Exciplex Stabilization in Asymmetric Acene Dimers Rachel Ann Krueger, and Guillaume Blanquart J

Total Page:16

File Type:pdf, Size:1020Kb

Exciplex Stabilization in Asymmetric Acene Dimers Rachel Ann Krueger, and Guillaume Blanquart J Subscriber access provided by Caltech Library A: Spectroscopy, Molecular Structure, and Quantum Chemistry Exciplex Stabilization in Asymmetric Acene Dimers Rachel Ann Krueger, and Guillaume Blanquart J. Phys. Chem. A, Just Accepted Manuscript • Publication Date (Web): 11 Feb 2019 Downloaded from http://pubs.acs.org on February 11, 2019 Just Accepted “Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides “Just Accepted” as a service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these “Just Accepted” manuscripts. is published by the American Chemical Society. 1155 Sixteenth Street N.W., Washington, DC 20036 Published by American Chemical Society. Copyright © American Chemical Society. However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties. Page 1 of 19 The Journal of Physical Chemistry 1 2 3 4 Exciplex Stabilization in Asymmetric Acene 5 6 Dimers 7 8 y ∗,z 9 Rachel A. Krueger and Guillaume Blanquart 10 11 Department of Chemistry, California Institute of Technology, Pasadena, California 91125, 12 United States, and Department of Mechanical Engineering, California Institute of 13 Technology, Pasadena, California 91125, United States. Phone: 1-626-395-4306. Email: 14 [email protected] 15 16 17 18 19 Abstract state is derived. Moderate exciplex stabiliza- 20 tion observed for the benzene-naphthalene and 21 Excimers play an important role in photochem- 22 naphthalene-anthracene exciplexes results from 23 ical processes ranging from singlet fission to a mixture of charge transfer and exciton delo- 24 DNA damage, and the characteristic red shift calization. 25 in fluorescence spectra associated with excimer 26 formation can provide information about ag- 27 gregate formation and the orientation of chro- 1. Introduction 28 mophores. When a mixture of chromophores is 29 Characterization of exciplexes represents an im- 30 present, exciplex formation may lead to spec- 31 tral characteristics distinct from those of ei- portant step in understanding the dynamic 32 ther monomer or the corresponding excimers. photophysical and photochemical processes of 33 To predict the effects of aggregation in a sys- multi-chromophore systems. Exciplex forma- 34 tion occurs when two or more molecules are 35 tem containing a mixture of small acenes, bind- involved in a photoabsorption event, often but 36 ing energies and minimum-energy geometries not necessarily beginning when the absorption 37 have been calculated for three mixed S1 exci- 38 plexes. Benchmark CASSCF/NEVPT2 mul- of one molecule perturbs the electronic state of 39 tireference binding energies of 18.2 kJ/mol, a neighbor. The resulting structure is called 40 an excimer|an excited dimer|in the case that 41 27.7 kJ/mol, and 49.3 kJ/mol are reported for 42 the benzene-naphthalene, benzene-anthracene, the molecules involved are identical, or as an 43 and naphthalene-anthracene exciplexes, respec- exciplex|an excited complex|in other cases. 44 tively. TDDFT calculations have been per- The wave function for an arbitrary exciplex con- 45 formed using a range of exchange-correlation taining molecules P and Q may be described as 46 a combination of Frenkel excitations, in which 47 functionals, showing that many functionals per- 48 form inconsistently, and the error in binding electrons are excited from donor orbitals into 49 energy often depends on the character of the acceptor orbitals located on the same molecule, ∗ ∗ 50 monomer excitation from which the exciplex P Q and PQ , and charge transfer states, in 51 which the donor and acceptor orbitals lie on 52 ∗To whom correspondence should be addressed different molecules, P ·−Q·+ and P ·+Q·−.1,2 Ex- 53 y Department of Chemistry, California Institute of ciplex formation often results in the stabiliza- 54 Technology, Pasadena, California 91125, United States 55 zDepartment of Mechanical Engineering, California tion of complexes at geometries that would be 56 Institute of Technology, Pasadena, California 91125, unfavorable or repulsive in the ground state.1,3 57 United States. Phone: 1-626-395-4306. Email: Recent interest in exciplex formation has 58 [email protected] been driven by efforts to determine singlet fis- 59 60 ACS Paragon Plus Environment 1 The Journal of Physical Chemistry Page 2 of 19 sion mechanisms, in which exciplexes repre- portant exciplexes represents a way forward, 1 2 sent intermediate or trap states in the conver- provided that computationally tractable meth- 3 sion of a singlet exciton into two lower-energy ods with acceptable accuracy are available. 4 triplet excitons.4{7 Long-lived charge-transfer- To date, most ab initio studies have focused 5 dominated exciplexes have been observed in on the smallest acene excimers. Binding en- 6 photoexcited DNA and RNA strands.8 ergies and singlet excitation energies for the 7 8 In laser-induced fluorescence (LIF) experi- benzene S1 excimer have been characterized us- 18,19 20 9 ments, excimer emission produces broad, struc- ing CASPT2, coupled cluster methods, 10 tureless peaks that are red-shifted with respect and equation-of-motion coupled cluster meth- 11 to the corresponding emissions from the parent ods.21 Binding energies have been evaluated 12 molecules due to excimer stabilization.9 In ex- at the global minimum potential energy con- 13 14 periments involving a single chromophore, ex- figuration for the excimer, corresponding to 15 cimer fluorescence is readily identified. When a an eclipsed configuration, with one monomer 16 wide range of chromophores are present, com- translated along the intermolecular coordinate 17 plexes containing two different chromophores with respect to the other. The results range 18 are likely to be more prevalent than dimers of from 33-48 kJ/mol19,20 when corrected for basis 19 10 20 a single chromophore, and it it not a pri- set superposition error (BSSE) by the counter- 22 21 ori apparent whether the emission from these poise (CP) method. Even the lowest binding 22 complexes will be distinguishable from the par- energy obtained is more than twice as large as 23 ent monomer emissions. This question is of the CP-corrected benchmark CCSD(T) binding 24 paramount importance for combustion systems, energies obtained for the ground state benzene 25 23 26 where LIF represents a promising technique for dimer in a parallel-displaced configuration. 11 27 characterizing soot precursors, which might Naphthalene and larger acenes are charac- 28 consist of PAH van der Waals dimers12 or even terized by two close-together, low-lying singlet 29 pairs of PAHs connected by aliphatic linkers13 π ! π∗ excited states, polarized along the 30 capable of forming intramolecular exciplexes. two axes of the molecules. The B state, la- 31 2u 32 Accurately assigning fluorescence peaks, beled La, is described almost completely by a 33 though, will require a broad database of ex- HOMO!LUMO transition, while the B3u Lb 34 ciplex binding energies, the major contribu- state is the result of a mixed HOMO-1!LUMO 35 tor to the characteristic redshift.9,10 Exciplex and HOMO!LUMO+1 transition. In the 36 binding energy is defined here as the potential valence-bond theory framework, the La state is 37 24 38 energy difference between the minimum energy ionic and the Lb state covalent. 39 exciplex configuration and the two separated Time-dependent density functional theory 40 monomers, one of them excited. (TDDFT) calculations performed using hybrid 41 For ground state complexes, a roughly lin- exchange-correlation functionals tend to under- 42 ear scaling relationship between PAH molecu- estimate the energy of the La state, and this er- 43 25,26 44 lar weight and noncovalent dimer binding en- ror increases with increasing acene size. Al- 45 ergy has emerged for several homodimers,14,15 though the ionic description of the state hints at 16 46 the benzene-naphthalene heterodimer, and charge separation, the La state cannot be clas- 47 the naphthalene-anthracene heterodimer.17 For sified as a \true" charge transfer state,27,28 indi- 48 PAH exciplexes, though, the effects of monomer cating that the error is not directly attributable 49 50 substitution remain unclear|no binding ener- to the well-known failure of hybrid TDDFT 51 gies have yet been reported for mixed exciplexes to capture charge transfer behavior. Use of 52 containing small, unsubstituted PAHs. double-hybrid functionals improves La energies 53 Because of the large number of exciplexes that substantially.25,29 54 55 may be formed from even a moderate number The energy of the Lb state, on the other hand, 56 of small PAHs, characterizing each one exper- tends to be overestimated by TDDFT calcula- 57 imentally would represent a monumental task. tions using hybrid, double-hybrid, and range- 58 Obtaining accurate theoretical estimates of im- separated functionals.
Recommended publications
  • Appendix 1 Table of Contents
    @ECHA EUROPEAN CHEMICALS AGENCY Appendix 1 Table of Contents: Supplementary Table C:Substances on Annex II of the Cosmetic Products Regulation ... 1 Supplementary Table D: Substances proposed to be restricted due their use restriction in CPR Annex IV column 9..,,.. 119 Supplementary Table E: Substances allowed in tattoo inks subject to the conditions specified in CPR Annex IV columns h and i ......r29 Annankatu 18. P.O. Box 400, FI-00121 Helsinki, Finland I Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu ANNEX XV RESTRICTION REPORT - SUBSTANCES IN TATTOO INKS AND PERMANENT MAKE UP Su lemen Table C:Substances on Annex II of the Cosmetic Products Re ulationl Substance EC# cAs # Substance EC# cAs # R T T T A- s c R I T Name Name e b b b II s M 7 c I s I I I #4 5 6 D 9 2 1 2 3 a 3 3 3 N-(s- Chlorobenzoxa zol-2- 35783- vl)acetamide 57-4 1 (2- Acetoxyethyl)t rimethylammo (2- nium acetoxyethyl hydroxide )trimethyla 200- (Acetylcholine) 200- mmonium 124-9 5 1-84-3 and its salts t2a-9 51-84-3 2 Deanol Deanol 222- 3342- aceglumate 222- 3342- aceqlumate 085-5 61-8 (INN) 085-5 61-8 3 Spironolacto 200- Spironolactone 200- ne 133-6 52-O1-7 rINN) 133-6 52-0L-7 4 14-(4- Hydroxy-3- iodophenoxy)- 3,5- diiodophenylla cetic acid (Tiratricol 200- (INN)) and its 200- Tiratricol 086- 1 5r-24-7 salts 086- 1 5l-24-7 5 Methotrexat 200- Methotrexate 200- e 413-8 59-05-2 (INN) 413-8 59-05-2 6 Aminocaproic Aminocaproi 200- acid (INN) and 200- c acid 469-3 60-32-2 its salts 469-3 60-32-2 7 Cinchophen (rNN), its salts, derivatives and salts of 205- 132-60- these 205- 132-60- Cinchophen 067-r 5 derivatives 067-l 5 Thyropropic acid (INN) and its salts 5L-26-3 9 Trichloroacet 200- Trichloroacetic 200- ic acid 927-2 75-03-9 acid 927-2 76-03-9 l0 Aconitum napellus L.
    [Show full text]
  • Synthesis and Properties of Heterocyclic Acene Diimides
    ORGANIC LETTERS XXXX Synthesis and Properties of Heterocyclic Vol. XX, No. XX Acene Diimides 000–000 Cheng Li,†,‡ Chengyi Xiao,†,‡ Yan Li,*,† and Zhaohui Wang*,† Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China [email protected]; [email protected] Received December 27, 2012 ABSTRACT A series of heterocyclic acene diimides were synthesized effectively based on the condensation of o-phenylenediamine, 1,2-benzenedithiol, and 2-aminothiophenol with 2,3,6,7-tetrabromo-1,4,5,8-naphthalene tetracarboxylic diimide. The diimides exhibit interesting optical and electrical properties with one of them showing a hole mobility up to 0.02 cm2 VÀ1 sÀ1. In recent years, naphthalene tetracarboxylic diimides has been applied as high-performance solution-deposited (NDIs, 1, Figure 1) and their core-expanded derivatives ambipolar organic transistors.2 In contrast, the expansion have attracted a great deal of attention due to their of the π-system along the lateral position of NDIs has been interesting electro-optical properties and potential appli- demonstrated only recently due to the synthetic difficulties. cations as organic semiconductors in organic electronics.1 Recently, the synthesis of tetracene tetracarboxylic The π-skeleton of NDIs could be expanded along two diimides based on two methods of direct double ring directions: the peri position (1, 4, 5, 8) and the lateral extension of electron-deficient NDIs involving metal- position (2, 3, 6, 7). The expansion of the π-system along lacyclopentadienes and bismuth-triflate-mediated double- the peri position has been studied for many decades cyclization reaction of acid chlorides and isocyanates has because it induces impressive bathochromic shifts and been reported, which displays dramatic bathochromic shifts, smaller energy band gaps, and is a promising can- 3 † Institute of Chemistry, Chinese Academy of Sciences.
    [Show full text]
  • Chemistry of Acenes, [60]Fullerenes, Cyclacenes and Carbon Nanotubes
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2011 Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes Chandrani Pramanik University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Pramanik, Chandrani, "Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes" (2011). Doctoral Dissertations. 574. https://scholars.unh.edu/dissertation/574 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CHEMISTRY OF ACENES, [60]FULLERENES, CYCLACENES AND CARBON NANOTUBES BY CHANDRANI PRAMANIK B.Sc., Jadavpur University, Kolkata, India, 2002 M.Sc, Indian Institute of Technology Kanpur, India, 2004 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science May 2011 UMI Number: 3467368 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3467368 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O.
    [Show full text]
  • Community Soil Study
    Tonawanda Community Fund An affiliate of “The Wellness Institute of Greater Buffalo” Community Soil Study Fact Sheet In November 2012, Tonawanda Community Fund (TCF) led a preliminary study in a Tonawanda neighborhood to find out if air toxins were contaminating surface soil; and, if pollutants were present, do levels pose a health risk. TCF tested the soil for toxic chemicals on Kaufman Ave/James Ave/Sawyers Ave. streets in the Town of Tonawanda, NY. This neighborhood is located off of River Rd in the heart of Tonawanda’s industrial corridor. The study was initiated due to recent community complaints of a black gooey substance apparently coming from a close by air source and depositing on soil, vegetation and vehicles. The study gained more significance when Jackie James Creedon, TCF member and former director of the Clean Air Coalition of WNY, learned that a similar community’s surface soil in Birmingham, AL, where two foundry coke plants reside, was contaminated with a dangerous chemical called Benzo[a]pyrene (BAP). How the Soil was Sampled and Tested Ken‐Ton residents and TCF members, Charles Matteliano from TEQ Solutions, and Andrew Baumgartner, a student at University of Buffalo mentoring under Chemistry professor Dr .Joe Gardella, collected soil samples from a playground and 5 homes in the neighborhood. They also collected a background sample at Beaver Island State Park. Each soil sample, a composite of 6 sub samples, was tested at Test America (Amherst, NY) for 16 polycyclic aromatic hydrocarbon (PAH) compounds and 8 heavy metals. What Was Found Harmful Chemicals: Many chemicals were elevated above background sample.
    [Show full text]
  • Journal of Fluorine Chemistry 221 (2019) 1–7
    Journal of Fluorine Chemistry 221 (2019) 1–7 Contents lists available at ScienceDirect Journal of Fluorine Chemistry journal homepage: www.elsevier.com/locate/fluor Steric and electronic effects of3 CF conformations in acene(CF3)n derivatives T Nicholas J. DeWeerda, Eric V. Bukovskya, Karlee P. Castroa, Igor V. Kuvychkoa, ⁎ ⁎ ⁎ Alexey A. Popovb, , Steven H. Straussa, , Olga V. Boltalinaa, a Department of Chemistry, Colorado State University, Fort Collins, CO 80523, United States b Liebniz Institute for Solid State and Materials Research (IFW), Dresden 01069, Germany ARTICLE INFO ABSTRACT Keywords: The X-ray and DFT-optimized structures of the electron acceptor 2,3,6,7,9,10-anthra-cene(CF3)6 (ANTH-6-1) and Trifluoromethyl the 1/2 donor/acceptor co-crystal pyrene/(ANTH-6-1)2 are reported. These structures, along with extensive DFT PAH calculations on various conformations of ANTH-6-1 and 9,10-ANTH(CF3)2, suggest that the degree of bending of Acene the aromatic core in ANTH-6-1 and the DFT-predicted energies of ANTH-6-1 and 9,10-ANTH(CF3)2 are strongly Conformations 2 correlated with the relative eclipsed vs. staggered conformations of the CF3 groups attached to the central C(sp ) Bent pi systems carbon atoms (C9 and C10). Other literature X-ray and DFT-optimized structures of anthracene and pentacene X-ray structures 2 DFT calculations derivatives with n-C8F17 and/or CF3 substituents on the central C(sp ) atoms are analyzed and show (i) that the eclipsed vs. staggered correlation with the degree of bending of the aromatic cores may be a general phenom- enon and (ii) that molecules of this type are probably more stable when the acene core is bent than when it is planar.
    [Show full text]
  • Fullerene-Acene Chemistry
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2007 Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene Andreas John Athans University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Athans, Andreas John, "Fullerene-acene chemistry: Part I Studies on the regioselective reduction of acenes and acene quinones; Part II Progress toward the synthesis of large acenes and their Diels-Alder chemistry with [60]fullerene" (2007). Doctoral Dissertations. 363. https://scholars.unh.edu/dissertation/363 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. FULLERENE-ACENE CHEMISTRY: PART I: STUDIES ON THE REGIOSELECTIVE REDUCTION OF ACENES AND ACENE QUINONES; PART II: PROGRESS TOWARD THE SYNTHESIS OF LARGE ACENES AND THEIR DIELS- ALDER CHEMISTRY WITH [60]FULLERENE VOLUME 1 CHAPTERS 1-5 BY ANDREAS JOHN ATHANS B.S. University of New Hampshire, 2001 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy m Chemistry May, 2007 Reproduced with permission of the copyright owner. Further reproduction prohibited without permission. UMI Number: 3 2 6 0 5 8 6 INFORMATION TO USERS The quality of this reproduction is dependent upon the quality of the copy submitted.
    [Show full text]
  • Temperature-Induced Oligomerization of Polycyclic Aromatic Hydrocarbons
    www.nature.com/scientificreports OPEN Temperature-induced oligomerization of polycyclic aromatic hydrocarbons at ambient Received: 7 June 2017 Accepted: 10 July 2017 and high pressures Published: xx xx xxxx Artem D. Chanyshev 1,2, Konstantin D. Litasov1,2, Yoshihiro Furukawa3, Konstantin A. Kokh1,2 & Anton F. Shatskiy1,2 Temperature-induced oligomerization of polycyclic aromatic hydrocarbons (PAHs) was found at 500–773 K and ambient and high (3.5 GPa) pressures. The most intensive oligomerization at 1 bar and 3.5 GPa occurs at 740–823 K. PAH carbonization at high pressure is the fnal stage of oligomerization and occurs as a result of sequential oligomerization and polymerization of the starting material, caused by overlapping of π-orbitals, a decrease of intermolecular distances, and fnally the dehydrogenation and polycondensation of benzene rings. Being important for building blocks of life, PAHs and their oligomers can be formed in the interior of the terrestrial planets with radii less than 2270 km. High-pressure transformations of polycyclic aromatic hydrocarbons (PAHs) and benzene become extremely important due to wide applications for example in graphene- and graphene-based nanotechnology1–3, synthesis of organic superconductors4, 5, petroleum geoscience, origin of organic molecules in Universe and origin of life. In particular, PAHs were found in many space objects: meteorites6–8, cometary comae9, interstellar clouds and planetary nebulas10–12. Although the prevalent hypothesis for the formation of these PAHs is irradiation-driven polymerization of smaller hydrocarbons13, alternative explanation could be shock fragmentation of carbonaceous solid material11. PAH-bearing carbonaceous material could contribute to the delivery of extraterrestrial organic materials to the prebiotic Earth during the period of heavy bombardment of the inner Solar System from 4.5 to 3.8 Ga ago14–16.
    [Show full text]
  • The Pennsylvania State University the Eberly College of Science
    The Pennsylvania State University The Eberly College of Science Department of Chemistry SYNTHESIS OF CARBON MATERIALS VIA THE COLD COMPRESSION OF AROMATIC MOLECULES AND CARBON NANOSTRUCTURES A Dissertation in Chemistry by Thomas C. Fitzgibbons 2014 Thomas C. Fitzgibbons Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Thomas C. Fitzgibbons was reviewed and approved* by the following: John V. Badding Professor of Chemistry Dissertation Advisor Chair of Committee Ayusman Sen Distinguished Professor of Chemistry A. Welford Castleman, Jr Evan Pugh Professor of Chemistry and Physics William B. White Professor Emeritus of Geosciences Barbara J. Garrison Shapiro Professor of Chemistry Head of the Department of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Carbon’s ability for catenation makes it a remarkable element and allows for many interesting and surprising properties and structures. Carbon can exist in one of its two thermodynamically stable bulk crystals, graphite or diamond, one of its several nanostructures: fullerene, nanotube, or graphene, or as an amorphous material with a mixed bonding pattern. Carbon also has an ability to bond heteroatoms such as hydrogen which can increase its properties and structures even further. Pressure has been shown to be able to drastically change the bonding in and structure of carbon based materials. In this dissertation I will present how pressure can be used to synthesize new amorphous hydrogenated carbons and how a battery of analytical techniques can be used to elicit the microstructure of the carbon networks. This microstructure can then be related back to the reaction conditions and more importantly the starting small molecule.
    [Show full text]
  • A Systematic Study of Acene Derivatives: Synthesis, Crystal
    A Systematic Study of Acene Derivatives: Synthesis, Crystal Structures, Optical and Electrochemical Characterizations A DISSERTATION SUBMITTED TO THE FACULTY OF THE UNIVERSITY OF MINNESOTA BY Zhuoran Zhang IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY Advisor: Christopher J. Douglas August 2018 © Zhuoran Zhang 2018 Acknowledgements Pursuing a Ph.D. degree in the U.S. has been the most unimaginable life experience for me. Being the first person to do so in my family, I feel lucky, honored, and of course, stressed. These complicated feelings probably came from my parents, who raised me up around for more than twenty years, and finally decided to push me up to the other side of the world where I could chase something higher. It must be hard for them, because they have no idea what life is like in the U.S., they probably don’t understand what a chemistry Ph.D. is. But they always respect and support my pursuit. They know it’s time to let their son take care of himself and he will be fine. Suffice to say, it is the strength that comes from their trust and hope that keeps me strong. I guess this is the unique kind of love from parents, the love that nothing could ever compare. I am deeply grateful to the selfless love, the endless support, and the sacrifice they have to make. So, thank you, Mom and Dad! I’d like to give my greatest gratitude to my advisor Prof. Chris Douglas, who has provided me with a wonderful opportunity to be a synthetic organic chemistry researcher at University of Minnesota.
    [Show full text]
  • Description of Aromaticity with the Help of Vibrational Spectroscopy: Anthracene and Phenanthrene Robert Kalescky, Elfi Kraka, and Dieter Cremer*
    Article pubs.acs.org/JPCA Description of Aromaticity with the Help of Vibrational Spectroscopy: Anthracene and Phenanthrene Robert Kalescky, Elfi Kraka, and Dieter Cremer* Computational and Theoretical Chemistry Group (CATCO), Department of Chemistry, Southern Methodist University, 3215 Daniel Avenue, Dallas, Texas 75275-0314, United States *S Supporting Information ABSTRACT: A new approach is presented to determine π-delocalization and the degree of aromaticity utilizing measured vibrational frequencies. For this purpose, a perturbation approach is used to derive vibrational force constants from experimental frequencies and calculated normal mode vectors. The latter are used to determine the local counterparts of the vibrational modes. Next, relative bond strength orders (RBSO) are obtained from the local stretching force constants, which provide reliable descriptors of CC and CH bond strengths. Finally, the RBSO values for CC bonds are used to establish a modified harmonic oscillator model and an aromatic delocalization index AI, which is split into a bond weakening (strengthening) and bond alternation part. In this way, benzene, naphthalene, anthracene, and phenanthrene are described with the help of vibrational spectroscopy as aromatic systems with a slight tendency of peripheral π-delocalization. The 6.8 kcal/mol larger stability of phenanthrene relative to anthracene predominantly (84%) results from its higher resonance energy, which is a direct consequence of the topology of ring annelation. Previous attempts to explain the higher stability of phenanthrene via a maximum electron density path between the bay H atoms are misleading in view of the properties of the electron density distribution in the bay region. ■ INTRODUCTION NMR chemical shift of an atomic nucleus is also affected by more π ff − The description of the chemical bond is one of the major than just -delocalization e ects.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbons As Model Cases for Structural and Optical Studies R
    Special Issue: Review Commentary Received: 24 August 2009, Revised: 2 October 2009, Accepted: 13 October 2009, Published online in Wiley InterScience: 3 February 2010 (www.interscience.wiley.com) DOI 10.1002/poc.1644 Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies R. Riegera and K. Mu¨ llena* Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, their rigid planar structure, and their characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated the interest in this area. For this reason, the relationship between the geometric and electronic structure and the optical spectra of PAHs are reviewed, pointing out the versatile properties of this class of molecules. Extremely stable fully-benzenoid PAHs with high optical gaps are encountered on the one side and the very reactive acenes with low optical gaps on the other side. A huge range of molecular sizes is covered from the simplest case benzene with its six carbon atoms up to disks containing as much as 96 carbon atoms. Furthermore, the impact of non-planarity is discussed as model cases for the highly important fullerenes and carbon nanotubes. The detailed analysis of the electronic structure of PAHs is very important with regard to their application as fluorescent dyes or organic semiconductors. The presented research results shall encourage developments of new PAH structures to exploit novel materials properties. Copyright ß 2010 John Wiley & Sons, Ltd. Keywords: aromaticity; dyes; photophysics; polycyclic aromatic hydrocarbons; UV/vis INTRODUCTION dramatically different optical and chemical properties are observed.
    [Show full text]
  • IUPAC Nomenclature of Fused and Bridged Fused Ring Systems
    Pure &App/. Chern., Vol. 70, No. 1, pp. 143-216, 1998. Printed in Great Britain. Q 1998 IUPAC INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY ORGANIC CHEMISTRY DIVISION COMMISSION ON NOMENCLATURE OF ORGANIC CHEMISTRY (111.1) NOMENCLATURE OF FUSED AND BRIDGED FUSED RING SYSTEMS (IUPAC Recommendations 1998) Prepared for publication by G. P. MOSS Department of Chemistry, Queen Mary and Westfield College, Mile End Road, London, El 4NS, UK Membership of the Working Party (1982-1997): A. T. Balaban (Romania), A. J. Boulton (UK), P. M. Giles, Jr. (USA), E. W. Godly (UK), H. Gutmann (Switzerland), A. K. Ikizler (Turkey), M. V. Kisakiirek (Switzerland), S. P. Klesney (USA), N. Lozac’h (France), A. D. McNaught (UK), G. P. Moss (UK), J. Nyitrai (Hungary), W. H. Powell (USA), Ch. Schmitz (France), 0. Weissbach (Federal Republic of Germany) Membership of the Commission on Nomenclature of Organic Chemistry during the preparation of this document was as follows: Titular Members: 0. Achmatowicz (Poland) 1979-1987; J. Blackwood (USA) 1996; H. J. T. Bos (Netherlands) 1987-1995, Vice-chairman, 1991- ; J. R. Bull (Republic of South Africa) 1987-1993; F. Cozzi (Italy) 1996- ; H. A. Favre (Canada) 1989-, Chairman, 1991- ; P. M. Giles, Jr. (USA) 1989-1995; E. W. Godly (UK) 1987-1993, Secretary, 1989-1993; D. Hellwinkel (Federal Republic of Germany) 1979-1987, Vice-Chainnan, 1981-1987; B. J. Herold (Portugal) 1994- ; K. Hirayama (Japan) 1975-1983; M. V. Kisakiirek (Switzerland) 1994, Vice-chairman, 1996- ; A. D. McNaught (UK) 1979-1987; G. P. Moss (UK) 1977-1987, Chairman, 1981-1987, Vice-chairman, 1979-1981; R.
    [Show full text]