ASBS Newsletter
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brooklyn, Cloudland, Melsonby (Gaarraay)
BUSH BLITZ SPECIES DISCOVERY PROGRAM Brooklyn, Cloudland, Melsonby (Gaarraay) Nature Refuges Eubenangee Swamp, Hann Tableland, Melsonby (Gaarraay) National Parks Upper Bridge Creek Queensland 29 April–27 May · 26–27 July 2010 Australian Biological Resources Study What is Contents Bush Blitz? Bush Blitz is a four-year, What is Bush Blitz? 2 multi-million dollar Abbreviations 2 partnership between the Summary 3 Australian Government, Introduction 4 BHP Billiton and Earthwatch Reserves Overview 6 Australia to document plants Methods 11 and animals in selected properties across Australia’s Results 14 National Reserve System. Discussion 17 Appendix A: Species Lists 31 Fauna 32 This innovative partnership Vertebrates 32 harnesses the expertise of many Invertebrates 50 of Australia’s top scientists from Flora 62 museums, herbaria, universities, Appendix B: Threatened Species 107 and other institutions and Fauna 108 organisations across the country. Flora 111 Appendix C: Exotic and Pest Species 113 Fauna 114 Flora 115 Glossary 119 Abbreviations ANHAT Australian Natural Heritage Assessment Tool EPBC Act Environment Protection and Biodiversity Conservation Act 1999 (Commonwealth) NCA Nature Conservation Act 1992 (Queensland) NRS National Reserve System 2 Bush Blitz survey report Summary A Bush Blitz survey was conducted in the Cape Exotic vertebrate pests were not a focus York Peninsula, Einasleigh Uplands and Wet of this Bush Blitz, however the Cane Toad Tropics bioregions of Queensland during April, (Rhinella marina) was recorded in both Cloudland May and July 2010. Results include 1,186 species Nature Refuge and Hann Tableland National added to those known across the reserves. Of Park. Only one exotic invertebrate species was these, 36 are putative species new to science, recorded, the Spiked Awlsnail (Allopeas clavulinus) including 24 species of true bug, 9 species of in Cloudland Nature Refuge. -
KAKADU NATIONAL PARK Arnhemland Plateau Fire Management Plan
KAKADU NATIONAL PARK Arnhemland Plateau Fire Management Plan KAKADU NATIONAL PARK and the TROPICAL SAVANNAS COOPERATIVE RESEARCH CENTRE Aaron Petty Jessie Alderson Rob Muller Ollie Scheibe Kathy Wilson Steve Winderlich Kakadu National Park Arnhemland Plateau Draft Fire Management Plan by Aaron Petty, Tropical Savannas CRC Jessie Alderson, Kakadu National Park Rob Muller, Kakadu National Park Ollie Scheibe, Kakadu National Park Kathy Wilson, Kakadu National Park Steve Winderlich, Kakadu National Park KAKADU NATIONAL PARK PO Box 71 Jabiru, NT 0886 Australia © Kakadu National Park, 2007. Cover: Map of endemicity (the number of unique species not found anywhere else) for the Northern Territory. The red focus is the Arnhemland Plateau. Image is from Woinarski et al. (2006). Reprinted with the kind permission of CSIRO Publishing. Preface: Recommendations and acknowledgments As the image on the cover of this plan indicates, the Arnhemland Plateau is truly unique. In the past it has perhaps been under-appreciated because of its isolation and distance from our day to day lives. However, it is in many respects the Northern Territory’s Amazon: a region of unparalleled diversity and beauty that is worth protecting at all costs. The purpose of this management plan is to set a framework for monitoring and managing the Plateau that will hopefully prove useful for coordinating fire management and monitoring its success. A few of the techniques recommended, particularly increased emphasis on walking, and the introduction of fire suppression, have been talked about but perhaps not emphasized enough in the past. Integrating management of the Plateau as a whole unit rather than by district is an important development of this plan, to be sure. -
Rhamnaceae) Using Scanning Electron Microscopy Jürgen Kellermanna,B
Swainsona 33: 75–102 (2020) © 2020 Board of the Botanic Gardens & State Herbarium (Adelaide, South Australia) A preliminary survey of the leaf-indumentum in the Australian Pomaderreae (Rhamnaceae) using Scanning Electron Microscopy Jürgen Kellermanna,b a State Herbarium of South Australia, GPO Box 1047, Adelaide, South Australia 5001 Email: [email protected] b School of Biological Sciences, Adelaide, The University of Adelaide, South Australia 5005 Abstract: The tribe Pomaderreae (10 genera, c. 240 species) is almost endemic to Australia and defined within Rhamnaceae by the presence of ‘stellate hairs’. This paper is the first to report observations on the leaf-indumentum of 33 species of the tribe with Scanning Electron Microscopy. Apart from simple hairs and papillae, three types of stellate trichomes were observed: fasciculate hairs, appressed stellate hairs and multiradiate hairs (sessile or stalked). The existence of stellate trichomes on the examined species of Pomaderreae was confirmed. Trichomes and indumenta are often variable within genera, as the type of indumentum may be more related to its function. Some groups of species in the genera Cryptandra Sm., Pomaderris Labill. and Stenanthemum Reissek have indumentum characters that seem to be more consistent and might be of value to elucidate relationships between taxa. Keywords: Rhamnaceae, Pomaderreae, leaf morphology, trichomes, hairs, leaf surface, SEM Introduction xeromorphic adaptations, such as small, hard, revolute or conduplicate leaves, a dense indumentum or spines. Pomaderreae Reissek ex Endl. is the second largest tribe of Rhamnaceae. It was first described by Reissek On-going molecular and morphological studies in (1840), but not accepted by subsequent botanists (e.g. -
Street Tree Master Plan Report © Sunshine Coast Regional Council 2009-Current
Sunshine Coast Street Tree Master Plan 2018 Part A: Street Tree Master Plan Report © Sunshine Coast Regional Council 2009-current. Sunshine Coast Council™ is a registered trademark of Sunshine Coast Regional Council. www.sunshinecoast.qld.gov.au [email protected] T 07 5475 7272 F 07 5475 7277 Locked Bag 72 Sunshine Coast Mail Centre Qld 4560 Acknowledgements Council wishes to thank all contributors and stakeholders involved in the development of this document. Disclaimer Information contained in this document is based on available information at the time of writing. All figures and diagrams are indicative only and should be referred to as such. While the Sunshine Coast Regional Council has exercised reasonable care in preparing this document it does not warrant or represent that it is accurate or complete. Council or its officers accept no responsibility for any loss occasioned to any person acting or refraining from acting in reliance upon any material contained in this document. Foreword Here on our healthy, smart, creative Sunshine Coast we are blessed with a wonderful environment. It is central to our way of life and a major reason why our 320,000 residents choose to live here – and why we are joined by millions of visitors each year. Although our region is experiencing significant population growth, we are dedicated to not only keeping but enhancing the outstanding characteristics that make this such a special place in the world. Our trees are the lungs of the Sunshine Coast and I am delighted that council has endorsed this master plan to increase the number of street trees across our region to balance our built environment. -
MARCH 2021 SGAP Revisits Babinda Golf Course
NEWSLETTER 208 MARCH 2021 SGAP revisits Babinda Golf Course Don Lawie Our first excursion for the new year was a return to the green field of Babinda Golf Club. The height of the wet season was upon us and we looked for a site that was botanically interesting and had shelter in case of rain. Babinda, Australia’s wettest town, is well set up for rainy days and we were welcomed by Golf Club members Peter and Patsy who are also SGAP members. On our visit in [Editors note: uncountable years ago] we had to to dodge the golfers as they played a round but today the god of rain had performed an apotropaic release flowing drains. The fairways are timber tree and suffering from an from their sysiphean task and we had delineated by rows of single trees, attack of myrtle rust. A notable the course to ourselves. About fifteen almost all of which are species native specimen, not native to the Babinda of us enjoyed a leisurely lunch and a to the area, supplied by native plant area, was possibly Austromullera valida, discussion of plants on the specimen enthusiasts including Nigel Tucker and from the high country of Mt Lewis, table. Stuart displayed a magnificent Rob Jago. They were planted about home of many rarities. metre long stem of Banksia robur with thirty years ago and are a lesson in two large inflorescences, a small piece how rainforest trees will grow when of fruit- bearing Finger Lime and a not associated with the close growth flowering Brachychiton vitifolius stem of their natural habitat. -
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(S): Grass Phylogeny Working Group, Nigel P
Phylogeny and Subfamilial Classification of the Grasses (Poaceae) Author(s): Grass Phylogeny Working Group, Nigel P. Barker, Lynn G. Clark, Jerrold I. Davis, Melvin R. Duvall, Gerald F. Guala, Catherine Hsiao, Elizabeth A. Kellogg, H. Peter Linder Source: Annals of the Missouri Botanical Garden, Vol. 88, No. 3 (Summer, 2001), pp. 373-457 Published by: Missouri Botanical Garden Press Stable URL: http://www.jstor.org/stable/3298585 Accessed: 06/10/2008 11:05 Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use. Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=mobot. Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission. JSTOR is a not-for-profit organization founded in 1995 to build trusted digital archives for scholarship. We work with the scholarly community to preserve their work and the materials they rely upon, and to build a common research platform that promotes the discovery and use of these resources. For more information about JSTOR, please contact [email protected]. -
Evolutionary Relationships in Eucalyptus Sens. Lat. – a Synopsis
Euclid - Online edition Evolutionary relationships in Eucalyptus sens. lat. – a synopsis This article complements the introductory essay about eucalypts included in the "Learn about Eucalypts" section. Its aim is to provide an up-to-date account of the outcomes of research derived from different groups during the past 5 years relating to relationships within Eucalyptus s.s. As such it includes only those publications and hypotheses relating to higher level relationships of major groupings within the eucalypts. Some of the research reported below also provides insights into biogeographic relationships of the eucalypt group – in large part these are not the focus of this article and are not discussed in detail. Introduction The first comprehensive classification of the eucalypts was published by Blakely in 1934, in which he treated more than 600 taxa, building on earlier work of Maiden and Mueller. Blakely's classification remained the critical reference for Eucalyptus taxonomists for the next 37 years when a new but informal classification was published by Pryor and Johnson (1971). In this work the authors divided the genus into seven subgenera, and although of an informal nature, presented a system of great advance on Blakely's treatment. The small genus Angophora was retained. The next 20 years saw much debate about the naturalness of Eucalyptus and whether other genera should be recognized (e.g., Johnson 1987). Based on morphological data, Hill and Johnson in 1995 proposed a split in the genus and recognition of the genus Corymbia. This new genus of c. 113 species, comprised the ghost gums and the bloodwoods, and Hill and Johnson concluded that Corymbia is the sister group to Angophora, with the synapomorphy of the distinctive cap cells on bristle glands (Ladiges 1984) being unambiguous. -
Australasian Lichenology Australasian Lichenology Number 45, July 1999 Number 45, July 1999
Australasian Lichenology Australasian Lichenology Number 45, July 1999 Number 45, July 1999 Byssoloma sublmdulatllm lmm Byssoloma subdiscordans lmm ANNOUNCEMENTS Dampier 300, Biodiversity in Australia, Perth, 1999 .................................. ....... 2 14th meeting of Australasian lichenologists, Melbourne, 1999 ......................... 2 4th IAL Symposium, Barcelona, 2000 ..... .. .......................................................... 2 The Southern Connection, Christchurch, 2000 .. ............................ ..................... 3 ADDITIONAL LICHEN RECORDS FROM AUSTRALIA Archer, AW (40}-Pertusaria knightiana MUll. Arg........................................... 4 Elix, JA; Streimann, H (41}-Parmeliaceae. .................................... .. ................ 5 ADDITIONAL LICHEN RECORDS FROM NEW ZEALAND Galloway, DJ; Knight, A; Johnson, PN; Hayward, BW (30)-Polycoccum galli genum .. ............................................................................................................... 8 ARTICLES Lumbsch, HT-Notes on some genera erroneously reported for Australia ........ 10 Elix, JA; McCaffery, LF-Three new tridepsides in the lichenPseudocyphellaria billardierei ................................................................................ .. ................ ..... 12 Trinkaus, U; Mayrhofer, H; Matzer, M-Rinodinagennarii (Physciaceae), a wide spread species in the temperate regions of the Southern Hemisphere ........ 15 Malcolm, WM; Vezda, A; McCarthy, PM; Kantvilas, G-Porina subapplanata, a new species from -
The Cultural Circulation of Political Economy, Botany, and Natural Knowledge
social sciences $€ £ ¥ Article Malthus and the Philanthropists, 1764–1859: The Cultural Circulation of Political Economy, Botany, and Natural Knowledge J. Marc MacDonald Department of History, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE C1A 4P3, Canada; [email protected]; Tel.: +1-902-569-4865 Academic Editor: Bryan L. Sykes Received: 16 July 2016; Accepted: 3 January 2017; Published: 10 January 2017 Abstract: Modernity does not possess a monopoly on mass incarceration, population fears, forced migration, famine, or climatic change. Indeed, contemporary and early modern concerns over these matters have extended interests in Thomas Malthus. Yet, despite extensive research on population issues, little work explicates the genesis of population knowledge production or how the process of intellectual transfer occurred during the eighteenth and early nineteenth centuries. This paper examines the Delessert network’s instrumental role in cultivating, curating, and circulating knowledge that popularized Malthusian population theory, including the theory’s constitutive elements of political economy, philanthropy, industry, agriculture, and botany. I show how deviant, nonconformist groups suffered forced migration for their political philosophy, particularly during the revolutionary 1790s, resulting in their imprisonment and migration to America. A consequence of these social shifts was the diffusion and dissemination of population theory—as a pursuit of scientific knowledge and exploration—across both sides of the Atlantic. By focusing on the Delesserts and their social network, I find that a byproduct of inter and intra continental migration among European elites was a knowledge exchange that stimulated Malthus’s thesis on population and Genevan Augustin Pyramus Candolle’s research on botany, ultimately culminating in Charles Darwin’s theory of natural selection and human evolution. -
Dinosaurs Dined on Grass Ray Diffraction Combined with Chemical Analysis to Show That Xenon Can React with Dolores R
P ERSPECTIVES narcotic properties are recorded for chemi- because reactions involving platinum were References and Notes cally unreactive N gas, giving rise to how Bartlett initiated his first xenon chem- 1. C. Sanloup et al., Science 310, 1174 (2005). 2 2. G.Wilson, The Life of the Honourable Henry Cavendish “l’ivresse des grandes profondeurs” (the istry experiments (5). Perhaps the capsules (Cavendish Society, London, 1851). “rapture of the deep”—the intoxication expe- are not completely innocent in the high- 3. W. Ramsay, The Gases of the Atmosphere, the History of Their Discovery (Macmillan, London, 1915). rienced by divers) (8). An early explanation pressure and high-temperature experi- 4. G. N. Lewis, J. Am. Chem. Soc. 38, 762 (1916). for xenon anesthesia was given by Pauling, ments, because they might act as reaction 5. N. Bartlett, Proc. Chem. Soc. 1962, 218 (June 1962). who suggested that clathrate hydrate struc- sites for xenon in addition to providing the 6. N. N. Greenwood, A. Earnshaw, Chemistry of the Elements (Pergamon, Oxford, 1984). tures encapsulating the rare gas atoms were host for platinum-silicon alloys formed dur- 7. N. P. Franks, R. Dickinson, S. L. de Sousa,A. C. Hall,W. R. formed near synapses, impeding interneu- ing the presumed silicate reduction reac- Lieb, Nature 396, 324 (1998). 8. J. Cousteau, The Silent World (Reprint Society, London, ronal transmission (9). Recent results suggest tions. However, even if that is the case, it 1953). a more interesting solution. The protein com- does not rule out the potential importance of 9. L. Pauling, Science 134, 15 (1961). -
Plant Communities of Mt Barrow & Mt Barrow Falls
PLANT COMMUNITIES OF MT BARROW & MT BARROW FALLS John B. Davies Margaret J. Davies Consultant Queen Victoria and Art and Plomley Foundation II Mt Barrow J.B. & M.J. (1990) of Mt Barrow and Mt Barrow No.2 © Queen Victoria and Art Wellington St., Launceston,Tasmania 1990 CONTENTS ACKNOWLEDGEMENTS 3 BACKGROUND 4 SURVEY MT BARROW 11 OF MT BARROW PLANT COMMUNITIES 14 AND THEIR RESERVATION COMPARISON THE VEGETATION AT 30 BARROW AND LOMOND BOTANICAL OF MT BARROW RESERVE 31 DESCRIPTION THE COMMUNITIES BARROW FALLS THEIR APPENDIX 1 36 APPENDIX 2 MAP 3 39 APPENDIX 4 APPENDIX 5 APPENDIX 6 SPECIES 49 ACKNOWLEDGEMENTS Thanks are due to a number of people for assistance with this project. Firstly administrative assistance was by the Director of the Victoria Museum and Art Gallery, Mr Chris TasselL assistance was Michael Body, Kath Craig Reid and Mary Cameron. crt>''Y'it>,nt" are also due to Telecom for providing a key to the on the plateau, the Department of Lands, Parks and for providing a transparency base map of the area, and to Mr Mike Brouder and Mr John Harris Commission), for the use of 1 :20,000 colour aerial photographs of the area. Taxonomic was provided by Cameron (Honorary Research Associate, Queen Victoria Museum and Art Gallery) who also mounted all the plant collected, and various staff of the Tasmanian Herbarium particularly Mr Alex Dr Tony Orchard, Mr D. 1. Morris and Dr Winifred Curtis. thanks are due to Dr Brad Potts (Botany Department, of Tasmania) for assistance with data and table production and to Prof Kirkpatrick and Environmental ..J'U'U'~;'" of Tasmania) for the use and word-processing. -
Post-Fire Recovery of Woody Plants in the New England Tableland Bioregion
Post-fire recovery of woody plants in the New England Tableland Bioregion Peter J. ClarkeA, Kirsten J. E. Knox, Monica L. Campbell and Lachlan M. Copeland Botany, School of Environmental and Rural Sciences, University of New England, Armidale, NSW 2351, AUSTRALIA. ACorresponding author; email: [email protected] Abstract: The resprouting response of plant species to fire is a key life history trait that has profound effects on post-fire population dynamics and community composition. This study documents the post-fire response (resprouting and maturation times) of woody species in six contrasting formations in the New England Tableland Bioregion of eastern Australia. Rainforest had the highest proportion of resprouting woody taxa and rocky outcrops had the lowest. Surprisingly, no significant difference in the median maturation length was found among habitats, but the communities varied in the range of maturation times. Within these communities, seedlings of species killed by fire, mature faster than seedlings of species that resprout. The slowest maturing species were those that have canopy held seed banks and were killed by fire, and these were used as indicator species to examine fire immaturity risk. Finally, we examine whether current fire management immaturity thresholds appear to be appropriate for these communities and find they need to be amended. Cunninghamia (2009) 11(2): 221–239 Introduction Maturation times of new recruits for those plants killed by fire is also a critical biological variable in the context of fire Fire is a pervasive ecological factor that influences the regimes because this time sets the lower limit for fire intervals evolution, distribution and abundance of woody plants that can cause local population decline or extirpation (Keith (Whelan 1995; Bond & van Wilgen 1996; Bradstock et al.