The Discovery Expedition Sea Cucumbers (Echinodermata: Holothuroidea)
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Psolus Phantapus
Maine 2015 Wildlife Action Plan Revision Report Date: January 13, 2016 Psolus phantapus (Psolus) Priority 2 Species of Greatest Conservation Need (SGCN) Class: Holothuroidea (Sea Cucumbers) Order: Dendrochirotida (Sea Cucumbers) Family: Psolidae (Sea Cucumbers) General comments: none No Species Conservation Range Maps Available for Psolus SGCN Priority Ranking - Designation Criteria: Risk of Extirpation: NA State Special Concern or NMFS Species of Concern: NA Recent Significant Declines: Psolus is currently undergoing steep population declines, which has already led to, or if unchecked is likely to lead to, local extinction and/or range contraction. Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement Regional Endemic: NA High Regional Conservation Priority: NA High Climate Change Vulnerability: Psolus phantapus is highly vulnerable to climate change. Understudied rare taxa: Recently documented or poorly surveyed rare species for which risk of extirpation is potentially high (e.g. few known occurrences) but insufficient data exist to conclusively assess distribution and status. *criteria only qualifies for Priority 3 level SGCN* Notes: recent decline - Trott, in review; last record in Cobscook Bay 1973; subjected to targeted collections for public aquaria display; climate change - Arctic Province Species; understudied as dredge by-catch, professional judgement -
An Illustrated Key to the Sea Cucumbers of the South Atlantic Bight
Prepared by the Southeastern Regional Taxonomic Center AAnn iilllluussttrraatteedd kkeeyy ttoo tthhee sseeaa ccuuccuummbbeerrss ooff tthhee SSoouutthh AAttllaannttiicc BBiigghhtt David L. Pawson and Doris J. Pawson Smithsonian Institution, PO Box 37012, MRC 163, Washington, DC 20013-7012 1 Table of Contents Introduction ..........................................................................................................................3 General Morphology (internal) ................................................................................3 General morphology (external) ................................................................................4 Preparation of ossicles .............................................................................................4 Checklist of South Atlantic Bight holothuroideans ............................................................5 Key to Orders of Holothuroidea known from the South Atlantic Bight ..............................6 Key to members of the Order Dendrochirotida known from the South Atlantic Bight .......9 Key to species of the Aspidochirotida known from the South Atlantic Bight...................28 Key to species of the Molpadiida known from the South Atlantic Bight ..........................34 Key to species of the Apodiida known from the South Atlantic Bight .............................35 This document was prepared by Rachael A. King and is only part of a more extensive study that is expected to be published in 2008. The research was conducted in part using funding -
I. Introduction
Bathymetric distribution of the species .... 210 2. Penetration of species into the Bathymetric zonation of the deep sea ...... 210 Mediterranean deep sea ............. 235 Bathymetric distribution and taxonomic 3. Comparison with other groups ....... 235 relationship .......................... 214 Sediments and nutrient conditions ........ 235 Number of species and individuals in Hydrostatic pressure ..................... 237 relation to depth ...................... 217 Currents ............................... 238 Topography ............................ 238 E. Geographic distribution .................. 219 Conclusion ............................. 239 The exploration of the different geographic regions ............................... 219 G. The hadal fauna ........................ 239 The bathyal fauna ...................... 220 The hadal environment .................. 239 The abyssal fauna ....................... 221 General features of the hadal fauna ....... 240 1. World-wide distributions ............ 223 2. The Antarctic Ocean ................ 224 H. Evolutionary aspects .................... 243 3. The North Atlantic ................. 225 Evolution within the deep sea versus 4. The South Atlantic ................. 227 immigration from shallower depths .... 243 5. The Indian Ocean .................. 22; Geographic variation .................... 244 6. The Indonesian seas ................ 228 1. Clines ............................. 245 7. The Pacific Ocean .................. 231 2. Local variation ..................... 245 8. The Arctic -
Zootaxa, BANZARE Holothuroids (Echinodermata: Holothuroidea)
Zootaxa 2196: 1–18 (2009) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Article ZOOTAXA Copyright © 2009 · Magnolia Press ISSN 1175-5334 (online edition) BANZARE holothuroids (Echinodermata: Holothuroidea) P. MARK O’LOUGHLIN Marine Science Department, Museum Victoria, GPO Box 666, Melbourne 3001, Australia. E-mail: [email protected] Abstract The holothuroid species collected by The British, Australian and New Zealand Antarctic Research Expedition (BANZARE) are listed, with some systematic annotations. A previous report by O’Loughlin on some BANZARE holothuroids is revised and incorporated. Four new species are described: the Antarctic dactylochirotid Echinocucumis kirrilyae sp. nov.; the Kerguelen dendrochirotid Clarkiella deichmannae sp. nov.; the Antarctic dendrochirotids Trachythyone cynthiae sp. nov. and Trachythyone mackenzieae sp. nov. Cucumaria serrata var. intermedia Théel from Heard and Kerguelen, and Cucumaria serrata var. marionensis Théel from Marion, are raised to species status, and assigned to Pseudocnus Panning. Cucumaria (Semperia) ekmani Ludwig & Heding is a junior synonym of Cucumaria kerguelensis Théel. Cucumaria kerguelensis is re-assigned to Neopsolidium Pawson. Thyone recurvata Théel and Cucumaria squamata Ludwig are junior synonyms of Trachythyone muricata Studer. Cucumaria (Semperia) bouvetensis Ludwig & Heding is formally re-assigned to Trachythyone. Trachythyone baja Hernández is a junior synonym of Trachythyone bouvetensis (Ludwig & Heding). Molecular genetic data indicate possible allopatric cryptic Antarctic forms for the morpho-species Laetmogone wyvillethomsoni Théel. A table with all species and station data is provided. Key words: Antarctica, Kerguelen, Macquarie, Marion, Tasmania, new species, synonymies, generic re-assignments Introduction The British, Australian and New Zealand Antarctic Research Expedition (BANZARE), under the command of Sir Douglas Mawson, comprised two research voyages by the Discovery. -
Epibenthic Mobile Invertebrates Along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected]
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 3-21-2014 Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure Kristin Netchy University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Ecology and Evolutionary Biology Commons, Other Education Commons, and the Other Oceanography and Atmospheric Sciences and Meteorology Commons Scholar Commons Citation Netchy, Kristin, "Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5085 This Thesis is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Epibenthic Mobile Invertebrates along the Florida Reef Tract: Diversity and Community Structure by Kristin H. Netchy A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science Department of Marine Science College of Marine Science University of South Florida Major Professor: Pamela Hallock Muller, Ph.D. Kendra L. Daly, Ph.D. Kathleen S. Lunz, Ph.D. Date of Approval: March 21, 2014 Keywords: Echinodermata, Mollusca, Arthropoda, guilds, coral, survey Copyright © 2014, Kristin H. Netchy DEDICATION This thesis is dedicated to Dr. Gustav Paulay, whom I was fortunate enough to meet as an undergraduate. He has not only been an inspiration to me for over ten years, but he was the first to believe in me, trust me, and encourage me. -
A Biotope Sensitivity Database to Underpin Delivery of the Habitats Directive and Biodiversity Action Plan in the Seas Around England and Scotland
English Nature Research Reports Number 499 A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland Harvey Tyler-Walters Keith Hiscock This report has been prepared by the Marine Biological Association of the UK (MBA) as part of the work being undertaken in the Marine Life Information Network (MarLIN). The report is part of a contract placed by English Nature, additionally supported by Scottish Natural Heritage, to assist in the provision of sensitivity information to underpin the implementation of the Habitats Directive and the UK Biodiversity Action Plan. The views expressed in the report are not necessarily those of the funding bodies. Any errors or omissions contained in this report are the responsibility of the MBA. February 2003 You may reproduce as many copies of this report as you like, provided such copies stipulate that copyright remains, jointly, with English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. ISSN 0967-876X © Joint copyright 2003 English Nature, Scottish Natural Heritage and the Marine Biological Association of the UK. Biotope sensitivity database Final report This report should be cited as: TYLER-WALTERS, H. & HISCOCK, K., 2003. A biotope sensitivity database to underpin delivery of the Habitats Directive and Biodiversity Action Plan in the seas around England and Scotland. Report to English Nature and Scottish Natural Heritage from the Marine Life Information Network (MarLIN). Plymouth: Marine Biological Association of the UK. [Final Report] 2 Biotope sensitivity database Final report Contents Foreword and acknowledgements.............................................................................................. 5 Executive summary .................................................................................................................... 7 1 Introduction to the project .............................................................................................. -
Biodiversidad De Los Equinodermos (Echinodermata) Del Mar Profundo Mexicano
Biodiversidad de los equinodermos (Echinodermata) del mar profundo mexicano Francisco A. Solís-Marín,1 A. Laguarda-Figueras,1 A. Durán González,1 A.R. Vázquez-Bader,2 Adolfo Gracia2 Resumen Nuestro conocimiento de la diversidad del mar profundo en aguas mexicanas se limita a los escasos estudios existentes. El número de especies descritas es incipiente y los registros taxonómicos que existen provienen sobre todo de estudios realizados por ex- tranjeros y muy pocos por investigadores mexicanos, con los cuales es posible conjuntar algunas listas faunísticas. Es importante dar a conocer lo que se sabe hasta el momen- to sobre los equinodermos de las zonas profundas de México, información básica para diversos sectores en nuestro país, tales como los tomadores de decisiones y científicos interesados en el tema. México posee hasta el momento 643 especies de equinoder- mos reportadas en sus aguas territoriales, aproximadamente el 10% del total de las especies reportadas en todo el planeta (~7,000). Según los registros de la Colección Nacional de Equinodermos (ICML, UNAM), la Colección de Equinodermos del “Natural History Museum, Smithsonian Institution”, Washington, DC., EUA y la bibliografía revisa- 1 Colección Nacional de Equinodermos “Ma. E. Caso Muñoz”, Laboratorio de Sistemá- tica y Ecología de Equinodermos, Instituto de Ciencias del Mar y Limnología (ICML), Universidad Nacional Autónoma de México (UNAM). Apdo. Post. 70-305, México, D. F. 04510, México. 2 Laboratorio de Ecología Pesquera de Crustáceos, Instituto de Ciencias del Mar y Lim- nología (ICML), (UNAM), Apdo. Postal 70-305, México D. F., 04510, México. 215 da, existen 348 especies de equinodermos que habitan las aguas profundas mexicanas (≥ 200 m) lo que corresponde al 54.4% del total de las especies reportadas para el país. -
Seasearch Seasearch Wales 2012 Summary Report Summary Report
Seasearch Wales 2012 Summary Report report prepared by Kate Lock, South and West Wales coco----ordinatorordinator Liz MorMorris,ris, North Wales coco----ordinatorordinator Chris Wood, National coco----ordinatorordinator Seasearch Wales 2012 Seasearch is a volunteer marine habitat and species surveying scheme for recreational divers in Britain and Ireland. It is coordinated by the Marine Conservation Society. This report summarises the Seasearch activity in Wales in 2012. It includes summaries of the sites surveyed and identifies rare or unusual species and habitats encountered. These include a number of Welsh Biodiversity Action Plan habitats and species. It does not include all of the detailed data as this has been entered into the Marine Recorder database and supplied to Natural Resources Wales for use in its marine conservation activities. The data is also available on-line through the National Biodiversity Network. During 2012 we continued to focus on Biodiversity Action Plan species and habitats and on sites that had not been previously surveyed. Data from Wales in 2012 comprised 192 Observation Forms, 154 Survey Forms and 1 sea fan record. The total of 347 represents 19% of the data for the whole of Britain and Ireland. Seasearch in Wales is delivered by two Seasearch regional coordinators. Kate Lock coordinates the South and West Wales region which extends from the Severn estuary to Aberystwyth. Liz Morris coordinates the North Wales region which extends from Aberystwyth to the Dee. The two coordinators are assisted by a number of active Seasearch Tutors, Assistant Tutors and Dive Organisers. Overall guidance and support is provided by the National Seasearch Coordinator, Chris Wood. -
The Echinoderm Fauna of Turkey with New Records from the Levantine Coast of Turkey
Proc. of middle East & North Africa Conf. For Future of Animal Wealth THE ECHINODERM FAUNA OF TURKEY WITH NEW RECORDS FROM THE LEVANTINE COAST OF TURKEY Elif Özgür1, Bayram Öztürk2 and F. Saadet Karakulak2 1Faculty of Fisheries, Akdeniz University, TR-07058 Antalya, Turkey 2İstanbul University, Faculty of Fisheries, Ordu Cad.No.200, 34470 Laleli- Istanbul, Turkey Corresponding author e-mail: [email protected] ABSTRACT The echinoderm fauna of Turkey consists of 80 species (two Crinoidea, 22 Asteroidea, 18 Ophiuroidea, 20 Echinoidea and 18 Holothuroidea). In this study, seven echinoderm species are reported for the first time from the Levantine coast of Turkey. These are, five ophiroid species; Amphipholis squamata, Amphiura chiajei, Amphiura filiformis, Ophiopsila aranea, and Ophiothrix quinquemaculata and two echinoid species; Echinocyamus pusillus and Stylocidaris affinis. Turkey is surrounded by four seas with different hydrographical characteristics and Turkish Straits System (Çanakkale Strait, Marmara Sea and İstanbul Strait) serve both as a biological corridor and barrier between the Aegean and Black Seas. The number of echinoderm species in the coasts of Turkey also varies due to the different biotic environments of these seas. There are 14 echinoderm species reported from the Black Sea, 19 species from the İstanbul Strait, 51 from the Marmara Sea, 71 from the Aegean Sea and 42 from the Levantine coasts of Turkey. Among these species, Asterias rubens, Ophiactis savignyi, Diadema setosum, and Synaptula reciprocans are alien species for the Turkish coasts. Key words: Echinodermata, new records, Levantine Sea, Turkey. Cairo International Covention Center , Egypt , 16 - 18 – October , (2008), pp. 571 - 581 Elif Özgür et al. -
High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review
Mar. Drugs 2011, 9, 1761-1805; doi:10.3390/md9101761 OPEN ACCESS Marine Drugs ISSN 1660-3397 www.mdpi.com/journal/marinedrugs Review High-Value Components and Bioactives from Sea Cucumbers for Functional Foods—A Review Sara Bordbar 1, Farooq Anwar 1,2 and Nazamid Saari 1,* 1 Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang, Selangor 43400, Malaysia; E-Mails: [email protected] (S.B.); [email protected] (F.A.) 2 Department of Chemistry and Biochemistry, University of Agriculture, Faisalabad 38040, Pakistan * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +60-389-468-385; Fax: +60-389-423-552. Received: 3 August 2011; in revised form: 30 August 2011 / Accepted: 8 September 2011 / Published: 10 October 2011 Abstract: Sea cucumbers, belonging to the class Holothuroidea, are marine invertebrates, habitually found in the benthic areas and deep seas across the world. They have high commercial value coupled with increasing global production and trade. Sea cucumbers, informally named as bêche-de-mer, or gamat, have long been used for food and folk medicine in the communities of Asia and Middle East. Nutritionally, sea cucumbers have an impressive profile of valuable nutrients such as Vitamin A, Vitamin B1 (thiamine), Vitamin B2 (riboflavin), Vitamin B3 (niacin), and minerals, especially calcium, magnesium, iron and zinc. A number of unique biological and pharmacological activities including anti-angiogenic, anticancer, anticoagulant, anti-hypertension, anti-inflammatory, antimicrobial, antioxidant, antithrombotic, antitumor and wound healing have been ascribed to various species of sea cucumbers. Therapeutic properties and medicinal benefits of sea cucumbers can be linked to the presence of a wide array of bioactives especially triterpene glycosides (saponins), chondroitin sulfates, glycosaminoglycan (GAGs), sulfated polysaccharides, sterols (glycosides and sulfates), phenolics, cerberosides, lectins, peptides, glycoprotein, glycosphingolipids and essential fatty acids. -
The Patterns of Abundance and Relative Abundance of Benthic
AN ABSTRACT OF THE THESIS OF Robert Spencer Carney for the degree of Doctor of Philosophy in Oceanography presented on September 14, 1976 Title: PATTERNS OF ABUNDANCE AND RELATIVE ABUNDANCE OF BENTHIC HOLO- THURIANS (ECHINODERMATA:HOLOTHURIOIDEA) ON CASCADIA BASIN AND TUFT'S ABYSSAL PLAIN IN THE NORTHEAST PACIFIC OCEAN Abstract approved: Redacted for Privacy Dr. And r4 G. Jr. Cascadia Basin and the deeper Tuft's Abyssal Plain are inhabited by a common set of holothuroid species but differ markedly in propor- tional composition and apparent abundance. Seventy-six trawl samples were collected in a grid on Cascadia Basin. Depth appeared to be the major factor affecting the proportional composition of the dominant species. The fauna became progressively more uniform as the depth gra- dient decreased. The region adjacent to the base of the slope was distinct in its low diversity and low proportions of small specimens of the most common holothuroid species. These features might be due to in- creased competition and predation in that region. Sixteen trawl samples were examined from Tuft's Plain. Again the fauna appeared to be affected primarily by depth. While the abundance of holothuroids remained uniform across the flat Cascadia Basin, it appeared to decrease exponentially with depth across Tuft's Plain. The uniformity of proportional composition and abundance of the holothurian fauna across the floor of Cascadia Basin is in marked contrast with previously reported patterns of infaunal organisms. It is suggested that the differences reflect basic differences in the ecologies of the infauna and the motile epifauna, and that the size distribution of food material from overlying water may be of importance in determining the benthic fauna composition. -
Benthic Field Guide 5.5.Indb
Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates Invertebrates Benthic Moore Islands Kirrily and McDonald and Hibberd Ty Island Heard to Guide cation Identifi Field Field Identifi cation Guide to Heard Island and McDonald Islands Benthic Invertebrates A guide for scientifi c observers aboard fi shing vessels Little is known about the deep sea benthic invertebrate diversity in the territory of Heard Island and McDonald Islands (HIMI). In an initiative to help further our understanding, invertebrate surveys over the past seven years have now revealed more than 500 species, many of which are endemic. This is an essential reference guide to these species. Illustrated with hundreds of representative photographs, it includes brief narratives on the biology and ecology of the major taxonomic groups and characteristic features of common species. It is primarily aimed at scientifi c observers, and is intended to be used as both a training tool prior to deployment at-sea, and for use in making accurate identifi cations of invertebrate by catch when operating in the HIMI region. Many of the featured organisms are also found throughout the Indian sector of the Southern Ocean, the guide therefore having national appeal. Ty Hibberd and Kirrily Moore Australian Antarctic Division Fisheries Research and Development Corporation covers2.indd 113 11/8/09 2:55:44 PM Author: Hibberd, Ty. Title: Field identification guide to Heard Island and McDonald Islands benthic invertebrates : a guide for scientific observers aboard fishing vessels / Ty Hibberd, Kirrily Moore. Edition: 1st ed. ISBN: 9781876934156 (pbk.) Notes: Bibliography. Subjects: Benthic animals—Heard Island (Heard and McDonald Islands)--Identification.