Polycyclic Aromatic Hydrocarbons As Model Cases for Structural and Optical Studies R

Total Page:16

File Type:pdf, Size:1020Kb

Polycyclic Aromatic Hydrocarbons As Model Cases for Structural and Optical Studies R Special Issue: Review Commentary Received: 24 August 2009, Revised: 2 October 2009, Accepted: 13 October 2009, Published online in Wiley InterScience: 3 February 2010 (www.interscience.wiley.com) DOI 10.1002/poc.1644 Forever young: polycyclic aromatic hydrocarbons as model cases for structural and optical studies R. Riegera and K. Mu¨ llena* Polycyclic aromatic hydrocarbons (PAHs) are popular research subjects due to their high stability, their rigid planar structure, and their characteristic optical spectra. The recent discovery of graphene, which can be regarded as giant PAH, has further stimulated the interest in this area. For this reason, the relationship between the geometric and electronic structure and the optical spectra of PAHs are reviewed, pointing out the versatile properties of this class of molecules. Extremely stable fully-benzenoid PAHs with high optical gaps are encountered on the one side and the very reactive acenes with low optical gaps on the other side. A huge range of molecular sizes is covered from the simplest case benzene with its six carbon atoms up to disks containing as much as 96 carbon atoms. Furthermore, the impact of non-planarity is discussed as model cases for the highly important fullerenes and carbon nanotubes. The detailed analysis of the electronic structure of PAHs is very important with regard to their application as fluorescent dyes or organic semiconductors. The presented research results shall encourage developments of new PAH structures to exploit novel materials properties. Copyright ß 2010 John Wiley & Sons, Ltd. Keywords: aromaticity; dyes; photophysics; polycyclic aromatic hydrocarbons; UV/vis INTRODUCTION dramatically different optical and chemical properties are observed. As an example, triphenylene is extremely stable against The recent discovery of graphene – a single layer out of graphite – oxidation and possesses a relatively high optical gap. The isomer has raised enormous interest in the scientific community due to tetracene, in contrast, is easily oxidized and shows absorption at the unusual structure and the physical properties of graphene much longer wavelengths. such as ballistic charge transport or the quantum hall effect.[1–3] This review aims to shed light on the relationship between the Polycyclic aromatic hydrocarbons (PAHs) are well-defined cutouts geometric and electronic structure and the optical spectra of of graphene; the larger representatives are therefore sometimes PAHs. For this reason, the absorption and emission spectra of called nanographenes.[4–6] They can be found naturally in oil, different classes of PAHs shall be discussed to point out similari- coal, and tar, or are produced in combustion processes.[7] Due to ties among and differences between these classes. The synthesis the mutagenic and carcinogenic properties of some PAHs they of the presented molecules is not covered as some excellent are of major concern as pollutants.[8] reviews about this topic have been published.[9,11,13,22–24] For material sciences, however, PAHs are a great benefit. When chemically substituted with aliphatic chains, discotic liquid crystals are formed.[9–11] Their high stability and outstanding NOMENCLATURE structural order in the bulk phase make them very promising In order to discuss the optical properties of PAHs, a common materials for various applications.[12,13] Surface scientists, further- identification system has to be established. As for most other more, profit from the stiff and flat shape which facilitates the chemical substances, several systems exist. In this text, the IUPAC study of molecule–substrate interactions.[14–16] nomenclature is followed as long as possible. According to this The optical absorption and emission behavior is of particular nomenclature, the name of a PAH is derived from a set of PAHs interestforresearchersworkingwithPAHs. Thehighlycharacteristic which possess trivial names.[25] This set contains molecules of absorption spectra can be seen as their fingerprints, making it easy special importance like pyrene, triphenylene, perylene, coronene, to unambiguously identify a compound. This enabled scientists to and a few more. Other PAHs are derived from these by detect PAHs even in the interstellar medium.[17,18] A lot about annellation of further benzene rings. Figure 1 gives an example. aromaticity can be learned when dealing with PAHs.[19] The Perylene is the basis molecule to which three benzene rings are correlation of their geometric structure, i.e. how the rings are attached to obtain tribenzoperylene. If confusion among isomers annellated, to the energy levels of the electrons reveals details about the stabilization of p-bonds through aromaticity. Theoretical models profit from comparison to experimentally measured optical * Correspondence to: K. Mu¨llen, Max Planck Institute for Polymer Research spectra; therefore, the synthesis of the hitherto unknown PAHsis an Mainz, Ackermannweg 10, 55128 Mainz, Germany. urgent challenge for chemists.[20,21] E-mail: [email protected] At first glance, one may suggest that PAHs constitute a uniform a R. Rieger, K. Mu¨llen 2 classofvery similarmolecules,all builtupofsolelysp carbonsanda Max Planck Institute for Polymer Research Mainz, Ackermannweg, Mainz, few hydrogens. However, depending on the size and geometry, Germany 315 J. Phys. Org. Chem. 2010, 23 315–325 Copyright ß 2010 John Wiley & Sons, Ltd. R. RIEGER AND K. MU¨ LLEN a b r c o p q d n e m h g f l i k j tribenzo[b,n,pqr]perylene perylene Figure 1. Example for an IUPAC nomenclature is to be avoided, the sides to which the benzo groups are gaps and higher reactivity. Larger acenes with exclusively zigzag attached are indicated in square brackets. For the lettering of the periphery cannot be handled in air without oxidation to the side, the PAH is drawn such that the maximum number of rings in quinones. Three types of edges are distinguished: the bay, the cove, a row are oriented horizontally. If more than one orientation is and the fjord region (Fig. 2). A bay region is part of the arm-chair possible, that one is chosen for which the maximum number of periphery. Cove and fjord regions are structural features inducing rings are located in the top right quadrant. The sides are lettered non-planarity of the PAH as the attached hydrogen bonds sterically alphabetically clockwise starting with the leftmost side in the interfere. Helicenes are the extreme example for fjord regions in upper-right quadrant. In the example of Fig. 1, the complete which the interference is so strong that at room temperature stable name of the depicted molecule is thus tribenzo[b,n,pqr]perylene. enantiomers are formed.[32] For more complex structures, units other than benzene can be E. Clar has developed an easy system to estimate the stability of a attached to a basis PAH, such as naphthalene or phenanthrene PAH which is known as Clar’s sextet rule.[33] When drawing the with the prefixes naphtho- and phenanthro-, respectively. structure of a PAH, the p-electrons can be grouped into sextets If the compounds become very big, the names are often difficult within a ring. Sometimes, people draw a circle in the ring to indicate tomanage.Intheliterature,alternativenamesareoccasionallyused this electron sextet as in Fig. 3. In tetracene, only one sextet can be which are derived from the shape of the PAH. A name like triangle assigned to one of the rings, the remaining 12 p-electrons remain (e.g. for 5 or 11 in Fig. 6) alludes to the D3h symmetry of certain ungrouped. According to Clar’s sextet rule, the electron sextets representatives. ‘Supernaphthalene’ or ‘superphenalene’ (12 and possess particularly strong aromatic stabilization; those bonds not 14 in Fig. 6) have also been used to describe a shape which included in a sextet, in contrast, are less stabilized and are more resembles naphthalene or phenalene, but is much bigger in size. susceptible to chemical reactions. In tetracene’s isomer tripheny- lene, all 18 electrons can be grouped into sextets and assigned to one ring each. As a consequence, very high aromatic stabilization is GEOMETRICAL AND ELECTRONIC gained. In fact, triphenylene is very stable even under drastic STRUCTURE OF PAHs conditions. PAHs for which all p-electrons can be grouped into sextets are sometimes called Clar PAHs. To establish a relationship between the geometric and electronic This simple rule is amazingly effective for qualitative esti- structure and the optical properties of PAHs, we first need to look mations of the stability of a PAH. Sophisticated quantum into how PAHs are built up and make clear certain structural mechanical calculations have been performed to explain Clar’s features. Then we can divide them into classes of similar sextet rule in detail and enable quantitative predictions.[21,34–37] properties and discuss the optical properties shared among For the every-day use, however, the simple rule remains an representatives of these classes. important tool for qualitative predictions. PAHs are built up by six-membered rings of sp2-hybridized carbon atoms. Two neighboring rings share two carbon atoms such OPTICAL ABSORPTION SPECTRA that a fully planar and conjugated system is formed. Benzene is regarded as the smallest PAH, naphthalene the next bigger one The absorption spectra of PAHs are quite different from those of composed of two rings. The more rings are annellated, the more most other substances. They are highly resolved, revealing a lot of possible isomers exist. These can be distinguished by their periphery which roughly correlates to the resonance stabilization energy.[26–31] The highest stabilization is gained with an arm-chair periphery (Fig. 2). A zigzag periphery, in contrast, leads to much reduced resonance stabilization and consequently to lower band cove region arm-chair bay region fjord region zig-zag Figure 3. Clar’s sextet rule applied to tetracene (top) and triphenylene (bottom). The rings in the formulae on the right side indicate the sextets, Figure 2. The periphery of PAHs the electrons not in a sextet remain as double bond 316 www.interscience.wiley.com/journal/poc Copyright ß 2010 John Wiley & Sons, Ltd.
Recommended publications
  • Appendix 1 Table of Contents
    @ECHA EUROPEAN CHEMICALS AGENCY Appendix 1 Table of Contents: Supplementary Table C:Substances on Annex II of the Cosmetic Products Regulation ... 1 Supplementary Table D: Substances proposed to be restricted due their use restriction in CPR Annex IV column 9..,,.. 119 Supplementary Table E: Substances allowed in tattoo inks subject to the conditions specified in CPR Annex IV columns h and i ......r29 Annankatu 18. P.O. Box 400, FI-00121 Helsinki, Finland I Tel. +358 9 686180 | Fax +358 9 68618210 | echa.europa.eu ANNEX XV RESTRICTION REPORT - SUBSTANCES IN TATTOO INKS AND PERMANENT MAKE UP Su lemen Table C:Substances on Annex II of the Cosmetic Products Re ulationl Substance EC# cAs # Substance EC# cAs # R T T T A- s c R I T Name Name e b b b II s M 7 c I s I I I #4 5 6 D 9 2 1 2 3 a 3 3 3 N-(s- Chlorobenzoxa zol-2- 35783- vl)acetamide 57-4 1 (2- Acetoxyethyl)t rimethylammo (2- nium acetoxyethyl hydroxide )trimethyla 200- (Acetylcholine) 200- mmonium 124-9 5 1-84-3 and its salts t2a-9 51-84-3 2 Deanol Deanol 222- 3342- aceglumate 222- 3342- aceqlumate 085-5 61-8 (INN) 085-5 61-8 3 Spironolacto 200- Spironolactone 200- ne 133-6 52-O1-7 rINN) 133-6 52-0L-7 4 14-(4- Hydroxy-3- iodophenoxy)- 3,5- diiodophenylla cetic acid (Tiratricol 200- (INN)) and its 200- Tiratricol 086- 1 5r-24-7 salts 086- 1 5l-24-7 5 Methotrexat 200- Methotrexate 200- e 413-8 59-05-2 (INN) 413-8 59-05-2 6 Aminocaproic Aminocaproi 200- acid (INN) and 200- c acid 469-3 60-32-2 its salts 469-3 60-32-2 7 Cinchophen (rNN), its salts, derivatives and salts of 205- 132-60- these 205- 132-60- Cinchophen 067-r 5 derivatives 067-l 5 Thyropropic acid (INN) and its salts 5L-26-3 9 Trichloroacet 200- Trichloroacetic 200- ic acid 927-2 75-03-9 acid 927-2 76-03-9 l0 Aconitum napellus L.
    [Show full text]
  • Refining Crude Oil
    REFINING CRUDE OIL New Zealand buys crude oil from overseas, as well as drilling for some oil locally. This oil is a mixture of many hydrocarbons that has to be refined before it can be used for fuel. All crude oil in New Zealand is refined by The New Zealand Refining Company at their Marsden Point refinery where it is converted to petrol, diesel, kerosene, aviation fuel, bitumen, refinery gas (which fuels the refinery) and sulfur. The refining process depends on the chemical processes of distillation (separating liquids by their different boiling points) and catalysis (which speeds up reaction rates), and uses the principles of chemical equilibria. Chemical equilibrium exists when the reactants in a reaction are producing products, but those products are being recombined again into reactants. By altering the reaction conditions the amount of either products or reactants can be increased. Refining is carried out in three main steps. Step 1 - Separation The oil is separated into its constituents by distillation, and some of these components (such as the refinery gas) are further separated with chemical reactions and by using solvents which dissolve one component of a mixture significantly better than another. Step 2 - Conversion The various hydrocarbons produced are then chemically altered to make them more suitable for their intended purpose. For example, naphthas are "reformed" from paraffins and naphthenes into aromatics. These reactions often use catalysis, and so sulfur is removed from the hydrocarbons before they are reacted, as it would 'poison' the catalysts used. The chemical equilibria are also manipulated to ensure a maximum yield of the desired product.
    [Show full text]
  • C–H Arylation of Triphenylene, Naphthalene and Related Arenes Using Pd/C† Cite This: Chem
    Chemical Science View Article Online EDGE ARTICLE View Journal | View Issue C–H arylation of triphenylene, naphthalene and related arenes using Pd/C† Cite this: Chem. Sci.,2015,6,1816 Karl D. Collins, Roman Honeker,‡ Suhelen Vasquez-C´ espedes,´ ‡ Dan-Tam D. Tang and Frank Glorius* A highly selective arylation of a number of polyaromatic hydrocarbons (PAHs) with aryliodonium salts and Pd/C as the only reagent is reported. The first C–H functionalization of triphenylene is explored, and proceeds at the most sterically hindered position. This non-chelate assisted C–H functionalization Received 4th October 2014 extends the reactivity profile of Pd/C and provides controlled access to p-extended PAHs, an important Accepted 19th December 2014 aspect of work towards the preparation of nanographenes. Mechanistic studies suggest in situ formation DOI: 10.1039/c4sc03051f of catalytically active insoluble nanoparticles, and that the reaction likely proceeds via a Pd(0)/Pd(II) type www.rsc.org/chemicalscience reaction manifold. Creative Commons Attribution 3.0 Unported Licence. Introduction precedent for the direct arylation of larger PAHs is reported. Seminal work by Oi and Inoue reported an effective arylation of Pd/C has long been established as an efficient catalyst in phenanthrene and uoranthene with aryltin trichlorides.10 One hydrogenation and cross-coupling reactions.1 Although sup- example of phenanthrene arylation has also been reported by ported catalysts are formally heterogeneous in nature, studies of Shi.11 Important studies by the group of Itami demonstrated a Pd/C suggest it typically acts as a reservoir of homogeneous more general solution (Scheme 1) using prepared boroxines as active catalytic species, following leaching of palladium from coupling partners.7d 1c,1e,2 the support into the solution.
    [Show full text]
  • General Disclaimer One Or More of the Following Statements May Affect
    General Disclaimer One or more of the Following Statements may affect this Document This document has been reproduced from the best copy furnished by the organizational source. It is being released in the interest of making available as much information as possible. This document may contain data, which exceeds the sheet parameters. It was furnished in this condition by the organizational source and is the best copy available. This document may contain tone-on-tone or color graphs, charts and/or pictures, which have been reproduced in black and white. This document is paginated as submitted by the original source. Portions of this document are not fully legible due to the historical nature of some of the material. However, it is the best reproduction available from the original submission. Produced by the NASA Center for Aerospace Information (CASI) NASA CR - 159480 EXXON/GRUS. 1KWD. 78 NIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION (NASA-CR-159''PO) HIGH PEPPOFMANCF, HIGH V79-20267 DENSTTv HYDR I-CARBON FTIELS (Exxon P.esearch and Engineering Co.) 239 rp HC A11/MF A01 CSCL 21D 'Inclas G3/28 19456 NASA Lewis Research Center Contract NAS 3-20394 Qnr{l,,Y^ ^'Pr I€ ^i NASA CR - 159480 EXXON/GRUS . 1KWD . 78 L: HIGH PERFORMANCE, HIGH DENSITY HYDROCARBON FUELS J. W. Frankenfeld, T. W. Hastings, M. Lieberman and W. F. Taylor EXXON RESEARCH AND ENGINEERING COMPANY prepared for NATIONAL AERONAUTICS AND SPACE ADMINISTRATION NASA Lewis Research Center Contract NAS 3-20394 FOREWARD The research described in this report was performed at Exxon Research and Engineering Company, Linden, New Jersey and Contract NAS 320394 with Mr.
    [Show full text]
  • Polycyclic Aromatic Hydrocarbon Structure Index
    NIST Special Publication 922 Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899-0001 December 1997 revised August 2020 U.S. Department of Commerce William M. Daley, Secretary Technology Administration Gary R. Bachula, Acting Under Secretary for Technology National Institute of Standards and Technology Raymond G. Kammer, Director Polycyclic Aromatic Hydrocarbon Structure Index Lane C. Sander and Stephen A. Wise Chemical Science and Technology Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 This tabulation is presented as an aid in the identification of the chemical structures of polycyclic aromatic hydrocarbons (PAHs). The Structure Index consists of two parts: (1) a cross index of named PAHs listed in alphabetical order, and (2) chemical structures including ring numbering, name(s), Chemical Abstract Service (CAS) Registry numbers, chemical formulas, molecular weights, and length-to-breadth ratios (L/B) and shape descriptors of PAHs listed in order of increasing molecular weight. Where possible, synonyms (including those employing alternate and/or obsolete naming conventions) have been included. Synonyms used in the Structure Index were compiled from a variety of sources including “Polynuclear Aromatic Hydrocarbons Nomenclature Guide,” by Loening, et al. [1], “Analytical Chemistry of Polycyclic Aromatic Compounds,” by Lee et al. [2], “Calculated Molecular Properties of Polycyclic Aromatic Hydrocarbons,” by Hites and Simonsick [3], “Handbook of Polycyclic Hydrocarbons,” by J. R. Dias [4], “The Ring Index,” by Patterson and Capell [5], “CAS 12th Collective Index,” [6] and “Aldrich Structure Index” [7]. In this publication the IUPAC preferred name is shown in large or bold type.
    [Show full text]
  • On‐Surface Synthesis of Ethynylene‐Bridged Anthracene Polymers
    Angewandte Communications Chemie International Edition:DOI:10.1002/anie.201814154 Surface Chemistry German Edition:DOI:10.1002/ange.201814154 On-Surface Synthesis of Ethynylene-Bridged Anthracene Polymers Ana Sµnchez-Grande,Bruno de la Torre,JosØ Santos,Borja Cirera, Koen Lauwaet, Taras Chutora, Shayan Edalatmanesh, Pingo Mutombo,Johanna Rosen, Radek Zborˇil, Rodolfo Miranda, Jonas Bjçrk,* Pavel Jelínek,* Nazario Martín,* and David Écija* Abstract: Engineering low-band-gap p-conjugated polymers conjugated nanomaterials to be synthesized by wet chemis- is agrowing area in basic and applied research. The main try.[2,3] synthetic challenge lies in the solubility of the starting materials, On-surface synthesis has become apowerful discipline to which precludes advancements in the field. Here,wereport an design many novel molecular compounds,polymers,and on-surface synthesis protocol to overcome such difficulties and nanomaterials with atomistic precision,[4–12] some of them not produce poly(p-anthracene ethynylene) molecular wires on accessible by standard synthetic methods.Additionally,on- Au(111). To this aim, aquinoid anthracene precursor with surface chemistry enables the structural and electronic =CBr2 moieties is deposited and annealed to 400 K, resulting in characterization of the designed products with advanced anthracene-based polymers.High-resolution nc-AFM meas- surface-science techniques.[10,13,14] Recently,and within the urements confirm the nature of the ethynylene-bridge bond scope of on-surface synthesis,particular success
    [Show full text]
  • Synthesis and Properties of Heterocyclic Acene Diimides
    ORGANIC LETTERS XXXX Synthesis and Properties of Heterocyclic Vol. XX, No. XX Acene Diimides 000–000 Cheng Li,†,‡ Chengyi Xiao,†,‡ Yan Li,*,† and Zhaohui Wang*,† Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China, and University of Chinese Academy of Sciences, Beijing 100049, China [email protected]; [email protected] Received December 27, 2012 ABSTRACT A series of heterocyclic acene diimides were synthesized effectively based on the condensation of o-phenylenediamine, 1,2-benzenedithiol, and 2-aminothiophenol with 2,3,6,7-tetrabromo-1,4,5,8-naphthalene tetracarboxylic diimide. The diimides exhibit interesting optical and electrical properties with one of them showing a hole mobility up to 0.02 cm2 VÀ1 sÀ1. In recent years, naphthalene tetracarboxylic diimides has been applied as high-performance solution-deposited (NDIs, 1, Figure 1) and their core-expanded derivatives ambipolar organic transistors.2 In contrast, the expansion have attracted a great deal of attention due to their of the π-system along the lateral position of NDIs has been interesting electro-optical properties and potential appli- demonstrated only recently due to the synthetic difficulties. cations as organic semiconductors in organic electronics.1 Recently, the synthesis of tetracene tetracarboxylic The π-skeleton of NDIs could be expanded along two diimides based on two methods of direct double ring directions: the peri position (1, 4, 5, 8) and the lateral extension of electron-deficient NDIs involving metal- position (2, 3, 6, 7). The expansion of the π-system along lacyclopentadienes and bismuth-triflate-mediated double- the peri position has been studied for many decades cyclization reaction of acid chlorides and isocyanates has because it induces impressive bathochromic shifts and been reported, which displays dramatic bathochromic shifts, smaller energy band gaps, and is a promising can- 3 † Institute of Chemistry, Chinese Academy of Sciences.
    [Show full text]
  • Chemistry of Acenes, [60]Fullerenes, Cyclacenes and Carbon Nanotubes
    University of New Hampshire University of New Hampshire Scholars' Repository Doctoral Dissertations Student Scholarship Spring 2011 Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes Chandrani Pramanik University of New Hampshire, Durham Follow this and additional works at: https://scholars.unh.edu/dissertation Recommended Citation Pramanik, Chandrani, "Chemistry of acenes, [60]fullerenes, cyclacenes and carbon nanotubes" (2011). Doctoral Dissertations. 574. https://scholars.unh.edu/dissertation/574 This Dissertation is brought to you for free and open access by the Student Scholarship at University of New Hampshire Scholars' Repository. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of University of New Hampshire Scholars' Repository. For more information, please contact [email protected]. CHEMISTRY OF ACENES, [60]FULLERENES, CYCLACENES AND CARBON NANOTUBES BY CHANDRANI PRAMANIK B.Sc., Jadavpur University, Kolkata, India, 2002 M.Sc, Indian Institute of Technology Kanpur, India, 2004 DISSERTATION Submitted to the University of New Hampshire in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy in Materials Science May 2011 UMI Number: 3467368 All rights reserved INFORMATION TO ALL USERS The quality of this reproduction is dependent upon the quality of the copy submitted. In the unlikely event that the author did not send a complete manuscript and there are missing pages, these will be noted. Also, if material had to be removed, a note will indicate the deletion. UMI Dissertation Publishing UMI 3467368 Copyright 2011 by ProQuest LLC. All rights reserved. This edition of the work is protected against unauthorized copying under Title 17, United States Code. ProQuest LLC 789 East Eisenhower Parkway P.O.
    [Show full text]
  • A Unified Mechanism on the Formation of Acenes, Helicenes
    Angewandte Research Articles Chemie International Edition:DOI:10.1002/anie.201913037 PolycyclicAromatic Hydrocarbons German Edition:DOI:10.1002/ange.201913037 AUnified Mechanism on the Formation of Acenes,Helicenes,and Phenacenes in the Gas Phase Long Zhao,Ralf I. Kaiser,* Bo Xu, Utuq Ablikim, Musahid Ahmed,* Mikhail M. Evseev, Eugene K. Bashkirov, Valeriy N. Azyazov,and Alexander M. Mebel* Abstract: Aunified low-temperature reaction mechanismon as molecular tracers in untangling the underlying molecular the formation of acenes,phenacenes,and helicenes—polycyclic mass growth processes leading to PAHs in combustion aromatic hydrocarbons (PAHs) that are distinct via the linear, systems and in the interstellar medium (ISM) at the most zigzag,and ortho-condensed arrangements of fused benzene fundamental, microscopic level (Scheme 1). Although the rings—is revealed. This mechanism is mediated through presence of PAHs[4] along with their methylated and hetero- abarrierless,vinylacetylene mediated gas-phase chemistry utilizing tetracene,[4]phenacene,and [4]helicene as bench- marks contesting established ideas that molecular mass growth processes to PAHs transpire at elevated temperatures.This mechanism opens up an isomer-selective route to aromatic structures involving submerged reaction barriers,resonantly stabilized free-radical intermediates,and systematic ring an- nulation potentially yielding molecular wires along with racemic mixtures of helicenes in deep space.Connecting helicene templates to the Origins of Life ultimately changes our
    [Show full text]
  • A Stable and High Charge Mobility Organic Semiconductor with Densely Packed Crystal Structure Hong Meng,* Fangping Sun, Marc B
    Published on Web 07/04/2006 2,6-Bis[2-(4-pentylphenyl)vinyl]anthracene: A Stable and High Charge Mobility Organic Semiconductor with Densely Packed Crystal Structure Hong Meng,* Fangping Sun, Marc B. Goldfinger, Feng Gao, David J. Londono, Will J. Marshal, Greg S. Blackman, Kerwin D. Dobbs, and Dalen E. Keys Central Research and DeVelopment, Experimental Station, E. I. DuPont Company, Wilmington, Delaware 19880-0328 Received April 18, 2006; E-mail: [email protected] Interest in organic thin film transistors (OTFTs) and their use in Scheme 1. One-Step Synthesis of DPPVAnt various technological applications has grown significantly in recent years.1,2 To realize the full potential of these applications, it is necessary to identify conjugated semiconductors with high mobility and robust environmental stability. Organic oligomers investigated to date include p-type, n-type, and p/n-type bipolar semiconduc- tors.3,4 So far, the highest charge carrier mobility in thin film transistors has been observed with pentacene, which has been used as a benchmark p-type semiconductor material with a charge mobility over 1.0 cm2/V‚s, as reported by several labs.5 However, the poor stability and reproducibility of pentacene-based OTFTs may limit pentacene’s commercial potential. Recently, Anthony’s large band gap of the compound is consistent with the greater group reported a series of solution processible pentacene and stability of DPPVAnt relative to pentacene.11 The stability of anthradithioene derivatives with silylethynyl-substituted structures.6 DPPVAnt was further confirmed by studying its electrochemical The stability and the charge mobility have been improved relative behavior.
    [Show full text]
  • Temperature-Induced Oligomerization of Polycyclic Aromatic Hydrocarbons
    www.nature.com/scientificreports OPEN Temperature-induced oligomerization of polycyclic aromatic hydrocarbons at ambient Received: 7 June 2017 Accepted: 10 July 2017 and high pressures Published: xx xx xxxx Artem D. Chanyshev 1,2, Konstantin D. Litasov1,2, Yoshihiro Furukawa3, Konstantin A. Kokh1,2 & Anton F. Shatskiy1,2 Temperature-induced oligomerization of polycyclic aromatic hydrocarbons (PAHs) was found at 500–773 K and ambient and high (3.5 GPa) pressures. The most intensive oligomerization at 1 bar and 3.5 GPa occurs at 740–823 K. PAH carbonization at high pressure is the fnal stage of oligomerization and occurs as a result of sequential oligomerization and polymerization of the starting material, caused by overlapping of π-orbitals, a decrease of intermolecular distances, and fnally the dehydrogenation and polycondensation of benzene rings. Being important for building blocks of life, PAHs and their oligomers can be formed in the interior of the terrestrial planets with radii less than 2270 km. High-pressure transformations of polycyclic aromatic hydrocarbons (PAHs) and benzene become extremely important due to wide applications for example in graphene- and graphene-based nanotechnology1–3, synthesis of organic superconductors4, 5, petroleum geoscience, origin of organic molecules in Universe and origin of life. In particular, PAHs were found in many space objects: meteorites6–8, cometary comae9, interstellar clouds and planetary nebulas10–12. Although the prevalent hypothesis for the formation of these PAHs is irradiation-driven polymerization of smaller hydrocarbons13, alternative explanation could be shock fragmentation of carbonaceous solid material11. PAH-bearing carbonaceous material could contribute to the delivery of extraterrestrial organic materials to the prebiotic Earth during the period of heavy bombardment of the inner Solar System from 4.5 to 3.8 Ga ago14–16.
    [Show full text]
  • Laboratory Spectroscopy and Astronomical Significance of The
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Repository@Nottingham Laboratory spectroscopy and astronomical significance of the fully-benzenoid PAH triphenylene and its cation V. Kofmana,b, P.J. Sarrec, R.E. Hibbinsc,d, I.L. ten Kateb, H. Linnartza aSackler Laboratory for Astrophysics, Leiden Observatory, Leiden University, PO Box 9513, 2300 RA Leiden, The Netherlands bDepartment of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands cSchool of Chemistry, The University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom dDepartment of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway Abstract Triphenylene (C18H12) is a highly symmetric polycyclic aromatic hydrocarbon (PAH) molecule with a `fully-benzenoid' electronic structure. This confers a high chemical stability compared with PAHs of similar size. Although numerous infrared and UV-visible experimental spectroscopic and theoretical studies of a wide range PAHs in an astrophysical context have been conducted, triphenylene and its radical cation have received almost no attention. There exists a huge body of spectroscopic evidence for neutral and ionised PAHs in astrophysical sources, obtained principally through detection of infrared emission features that are characteristic of PAHs as a chemical class. However, it has so far not proved possible to identify spectroscopically a single isolated PAH in space, although PAHs including triphenylene have been detected
    [Show full text]