Oracle Communications Unified Communications Suite Certificate Authentication Guide, Release 7.0.6
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Unit 13 E-Mail and E-Messaging
UNIT 13 E-MAIL AND E-MESSAGING Structure 13.0 Objectives 13.1 Introduction 13.2 E-mail 13.2.1 Defining Email 13.2.2 Need of Email 13.2.3 Email Address 13.3 Types of Email Services 13.3.1 Free Web-based Email Services 13.3.2 Priced Web-based Email Services 13.3.3 Private Email Services 13.4 Types of Email Account 13.4.1 POP/IMAP Account 13.4.2 Email Forwarder 13.4.3 Mailing List 13.4.4 Auto Responder 13.4.5 Email Bouncer 13.4.6 Email Blackhole 13.5 Structure and Features of Email 13.5.1 Header 13.5.2 Body 13.5.3 Features 13.6 Functioning of Email Systems 13.6.1 Protocols 13.6.2 Delivery Agent 13.6.3 Access Client 13.6.4 Setting up Account 13.6.5 Folder Management 13.7 Messaging 13.7.1 Instant Messaging 13.7.2 Unified Messaging 13.8 Issues with Messaging 13.8.1 Spamming 13.8.2 Privacy 13.8.3 Security 13.9 Widgets and Utilities 13.10 Summary 13.11 Answers to Self Check Exercises 13.12 Keywords 13.13 References and Further Reading 5 Internet Tools and Services 13.0 OBJECTIVES After reading this Unit, you will be able to: provide a detailed account about Email and Email service Providers; explain in detail various Protocols used in Email service; and discuss about Web 2.0 tools in Email. 13.1 INTRODUCTION Electronic Mail is one of the most prominent uses of networked communication technology. -
Ten Strategies of a World-Class Cybersecurity Operations Center Conveys MITRE’S Expertise on Accumulated Expertise on Enterprise-Grade Computer Network Defense
Bleed rule--remove from file Bleed rule--remove from file MITRE’s accumulated Ten Strategies of a World-Class Cybersecurity Operations Center conveys MITRE’s expertise on accumulated expertise on enterprise-grade computer network defense. It covers ten key qualities enterprise- grade of leading Cybersecurity Operations Centers (CSOCs), ranging from their structure and organization, computer MITRE network to processes that best enable effective and efficient operations, to approaches that extract maximum defense Ten Strategies of a World-Class value from CSOC technology investments. This book offers perspective and context for key decision Cybersecurity Operations Center points in structuring a CSOC and shows how to: • Find the right size and structure for the CSOC team Cybersecurity Operations Center a World-Class of Strategies Ten The MITRE Corporation is • Achieve effective placement within a larger organization that a not-for-profit organization enables CSOC operations that operates federally funded • Attract, retain, and grow the right staff and skills research and development • Prepare the CSOC team, technologies, and processes for agile, centers (FFRDCs). FFRDCs threat-based response are unique organizations that • Architect for large-scale data collection and analysis with a assist the U.S. government with limited budget scientific research and analysis, • Prioritize sensor placement and data feed choices across development and acquisition, enteprise systems, enclaves, networks, and perimeters and systems engineering and integration. We’re proud to have If you manage, work in, or are standing up a CSOC, this book is for you. served the public interest for It is also available on MITRE’s website, www.mitre.org. more than 50 years. -
A Systematic Study of Cache Side Channels Across AES Implementations
A Systematic Study of Cache Side Channels across AES Implementations Heiko Mantel1, Alexandra Weber1, and Boris K¨opf 2 1 Computer Science Department, TU Darmstadt, Darmstadt, Germany [email protected], [email protected] 2 IMDEA Software Institute, Madrid, Spain [email protected] Abstract While the AES algorithm is regarded as secure, many imple- mentations of AES are prone to cache side-channel attacks. The lookup tables traditionally used in AES implementations for storing precom- puted results provide speedup for encryption and decryption. How such lookup tables are used is known to affect the vulnerability to side chan- nels, but the concrete effects in actual AES implementations are not yet sufficiently well understood. In this article, we analyze and compare multiple off-the-shelf AES implementations wrt. their vulnerability to cache side-channel attacks. By applying quantitative program analysis techniques in a systematic fashion, we shed light on the influence of im- plementation techniques for AES on cache-side-channel leakage bounds. 1 Introduction The Advanced Encryption Standard (AES) is a widely used symmetric cipher that is approved by the U.S. National Security Agency for security-critical ap- plications [8]. While traditional attacks against AES are considered infeasible as of today, software implementations of AES are known to be highly suscepti- ble to cache side-channel attacks [5, 15, 18, 19, 32]. While such side channels can be avoided by bitsliced implementations [6,23], lookup-table-based implementa- tions, which aim at better performance, are often vulnerable and wide spread. To understand the vulnerability to cache side-channel attacks, recall that the 128bit version of AES relies on 10 rounds of transformations. -
The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint Work with K
The BEAST Wins Again: Why TLS Keeps Failing to Protect HTTP Antoine Delignat-Lavaud, Inria Paris Joint work with K. Bhargavan, C. Fournet, A. Pionti, P.-Y. Strub INTRODUCTION Introduction Cookie Cutter Virtual Host Confusion Crossing Origin Boundaries Shared Session Cache Shared Reverse Proxies SPDY Connection Pooling Triple Handshake Conclusion Why do we need TLS? 1. Authentication – Must be talking to the right guy 2. Integrity – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants 4. Privacy? – Can’t tell who we are and what we talk about Why do we need TLS? 1. Authentication – Must be talking to the right guy Active Attacks 2. Integrity (MitM) – Our messages cannot be tampered 3. Confidentiality – Messages are only legible to participants Passive Attacks 4. Privacy? (Wiretapping) – Can’t tell who we are and what we talk about What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker – Captures (passive) and tampers (active) packets What websites expect of TLS • Web attacker – Controls malicious websites – User visits honest and malicious sites in parallel – Web/MitB attacks: CSRF, XSS, Redirection… • Network attacker Strictly stronger – Captures (passive) and tampers (active) packets What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. What websites expect of TLS If a website W served over HTTP is secure against a Web attacker, then serving W over HTTPS makes it secure against a network attacker. -
Searching for Trust
SEARCHing for Trust Scott Rea1, TBA GOV2, TBA EDU3 1DigiCert Inc, Lindon, UT U.S.A., [email protected] 2Gov Agency, TBA, Australia, [email protected] 3University or Corporation, TBA, Australia, [email protected] ABSTRACT The security of the X.509 “oligarchy” Public Key Infrastructure for browsers and SSL web servers is under scrutiny in response to Certification Authority (CA) compromises which resulted in the circulation of fraudulent certificates. These rogue certificates can and have been used to execute Man-in-the-Middle attacks and gain access to users’ sensitive information. In wake of these events, there has been a call for change to the extent of either securing the current system or altogether replacing it with an alternative design. This panel will review the results of the research paper to be published that will explore the following proposals which have been put forth to replace or improve the CA system with the goal of aiding in the prevention and detection of MITM attacks and improving the trust infrastructure: Convergence, Perspectives, Mutually Endorsed Certification Authority Infrastructure (MECAI), DNS-Based Authentication of Named Entities (DANE), DNS Certification Authority Authorization (CAA) Resource Records, Public Key Pinning, Sovereign Keys, and Certificate Transparency. In the paper, a new metric is described that ranks each proposal according to a set of well-identified criteria and gives readers an idea of the costs and benefits of implementing the proposed system and the potential strengths and weaknesses of the design. The results of the research and the corresponding impacts for eResearchers and Government collaborators will be discussed by the panel. -
Whither Deprecating TCP-MD5? a Light Dose of Reality Vs
Deprecating MD5 for LDP draft-nslag-mpls-deprecate-md5- 00.txt The IETF MPLS and PALS WG Chairs Our Problem • Control plane protocols are often carried over simple transport layers such as UDP or TCP. • Control planes are good targets for attack and their disruption or subversion can have serious operational consequences. • TCP RST attacks against BGP routers were the original motivation for RFC 2385, TCP-MD5. • LDP runs over TCP. • It currently uses TCP MD5 for authentication, which is no longer considered secure (see RFC 5925) • This is frequently pointed out to us when our documents go to the IESG for publication. Small Survey among operators and vendors - I • The survey was totally un-scientific, and just a small number of vendors and operators were asked. Questions could be better formulated. • Operators were asked. • If TCP-AO were available in products, would you use it? • Are you planning to deploy it? • Vendors were asked. • Do you have TCP-AO? • We will consider making a bigger and more scientific survey to send out to “everybody”. Small Survey among operators and vendors - II • Operators answered: • No plan to deploy TCP-AO as long as vendors support their MD-5 implementations. • Very few authenticated LDP sessions. • There is a cost to deploy TCP-AO. • Vendors answered: • No we don’t have TCP-AO in our products. • One vendor said that it will be available later this year. • We will not implement it until we hear from the operators that they need it. What we need • A security suit that: • Is more secure than MD5 when used over the long-lived sessions that support routing. -
Set up Mail Server Documentation 1.0
Set Up Mail Server Documentation 1.0 Nosy 2014 01 23 Contents 1 1 1.1......................................................1 1.2......................................................2 2 11 3 13 3.1...................................................... 13 3.2...................................................... 13 3.3...................................................... 13 4 15 5 17 5.1...................................................... 17 5.2...................................................... 17 5.3...................................................... 17 5.4...................................................... 18 6 19 6.1...................................................... 19 6.2...................................................... 28 6.3...................................................... 32 6.4 Webmail................................................. 36 6.5...................................................... 37 6.6...................................................... 38 7 39 7.1...................................................... 39 7.2 SQL.................................................... 41 8 43 8.1...................................................... 43 8.2 strategy.................................................. 43 8.3...................................................... 44 8.4...................................................... 45 8.5...................................................... 45 8.6 Telnet................................................... 46 8.7 Can postfix receive?.......................................... -
Analysis of DTLS Implementations Using Protocol State Fuzzing
Analysis of DTLS Implementations Using Protocol State Fuzzing Paul Fiterau-Brostean and Bengt Jonsson, Uppsala University; Robert Merget, Ruhr-University Bochum; Joeri de Ruiter, SIDN Labs; Konstantinos Sagonas, Uppsala University; Juraj Somorovsky, Paderborn University https://www.usenix.org/conference/usenixsecurity20/presentation/fiterau-brostean This paper is included in the Proceedings of the 29th USENIX Security Symposium. August 12–14, 2020 978-1-939133-17-5 Open access to the Proceedings of the 29th USENIX Security Symposium is sponsored by USENIX. Analysis of DTLS Implementations Using Protocol State Fuzzing Paul Fiterau-Bro¸stean˘ Bengt Jonsson Robert Merget Joeri de Ruiter Uppsala University Uppsala University Ruhr University Bochum SIDN Labs Konstantinos Sagonas Juraj Somorovsky Uppsala University Paderborn University Abstract reach 11.6 billion by 2021 [26]. This will constitute half of all devices connected to the Internet, with the percentage set to Recent years have witnessed an increasing number of proto- grow in subsequent years. Such trends also increase the need cols relying on UDP. Compared to TCP, UDP offers perfor- to ensure that software designed for these devices is properly mance advantages such as simplicity and lower latency. This scrutinized, particularly with regards to its security. has motivated its adoption in Voice over IP, tunneling techno- DTLS is also used as one of the two security protocols in logies, IoT, and novel Web protocols. To protect sensitive data WebRTC, a framework enabling real-time communication. exchange in these scenarios, the DTLS protocol has been de- WebRTC can be used, for example, to implement video con- veloped as a cryptographic variation of TLS. -
Prying Open Pandora's Box: KCI Attacks Against
Prying open Pandora’s box: KCI attacks against TLS Clemens Hlauschek, Markus Gruber, Florian Fankhauser, Christian Schanes RISE – Research Industrial Systems Engineering GmbH {clemens.hlauschek, markus.gruber, florian.fankhauser, christian.schanes}@rise-world.com Abstract and implementations of the protocol: their utility is ex- tremely limited, their raison d’ˆetre is practically nil, and Protection of Internet communication is becoming more the existence of these insecure key agreement options common in many products, as the demand for privacy only adds to the arsenal of attack vectors against cryp- in an age of state-level adversaries and crime syndi- tographically secured communication on the Internet. cates is steadily increasing. The industry standard for doing this is TLS. The TLS protocol supports a multi- 1 Introduction tude of key agreement and authentication options which provide various different security guarantees. Recent at- The TLS protocol [1, 2, 3] is probably the most tacks showed that this plethora of cryptographic options widely used cryptographic protocol on the Internet. in TLS (including long forgotten government backdoors, It is designed to secure the communication between which have been cunningly inserted via export restric- client/server applications against eavesdropping, tamper- tion laws) is a Pandora’s box, waiting to be pried open by ing, and message forgery, and it also provides additional, heinous computer whizzes. Novel attacks lay hidden in optional security properties such as client authentica- plainsight. Parts of TLS areso oldthat theirfoul smell of tion. TLS is an historically grown giant: its predecessor, rot cannot be easily distinguished from the flowery smell SSL [4,5], was developed more than 20 years ago. -
Journey to a RTE-Free X.509 Parser
Journey to a RTE-free X.509 parser Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila [email protected] ANSSI Abstract. The C programming language is a security nightmare. It is error-prone and unsafe, but, year after year, the conclusion remains the same: no credible alternative will replace C in a foreseeable future; especially in low-level developments or for constrained environments. Additionally, even though some C developers are keen to drop this lan- guage when possible for more robust ones like ADA or Rust, converting the existing code basis to safer alternatives seems unrealistic. One of the positive aspects with C is nevertheless that its inherent flaws became a long time ago a full-time research topic for many people. Various static analysis tools exist to try and verify security aspects of C code, from the absence of run-time errors (RTE) to the verification of functional aspects. At the time of writing, none of these tools is capable of verifying the full-fledged C source code from most well-known software projects, even the smallest ones. Those tools are nonetheless getting better, and they may be able to handle large software code bases in the near future. Doing some steps in the direction of static analysis tools is sometimes sufficient to achieve full verification of a complex piece of code. This article details this kind of meet-in-the-middle approach applied to the development in C99 of a X.509 parser, and then its later verification using Frama-C. Table of Contents Journey to a RTE-free X.509 parser .......................... -
Journey to a RTE-Free X.509 Parser
Journey to a RTE-free X.509 parser Arnaud Ebalard, Patricia Mouy, and Ryad Benadjila [email protected] ANSSI Abstract. C programming language is a security nightmare. It is error- prone and unsafe, but, year after year, the conclusion remains the same: no credible alternative will replace C in a foreseeable future; all the more in low-level developments or for constrained environments. Additionally, even though some C developers are keen to drop this lan- guage when possible for more robust ones like ADA or Rust, converting the existing code basis to safer alternatives seems unrealistic. But one of the positive aspects with C is that its inherent flaws became a long time ago a full-time research topic for many people. Various static analysis tools exist to try and verify security aspects of C code, from the absence of run-time errors (RTE) to the verification of functional aspects. At the time of writing, none of these tools is capable of verifying the full-fledged C source code from most well-known software projects, even the smallest ones. Those tools are nonetheless getting better, and they may be able to handle large software code bases in the near future. Meanwhile, doing some steps in the direction of static analysis tools is sometimes sufficient to achieve full verification of a complex piece of code. This article details this kind of meet-in-the-middle approach applied to the development in C99 of a X.509 parser, and then its later verification using Frama-C. 1 Introduction In a nutshell, the aim of the project was to develop a “guaranteed RTE-free X.509 parser”, so that it could be used safely for syntactic and semantic verification of certificates before their usual processing in an implementation (e.g. -
Linux E-Mail Set Up, Maintain, and Secure a Small Office E-Mail Server
Linux E-mail Set up, maintain, and secure a small office e-mail server Ian Haycox Alistair McDonald Magnus Bäck Ralf Hildebrandt Patrick Ben Koetter David Rusenko Carl Taylor BIRMINGHAM - MUMBAI This material is copyright and is licensed for the sole use by Jillian Fraser on 20th November 2009 111 Sutter Street, Suite 1800, San Francisco, , 94104 Linux E-mail Set up, maintain, and secure a small office e-mail server Copyright © 2009 Packt Publishing All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews. Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book. Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information. First published: June 2005 Second edition: November 2009 Production Reference: 1051109 Published by Packt Publishing Ltd. 32 Lincoln Road Olton Birmingham, B27 6PA, UK. ISBN 978-1-847198-64-8 www.packtpub.com