) Published online 21 July 2009 in Wiley InterScience (www.interscience.wiley.com) DOI: 10.1002/gj.1168 Evidence for sea-level falls in the Permian-Triassic transition in the Ziyun area, South China WU YA-SHENG*, JIANG HONG-XIA and FAN JIA-SONG Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China The sedimentology of three sections showing the Permian–Triassic (P–T) transition on an Upper Permian reef in Ziyun, Guizhou Province, southwest China provides evidence of sea-level fall in this area. The P–T transition in the Gendan section, which covers a reef-front sequence, contains a subaerial exposure surface and various desiccation cracks (including rolled-up chips, in-chip cracks, pyramid cracks, vertical cracks and sheet cracks), indicating sea-level falls. The P–T transition in the Shitouzhai section, which covers a reef-core sequence, contains three micritic beds with abundant pseudomorphs of tabular gypsum crystals replaced by calcite. The underlying centimetres of deposits are composed of fine-crystalline dolostone, and have a sharp contact with the underlying reef-core facies. The association of gypsum pseudomorphs and fine-crystalline dolostone suggests an origin related to a supratidal evaporative environment. The P–T transition in the Tanluzhai section, which covers a back-reef sequence, is fine-crystalline dolostone, and shows a laminated algal structure indicating tidal- flat environments. The middle part of the dolostone interval has become a collapse breccia composed of dolostone fragments and a matrix of micrites or crustose multi-generation calcite cements. The formation of the collapse breccia is interpreted to be related to the dissolution of the evaporite interbeds originally present between the thin dolostone beds.
    [Show full text]
  • Permian-Triassic Boundary in Middle and Eastern Tethys
    Title Permian-Triassic Boundary in Middle and Eastern Tethys Sheng, Jin-zhang; Chen, Chu-zhen; Wang, Yi-gang; Rui, Lin; Liao, Zhuo-ting; Bando, Yuji; Ishii, Ken-ichi; Nakazawa, Author(s) Keiji; Nakamura, Koji Citation 北海道大学理学部紀要, 21(1), 133-181 Issue Date 1984-02 Doc URL http://hdl.handle.net/2115/36727 Type bulletin (article) File Information 21-1_p133-181.pdf Instructions for use Hokkaido University Collection of Scholarly and Academic Papers : HUSCAP Jour. Fac., ScL, Hokkaido Uni v., Ser. IV , vol. 21, no. I, Feb .• 1984. pp. 133-181. PERMIAN-TRIASSIC BOUNDARY IN MIDDLE AND EASTERN TETHYS by Sheng Jin-zhang*' , Chen Chu-zhen*l, Wang Yi-gang*', Rui Lin*', Liao Zhuo-ting*', Yuji Bando*', Ken-ichi Ishii*', Keiji Nakazawa" and Koji Nakamura*s (with 22 text-figures, 5 tables and 2 plates) Abstract The recent investigation on the conformable Permian-Triassic transition beds in South China revealed the existence of the mixed-fauna beds immediately above the Changhsing Formation or its equivalent, wh ich contain the Permian-type brachiopods and the Triassic-type ammonoids and bivalves. Three successive mixed-fauna beds, numbered I to 3, can be distinguished at many places. The first two are referred as the Otoceras Zone and the last one as the Ophiceras Zone based on the new discovery of Otoceras sp. from the mixed-fauna bed no. I and a common occurrence of Ophiceras and Claraia in bed no. 3. The correlation of the Chinese sections with Permian-Triassic sequences in other parts of the Tethys pro­ vince, such as Iran, Pakistan, and India, shows some time gap between the Upper Permian and Lower Triassic in those regions with the exception of Kashmir region.
    [Show full text]
  • The Role of the Siberian Traps in the Permian-Triassic Boundary Crisis: Analysis Through
    The Role of the Siberian Traps in the Permian-Triassic Boundary Crisis: Analysis through Chemical Fingerprinting of Marine Sediments using Rare Earth Elements A thesis submitted to the Graduate School of the University of Cincinnati in partial fulfillment of the requirement for the degree of Master of Science By Alan Santistevan B.A. University of California, Berkeley December 2018 Committee Chair: T.A. Algeo, Ph.D. Department of Geology, University of Cincinnati, Cincinnati OH 45221-0013 USA 1 Abstract In this study, the question of microenvironmental change related to the overall eruption pattern from the Siberian Traps was examined. Using the unique rare earth element geochemistry that was produced from the successive eruptions, a geological trace that links the Siberian Traps to the environmental collapse from the effects of windblown ash was found in using over 400 marine sediment samples taken from 7 different Permian-Triassic Boundary sections. The following results show values likely indicative of material derived from the lower crust, upper mantle with the Eu/Eu* anomalies from Zal, a microcontinent in the Tethys Ocean, Gujo-Hachiman, an open ocean site in the eastern Panthalassic Ocean, along with Guryul Ravine and Spiti on the northwestern margin of Gondwana. These results represent a global signal, and could reflect a deleterious effect upon marine and terrestrial ecosystems from the possible volcanic ashfall that was produced from the Siberian Traps. 2 3 Table of Contents 1. Introduction 2. Background 2.1. The Permian paleoenvironment 2.2. The Permian-Triassic Boundary crisis 2.3. Potential causes of the Permian-Triassic Boundary crisis 2.4.
    [Show full text]
  • Abrek Bay Area, South Primorye, Russia
    The Lower Triassic System in the Abrek Bay area, South Primorye, Russia Edited by Yasunari Shigeta Yuri D. Zakharov Haruyoshi Maeda Alexander M. Popov National Museum of Nature and Science Tokyo, March 2009 v Contents Contributors .................................................................vi Abstract ....................................................................vii Introduction (Y. Shigeta, Y. D. Zakharov, H. Maeda, A. M. Popov, K. Yokoyama and H. Igo) ...1 Paleogeographical and geological setting (Y. Shigeta, H. Maeda, K. Yokoyama and Y. D. Zakharov) ....................3 Stratigraphy (H. Maeda, Y. Shigeta, Y. Tsujino and T. Kumagae) .........................4 Biostratigraphy Ammonoid succession (Y. Shigeta, H. Maeda and Y. D. Zakharov) ..................24 Conodont succession (H. Igo) ...............................................27 Correlation (Y. Shigeta and H. Igo) ...........................................29 Age distribution of detrital monazites in the sandstone (K. Yokoyama, Y. Shigeta and Y. Tsutsumi) ..............................30 Discussion Age data of monazites (K. Yokoyama, Y. Shigeta and Y. Tsutsumi) ..................34 The position of the Abrek Bay section in the “Ussuri Basin” (Y. Shigeta and H. Maeda) ...36 Ammonoid mode of occurrence (H. Maeda and Y. Shigeta) ........................36 Aspects of ammonoid faunas (Y. Shigeta) ......................................38 Holocrinus species from the early Smithian (T. Oji) ..............................39 Recovery of nautiloids in the Early Triassic (Y. Shigeta)
    [Show full text]
  • Lower Triassic, Western Usa): Intrinsic Versus Extrinsic Controls on Ecosystem Recovery After the End-Permian Mass Extinction
    Journal of Paleontology, 87(5), 2013, p. 854–880 Copyright Ó 2013, The Paleontological Society 0022-3360/13/0087-854$03.00 DOI: 10.1666/12-153 A NEW PALEOECOLOGICAL LOOK AT THE DINWOODY FORMATION (LOWER TRIASSIC, WESTERN USA): INTRINSIC VERSUS EXTRINSIC CONTROLS ON ECOSYSTEM RECOVERY AFTER THE END-PERMIAN MASS EXTINCTION RICHARD HOFMANN, MICHAEL HAUTMANN, AND HUGO BUCHER Pala¨ontologisches Institut und Museum, Universita¨tZu¨rich, Karl-Schmid-Strasse 4, 8006 Zu¨rich, Switzerland, ,[email protected].; ,[email protected].; and ,[email protected]. ABSTRACT—The Dinwoody Formation of the western United States represents an important archive of Early Triassic ecosystems in the immediate aftermath of the end-Permian mass extinction. We present a systematic description and a quantitative paleoecological analysis of its benthic faunas in order to reconstruct benthic associations and to explore the temporal and spatial variations of diversity, ecological structure and taxonomic composition throughout the earliest Triassic of the western United States. A total of 15 bivalve species, two gastropod species, and two brachiopod species are recognized in the study area. The paleoecological analysis shows that the oldest Dinwoody communities are characterized by low diversity, low ecological complexity and high dominance of few species. We suggest that this low diversity most likely reflects the consequences of the mass extinction in the first place and not necessarily the persistence of environmental stress. Whereas this diversity pattern persists into younger strata of the Dinwoody Formation in outer shelf environments, an increase in richness, evenness and guild diversity occurred around the Griesbachian–Dienerian boundary in more shallow marine habitats.
    [Show full text]
  • (EPME) and the Early Triassic Biotic Recovery in the Western Dolomites (Italy): State of the Art
    TO L O N O G E I L C A A P I ' T A A T L E I I A Bollettino della Società Paleontologica Italiana, 58 (1), 2019, 11-34. Modena C N O A S S. P. I. The end-Permian mass extinction (EPME) and the Early Triassic biotic recovery in the western Dolomites (Italy): state of the art Renato Posenato R. Posenato, Dipartimento di Fisica e Scienze della Terra, Università di Ferrara, Via Saragat 1, I-44121 Ferrara, Italy; [email protected] KEY WORDS - Permian/Triassic boundary, biotic crisis, Southern Alps, northern Italy. ABSTRACT - The Dolomites (Southern Alps, Italy) represent a key-area to study the biotic and environmental events connected to the end-Permian mass extinction (EPME) and the Early Triassic biotic recovery of shallow-marine ecosystems. Geological and palaeontological researches on these events began since in the early 19th century. The contributions of these studies to the stratigraphic setting, dating, intensity, pattern and causes of the EPME and Early Triassic biotic recovery are outlined herein. After almost two centuries of research, our present undestanding suggests the following multi-steps scenario. The EPME occurred during a short extinction interval, which started at the base of transgressive oolitic beds of the Tesero Member (Werfen Formation, latest Changhsingian). The early phase lasted only a few millennia. It caused a dramatic drop of fossil abundance and diversity and the extinction of about 65% of existing genera, including the large-sized brachiopods and molluscs. The second phase affected the sparse stenotopic marine organisms, most had survived within microbial communities, and finished just above the Permian/ Triassic boundary a few thousand years after the first phase.
    [Show full text]
  • A New Paleoecological Look at the Dinwoody Formation (Lower Triassic, Western Usa): Intrinsic Versus Extrinsic Controls on Ecosy
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2013 A New Paleoecological look at the Dinwoody Formation (Lower Triassic, Western USA): Intrinsic Versus Extrinsic Controls on Ecosystem Recovery After the End-Permian Mass Extinction Hofmann, Richard ; Hautmann, Michael ; Bucher, Hugo DOI: https://doi.org/10.1666/12-153 Posted at the Zurich Open Repository and Archive, University of Zurich ZORA URL: https://doi.org/10.5167/uzh-81033 Journal Article Published Version Originally published at: Hofmann, Richard; Hautmann, Michael; Bucher, Hugo (2013). A New Paleoecological look at the Din- woody Formation (Lower Triassic, Western USA): Intrinsic Versus Extrinsic Controls on Ecosystem Recovery After the End-Permian Mass Extinction. Journal of Paleontology, 87(5):854-880. DOI: https://doi.org/10.1666/12-153 Journal of Paleontology, 87(5), 2013, p. 854–880 Copyright Ó 2013, The Paleontological Society 0022-3360/13/0087-854$03.00 DOI: 10.1666/12-153 A NEW PALEOECOLOGICAL LOOK AT THE DINWOODY FORMATION (LOWER TRIASSIC, WESTERN USA): INTRINSIC VERSUS EXTRINSIC CONTROLS ON ECOSYSTEM RECOVERY AFTER THE END-PERMIAN MASS EXTINCTION RICHARD HOFMANN, MICHAEL HAUTMANN, AND HUGO BUCHER Pala¨ontologisches Institut und Museum, Universita¨tZu¨rich, Karl-Schmid-Strasse 4, 8006 Zu¨rich, Switzerland, ,[email protected].; ,[email protected].; and ,[email protected]. ABSTRACT—The Dinwoody Formation of the western United States represents an important archive of Early Triassic ecosystems in the immediate aftermath of the end-Permian mass extinction. We present a systematic description and a quantitative paleoecological analysis of its benthic faunas in order to reconstruct benthic associations and to explore the temporal and spatial variations of diversity, ecological structure and taxonomic composition throughout the earliest Triassic of the western United States.
    [Show full text]
  • USGS Professional Paper 1795-B
    Studies by the U.S. Geological Survey in Alaska, 2011 Lithofacies, Age, Depositional Setting, and Geochemistry of the Otuk Formation in the Red Dog District, Northwestern Alaska Professional Paper 1795–B U.S. Department of the Interior U.S. Geological Survey Cover image. Photograph of core from the shale member of the Otuk Formation in diamond-drill hole (DDH) 927. The alternating black and light-gray shale seen in this core are very typical of the Otuk in DDH 927. Studies by the U.S. Geological Survey in Alaska, 2011 Lithofacies, Age, Depositional Setting, and Geochemistry of the Otuk Formation in the Red Dog District, Northwestern Alaska By Julie A. Dumoulin, Robert C. Burruss, and Charles D. Blome Professional Paper 1795–B U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior SALLY JEWELL, Secretary U.S. Geological Survey Suzette M. Kimball, Acting Director U.S. Geological Survey, Reston, Virginia: 2013 For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment, visit http://www.usgs.gov or call 1–888–ASK–USGS. For an overview of USGS information products, including maps, imagery, and publications, visit http://www.usgs.gov/pubprod To order this and other USGS information products, visit http://store.usgs.gov Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the U.S. Government. Although this information product, for the most part, is in the public domain, it also may contain copyrighted materials as noted in the text.
    [Show full text]