Recombinant ADAMTS13 Reduces Tissue Plasminogen Activator-Induced Hemorrhage After Stroke in Mice

Total Page:16

File Type:pdf, Size:1020Kb

Recombinant ADAMTS13 Reduces Tissue Plasminogen Activator-Induced Hemorrhage After Stroke in Mice ORIGINAL ARTICLE Recombinant ADAMTS13 Reduces Tissue Plasminogen Activator-Induced Hemorrhage after Stroke in Mice Lixiang Wang, MD, Wenying Fan, MD, PhD, Ping Cai, MS, Mengchen Fan, BS, Ximin Zhu, BS, Yiqin Dai, BS, Chungang Sun, MD, Yannan Cheng, BS, Ping Zheng, MD, PhD, and Bing-Qiao Zhao, MD, PhD Objective: Tissue plasminogen activator (tPA) is approved for treatment of acute ischemic stroke, but it increases the risk of cerebral hemorrhage. Accumulating evidence suggests that von Willebrand factor (VWF) plays a pivotal role in thrombus formation and microcirculatory disturbances after ischemic stroke. By cleaving VWF, ADAMTS13 (a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13) protects mice from stroke. Therefore, we hypothesized that recombinant ADAMTS13 (rADAMTS13) could increase the safety of tPA thrombolysis in stroke. Methods: We examined blood–brain barrier (BBB) permeability after intraventricular injection of tPA, VWF, and rADAMTS13 in nonischemic mice. We investigated the role of rADAMTS13 on reducing tPA-induced BBB dysfunction and cerebral hemorrhage in a mouse stroke model. Results: Intraventricular injection of tPA or VWF under nonischemic conditions resulted in a significant increase in BBB permeability. In contrast, rADAMTS13 blocked both tPA- and VWF-induced BBB opening. BBB disruption following stroke was exacerbated by intravenous administration of tPA, but this was attenuated by injection of rADAMTS13. Correspondingly, tPA-associated hemorrhage after stroke was significantly reduced by rADAMTS13. The antihemorrhagic effect of rADAMTS13 was reversed by injection of recombinant VWF. We also showed that rADAMTS13 inhibited tPA-mediated upregulation of vascular endothelial growth factor (VEGF) in vascular endothelium after stroke. The upregulation of VEGF was suppressed by either an Akt inhibitor wortmannin or a Rho kinase inhibitor fasudil. Furthermore, rADAMTS13 downregulated tPA-induced phosphorylation of Akt and activation of RhoA. Interpretation: These findings demonstrate that the VWF-cleaving protease rADAMTS13 reduced tPA-induced hemorrhage by regulating BBB integrity, and suggest that this effect may occur through the Akt/RhoA-mediated VEGF pathways. ANN NEUROL 2013;73:189–198 troke is a leading cause of death and disability world- tPA is a serine protease that plays a critical role in Swide. Thrombolytic therapy with tissue plasminogen the homeostasis of blood coagulation and fibrinolysis.4 activator (tPA) is beneficial for acute ischemic stroke.1 Besides regulating normal central nervous system (CNS) However, the use of tPA is associated with increased risk physiology and neuronal plasticity,5 tPA also plays a role of cerebral hemorrhage, especially when tPA is adminis- in CNS pathology. tPA promoted excitotoxic neuronal tered beyond the first few hours after symptom onset.2–4 death6 and increased ischemic brain injury,7 and genetic Cerebral hemorrhage is the most feared complication of ablation of tPA or pharmacologic inhibition of tPA was tPA and an important obstacle of its use.3,5 Therefore, protected from cerebral ischemia.7,8 Furthermore, tPA any strategy for attenuating the severity of hemorrhage was shown to exacerbate ischemic endothelial injury and will have a significant impact on improving the outcomes blood–brain barrier (BBB) disruption by promoting ma- in patients with ischemic stroke. trix metalloproteinase-9 (MMP-9) and nuclear factor View this article online at wileyonlinelibrary.com. DOI: 10.1002/ana.23762 Received Feb 18, 2012, and in revised form Aug 13, 2012. Accepted for publication Sep 4, 2012. Address correspondence to Dr Zhao, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China. E-mail: [email protected] or Dr Fan, State Key Laboratory of Medical Neurobiology, Fudan University, 138 Yixueyuan Road, Shanghai 200032, China. E-mail: [email protected] From the State Key Laboratory of Medical Neurobiology, Shanghai Medical College and Institutes of Brain Science, Fudan University, Shanghai, China. VC 2012 American Neurological Association 189 ANNALS of Neurology kappa B (NF-jB) activation, Akt phosphorylation, and rabbit anti–collagen IV (Santa Cruz Biotechnology, Santa Cruz, extracellular matrix degradation.9–13 Experimental and CA), rabbit anti–vascular endothelial growth factor (VEGF; clinical evidence has indicated that disruption of the Abcam, Cambridge, MA), goat anti–angiopoietin (Ang)-1 BBB after tPA treatment was highly predictive for subse- (Santa Cruz Biotechnology), goat anti–Ang-2 (Santa Cruz Bio- quent cerebral hemorrhage.14,15 This suggests that inhibi- technology), rabbit anti–phospho-Akt (serine 473; Cell Signal- ing Technology, Beverly, MA), rabbit anti-Akt (Cell Signaling tion of tPA-mediated BBB disruption may represent a Technology), rabbit anti-RhoA (Santa Cruz Biotechnology), rat potential strategy to increase the safety of tPA thrombol- anti-CD31 (PECAM-1; BD Pharmingen, San Diego, CA), ysis for ischemic stroke. mouse anti–glial fibrillary acidic protein (GFAP; Millipore), von Willebrand factor (VWF) is a multimeric gly- rabbit anti–NF-jB (p65; Cell Signaling Technology), and rab- coprotein that is produced by endothelial cells and mega- bit anti–b-actin (Cell Signaling Technology). Secondary anti- 16 karyocytes. ADAMTS13 (a disintegrin and metallopro- bodies used were: Alexa Fluor 594 donkey antirabbit immuno- teinase with a thrombospondin type 1 motif, member globulin G (IgG), Alexa Fluor 488 donkey antirat IgG, and 13) is a zinc-containing metalloprotease present in Alexa Fluor 488 donkey antimouse IgG (Invitrogen). plasma.17,18 The only known substrate for ADAMTS13 is VWF. The most important function of this metallo- Animals protease is to cleave the newly secreted ultralarge forms Eight 10-week-old male C57BL/6J mice (Shanghai SLAC Lab- of VWF to the smaller, less adhesive multimeric forms, oratory Animal Co, Shanghai, China) weighing 23 to 26g were used in all experiments. All experimental procedures were thus downregulating the thrombotic process.19 In the approved by the Animal Care and Use Committee of Shanghai CNS, VWF is expressed abundantly in endothelial Medical College, Fudan University. cells20; however, little is known about the role of VWF in regulation of BBB permeability. Several studies have Intraventricular Injections and Cerebrovascular shown that plasma levels of VWF were elevated in dis- Permeability Evaluation eases associated with BBB disruption, such as ischemic Mice were anesthetized with 1 to 1.5% isoflurane in 30% oxy- stroke, intracerebral hemorrhage, and subarachnoidal gen, placed on a stereotactic frame (Narishige Scientific Instru- hemorrhage.21,22 Furthermore, elevated plasma levels of ment Laboratory, Tokyo, Japan). Intracerebroventricular injec- VWF were found after thrombolytic therapy in patients tions (3ll) of either phosphate-buffered saline (PBS), tPA with cardiovascular disease.23 Recently, we have shown (585ng), VWF (540ng), tPA in combination with VWF, tPA in that absence of VWF protected mice from cerebral ische- combination with rADAMTS13 (50 or 100ng), or mia.24 In contrast, ADAMTS13 deficiency resulted in rADAMTS13 (100ng) were given at the following coordinates from bregma: 0.2mm posterior, 1.0mm lateral, and 3.0mm larger infarcts,24,25 and treatment with recombinant ventral. The injections were performed over 15 minutes. The ADAMTS13 (rADAMTS13) reduced ischemic brain 26 24 dose of tPA was chosen based on previous studies. The effects injury. of rADAMTS13 on VWF-induced BBB permeability was In the present study, we showed that direct injec- analyzed in a different group of mice, which were injected tion of VWF into the cerebrospinal fluid of nonischemic intraventricularly with 3ll of rADAMTS13 (100ng) 10 minutes mice induced a rapid opening of the BBB. We also dem- after intraventricular injection of VWF (3ll of 540ng). Evans onstrated that the VWF-cleaving protease rADAMTS13 blue dye (4% in PBS, 4ml/kg) injections were given intrave- blocked tPA-induced loss of cerebrovascular integrity, nously and allowed to circulate for 60 minutes. Animals were and consequently decreased tPA-associated cerebral perfused transcardially with PBS, and their brains were removed hemorrhage. and placed in formamide for 72 hours. The amount of extrava- sated Evans blue dye was evaluated by spectrophotometry (Thermo BioMate 3S; Thermo Scientific, Waltham, MA) at Materials and Methods 620nm. Reagents and Antibodies Evans blue, Drabkin reagent, paraformaldehyde, D-glucose, Stroke Model formamide, and wortmannin were purchased from Sigma- Cerebral ischemia was induced as described previously.24,27 In Aldrich (St Louis, MO). Human recombinant tPA (Actilyse) brief, transient occlusion of the right middle cerebral artery was obtained from Boehringer Ingelheim (Mannheim, Ger- (MCAO) was induced with a 7.0 siliconized filament through many). Human VWF protein was from Haematologic Technol- the external carotid artery. After 45 minutes, the filament was ogies (Essex Junction, VT), and human rADAMTS13 was from removed to allow reperfusion. Mice were anesthetized with 1 to R&D Systems (Minneapolis, MN). Fasudil was from Calbio- 1.5% isoflurane in 30% oxygen. Body temperature was main- chem (San Diego, CA). Purified Human MMP-9 was from tained at 37 6 0.5C using a heating pad (World Precision Millipore (Billerica, MA). Primary antibodies used were rabbit Instruments, Sarasota, FL). Laser Doppler flowmetry (Perimed, anti–zonula occludens
Recommended publications
  • Urokinase, a Promising Candidate for Fibrinolytic Therapy for Intracerebral Hemorrhage
    LABORATORY INVESTIGATION J Neurosurg 126:548–557, 2017 Urokinase, a promising candidate for fibrinolytic therapy for intracerebral hemorrhage *Qiang Tan, MD,1 Qianwei Chen, MD1 Yin Niu, MD,1 Zhou Feng, MD,1 Lin Li, MD,1 Yihao Tao, MD,1 Jun Tang, MD,1 Liming Yang, MD,1 Jing Guo, MD,2 Hua Feng, MD, PhD,1 Gang Zhu, MD, PhD,1 and Zhi Chen, MD, PhD1 1Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing; and 2Department of Neurosurgery, 211st Hospital of PLA, Harbin, People’s Republic of China OBJECTIVE Intracerebral hemorrhage (ICH) is associated with a high rate of mortality and severe disability, while fi- brinolysis for ICH evacuation is a possible treatment. However, reported adverse effects can counteract the benefits of fibrinolysis and limit the use of tissue-type plasminogen activator (tPA). Identifying appropriate fibrinolytics is still needed. Therefore, the authors here compared the use of urokinase-type plasminogen activator (uPA), an alternate thrombolytic, with that of tPA in a preclinical study. METHODS Intracerebral hemorrhage was induced in adult male Sprague-Dawley rats by injecting autologous blood into the caudate, followed by intraclot fibrinolysis without drainage. Rats were randomized to receive uPA, tPA, or saline within the clot. Hematoma and perihematomal edema, brain water content, Evans blue fluorescence and neurological scores, matrix metalloproteinases (MMPs), MMP mRNA, blood-brain barrier (BBB) tight junction proteins, and nuclear factor–κB (NF-κB) activation were measured to evaluate the effects of these 2 drugs in ICH. RESULTS In comparison with tPA, uPA better ameliorated brain edema and promoted an improved outcome after ICH.
    [Show full text]
  • 2'-Deoxyguanosine Toxicity for B and Mature T Lymphoid Cell Lines Is Mediated by Guanine Ribonucleotide Accumulation
    2'-deoxyguanosine toxicity for B and mature T lymphoid cell lines is mediated by guanine ribonucleotide accumulation. Y Sidi, B S Mitchell J Clin Invest. 1984;74(5):1640-1648. https://doi.org/10.1172/JCI111580. Research Article Inherited deficiency of the enzyme purine nucleoside phosphorylase (PNP) results in selective and severe T lymphocyte depletion which is mediated by its substrate, 2'-deoxyguanosine. This observation provides a rationale for the use of PNP inhibitors as selective T cell immunosuppressive agents. We have studied the relative effects of the PNP inhibitor 8- aminoguanosine on the metabolism and growth of lymphoid cell lines of T and B cell origin. We have found that 2'- deoxyguanosine toxicity for T lymphoblasts is markedly potentiated by 8-aminoguanosine and is mediated by the accumulation of deoxyguanosine triphosphate. In contrast, the growth of T4+ mature T cell lines and B lymphoblast cell lines is inhibited by somewhat higher concentrations of 2'-deoxyguanosine (ID50 20 and 18 microM, respectively) in the presence of 8-aminoguanosine without an increase in deoxyguanosine triphosphate levels. Cytotoxicity correlates instead with a three- to fivefold increase in guanosine triphosphate (GTP) levels after 24 h. Accumulation of GTP and growth inhibition also result from exposure to guanosine, but not to guanine at equimolar concentrations. B lymphoblasts which are deficient in the purine salvage enzyme hypoxanthine guanine phosphoribosyltransferase are completely resistant to 2'-deoxyguanosine or guanosine concentrations up to 800 microM and do not demonstrate an increase in GTP levels. Growth inhibition and GTP accumulation are prevented by hypoxanthine or adenine, but not by 2'-deoxycytidine.
    [Show full text]
  • We Have Previously Reported' the Isolation of Guanosine Diphosphate
    VOL. 48, 1962 BIOCHEMISTRY: HEATH AND ELBEIN 1209 9 Ramel, A., E. Stellwagen, and H. K. Schachman, Federation Proc., 20, 387 (1961). 10 Markus, G., A. L. Grossberg, and D. Pressman, Arch. Biochem. Biophys., 96, 63 (1962). "1 For preparation of anti-Xp antisera, see Nisonoff, A., and D. Pressman, J. Immunol., 80, 417 (1958) and idem., 83, 138 (1959). 12 For preparation of anti-Ap antisera, see Grossberg, A. L., and D. Pressman, J. Am. Chem. Soc., 82, 5478 (1960). 13 For preparation of anti-Rp antisera, see Pressman, D. and L. A. Sternberger, J. Immunol., 66, 609 (1951), and Grossberg, A. L., G. Radzimski, and D. Pressman, Biochemistry, 1, 391 (1962). 14 Smithies, O., Biochem. J., 71, 585 (1959). 15 Poulik, M. D., Biochim. et Biophysica Acta., 44, 390 (1960). 16 Edelman, G. M., and M. D. Poulik, J. Exp. Med., 113, 861 (1961). 17 Breinl, F., and F. Haurowitz, Z. Physiol. Chem., 192, 45 (1930). 18 Pauling, L., J. Am. Chem. Soc., 62, 2643 (1940). 19 Pressman, D., and 0. Roholt, these PROCEEDINGS, 47, 1606 (1961). THE ENZYMATIC SYNTHESIS OF GUANOSINE DIPHOSPHATE COLITOSE BY A MUTANT STRAIN OF ESCHERICHIA COLI* BY EDWARD C. HEATHt AND ALAN D. ELBEINT RACKHAM ARTHRITIS RESEARCH UNIT AND DEPARTMENT OF BACTERIOLOGY, THE UNIVERSITY OF MICHIGAN Communicated by J. L. Oncley, May 10, 1962 We have previously reported' the isolation of guanosine diphosphate colitose (GDP-colitose* GDP-3,6-dideoxy-L-galactose) from Escherichia coli 0111-B4; only 2.5 umoles of this sugar nucleotide were isolated from 1 kilogram of cells. Studies on the biosynthesis of colitose with extracts of this organism indicated that GDP-mannose was a precursor;2 however, the enzymatically formed colitose was isolated from a high-molecular weight substance and attempts to isolate the sus- pected intermediate, GDP-colitose, were unsuccessful.
    [Show full text]
  • Reversibility Ofthe Pyrophosphoryl Transfer from ATP to GTP By
    Proc. Nat. Acad. Sci. USA Vol. 71, No. 9, pp. 3470-3473, September 1974 Reversibility of the Pyrophosphoryl Transfer from ATP to GTP by Escherichia coli Stringent Factor (guanosine 5'-diphosphate-3'-diphosphate/guanosine 5'-triphosphate-3'-diphosphate/relaxed control/ribosomes) JOSE SY The Rockefeller University, New York, N.Y. 10021 Communicated by Fritz Lipmann, July 1, 1974 ABSTRACT The stringent factor-catalyzed, ribosome- was incubated for 60 min at 300 in a 1W0-1 mixture contain- dependent synthesis of guanosine polyplosphates is ing: 50 mM Tris OAc, pH 8.1; 4 mM dithiothreitol; 20 mM found to be reversible. The reverse reaction specifically requires 5'-AMP as the pyrophosphoryl acceptor, and Mg(OAc)2; 5 mM ATP; 10 ,ug of poly(A, U, G); 27 pgof tRNA; guanosine 5'-triphosphate-3'-diphospbate is preferentially 90',g of ethanol-washed ribosomes; and 2 p&g of fraction II utilized as the pyrophosphoryl donor. The primary prod- stringent factor. By minimizing GTPase activity with the ucts of the reaction are GTP and ANP. The reverse reaction use of high Mg++ concentration and ethanol-washed ribo- is strongly inhibited by the antibiotics thiostrepton and a ob- tetracycline, and b' A P and,1-y-pnethylene-adenosixie- somes with a minimal time of incubation, product is triphosphate, but not by ADP, GTP, and GIDP. The reverse tained that is more than 95% pppGpp. After incubation, 1 Al reaction occurs under conditions for nonribosomal syn- of 88% HCOOH was added and the resulting precipitate dis- thesis. The ove'rill reaction for stringent factor-catalyzed carded.
    [Show full text]
  • A Guide for People Living with Von Willebrand Disorder CONTENTS
    A guide for people living with von Willebrand disorder CONTENTS What is von Willebrand disorder (VWD)?................................... 3 Symptoms............................................................................................... 5 Types of VWD...................................................................................... 6 How do you get VWD?...................................................................... 7 VWD and blood clotting.................................................................... 11 Diagnosis................................................................................................. 13 Treatment............................................................................................... 15 Taking care of yourself or your child.............................................. 19 (Education, information, first aid/medical emergencies, medication to avoid) Living well with VWD......................................................................... 26 (Sport, travel, school, telling others, work) Special issues for women and girls.................................................. 33 Connecting with others..................................................................... 36 Can I live a normal life with von Willebrand disorder?............. 37 More information................................................................................. 38 2 WHAT IS VON WILLEBRAND DISORDER (VWD)? Von Willebrand disorder (VWD) is an inherited bleeding disorder. People with VWD have a problem with a protein
    [Show full text]
  • Fibrin Induces Release of Von Willebrand Factor from Endothelial Cells
    Fibrin induces release of von Willebrand factor from endothelial cells. J A Ribes, … , C W Francis, D D Wagner J Clin Invest. 1987;79(1):117-123. https://doi.org/10.1172/JCI112771. Research Article Addition of fibrinogen to human umbilical vein endothelial cells in culture resulted in release of von Willebrand factor (vWf) from Weibel-Palade bodies that was temporally related to formation of fibrin in the medium. Whereas no release occurred before gelation, the formation of fibrin was associated with disappearance of Weibel-Palade bodies and development of extracellular patches of immunofluorescence typical of vWf release. Release also occurred within 10 min of exposure to preformed fibrin but did not occur after exposure to washed red cells, clot liquor, or structurally different fibrin prepared with reptilase. Metabolically labeled vWf was immunopurified from the medium after release by fibrin and shown to consist of highly processed protein lacking pro-vWf subunits. The contribution of residual thrombin to release stimulated by fibrin was minimized by preparing fibrin clots with nonstimulatory concentrations of thrombin and by inhibiting residual thrombin with hirudin or heating. We conclude that fibrin formed at sites of vessel injury may function as a physiologic secretagogue for endothelial cells causing rapid release of stored vWf. Find the latest version: https://jci.me/112771/pdf Fibrin Induces Release of von Willebrand Factor from Endothelial Cells Julie A. Ribes, Charles W. Francis, and Denisa D. Wagner Hematology Unit, Department ofMedicine, University ofRochester School ofMedicine and Dentistry, Rochester, New York 14642 Abstract erogeneous and can be separated by sodium dodecyl sulfate (SDS) electrophoresis into a series of disulfide-bonded multimers Addition of fibrinogen to human umbilical vein endothelial cells with molecular masses from 500,000 to as high as 20,000,000 in culture resulted in release of von Willebrand factor (vWf) D (8).
    [Show full text]
  • Inosine in Biology and Disease
    G C A T T A C G G C A T genes Review Inosine in Biology and Disease Sundaramoorthy Srinivasan 1, Adrian Gabriel Torres 1 and Lluís Ribas de Pouplana 1,2,* 1 Institute for Research in Biomedicine, Barcelona Institute of Science and Technology, 08028 Barcelona, Catalonia, Spain; [email protected] (S.S.); [email protected] (A.G.T.) 2 Catalan Institution for Research and Advanced Studies, 08010 Barcelona, Catalonia, Spain * Correspondence: [email protected]; Tel.: +34-934034868; Fax: +34-934034870 Abstract: The nucleoside inosine plays an important role in purine biosynthesis, gene translation, and modulation of the fate of RNAs. The editing of adenosine to inosine is a widespread post- transcriptional modification in transfer RNAs (tRNAs) and messenger RNAs (mRNAs). At the wobble position of tRNA anticodons, inosine profoundly modifies codon recognition, while in mRNA, inosines can modify the sequence of the translated polypeptide or modulate the stability, localization, and splicing of transcripts. Inosine is also found in non-coding and exogenous RNAs, where it plays key structural and functional roles. In addition, molecular inosine is an important secondary metabolite in purine metabolism that also acts as a molecular messenger in cell signaling pathways. Here, we review the functional roles of inosine in biology and their connections to human health. Keywords: inosine; deamination; adenosine deaminase acting on RNAs; RNA modification; translation Citation: Srinivasan, S.; Torres, A.G.; Ribas de Pouplana, L. Inosine in 1. Introduction Biology and Disease. Genes 2021, 12, 600. https://doi.org/10.3390/ Inosine was one of the first nucleobase modifications discovered in nucleic acids, genes12040600 having been identified in 1965 as a component of the first sequenced transfer RNA (tRNA), tRNAAla [1].
    [Show full text]
  • Questions with Answers- Nucleotides & Nucleic Acids A. the Components
    Questions with Answers- Nucleotides & Nucleic Acids A. The components and structures of common nucleotides are compared. (Questions 1-5) 1._____ Which structural feature is shared by both uracil and thymine? a) Both contain two keto groups. b) Both contain one methyl group. c) Both contain a five-membered ring. d) Both contain three nitrogen atoms. 2._____ Which component is found in both adenosine and deoxycytidine? a) Both contain a pyranose. b) Both contain a 1,1’-N-glycosidic bond. c) Both contain a pyrimidine. d) Both contain a 3’-OH group. 3._____ Which property is shared by both GDP and AMP? a) Both contain the same charge at neutral pH. b) Both contain the same number of phosphate groups. c) Both contain the same purine. d) Both contain the same furanose. 4._____ Which characteristic is shared by purines and pyrimidines? a) Both contain two heterocyclic rings with aromatic character. b) Both can form multiple non-covalent hydrogen bonds. c) Both exist in planar configurations with a hemiacetal linkage. d) Both exist as neutral zwitterions under cellular conditions. 5._____ Which property is found in nucleosides and nucleotides? a) Both contain a nitrogenous base, a pentose, and at least one phosphate group. b) Both contain a covalent phosphodister bond that is broken in strong acid. c) Both contain an anomeric carbon atom that is part of a β-N-glycosidic bond. d) Both contain an aldose with hydroxyl groups that can tautomerize. ___________________________________________________________________________ B. The structures of nucleotides and their components are studied. (Questions 6-10) 6._____ Which characteristic is shared by both adenine and cytosine? a) Both contain one methyl group.
    [Show full text]
  • Central Nervous System Dysfunction and Erythrocyte Guanosine Triphosphate Depletion in Purine Nucleoside Phosphorylase Deficiency
    Arch Dis Child: first published as 10.1136/adc.62.4.385 on 1 April 1987. Downloaded from Archives of Disease in Childhood, 1987, 62, 385-391 Central nervous system dysfunction and erythrocyte guanosine triphosphate depletion in purine nucleoside phosphorylase deficiency H A SIMMONDS, L D FAIRBANKS, G S MORRIS, G MORGAN, A R WATSON, P TIMMS, AND B SINGH Purine Laboratory, Guy's Hospital, London, Department of Immunology, Institute of Child Health, London, Department of Paediatrics, City Hospital, Nottingham, Department of Paediatrics and Chemical Pathology, National Guard King Khalid Hospital, Jeddah, Saudi Arabia SUMMARY Developmental retardation was a prominent clinical feature in six infants from three kindreds deficient in the enzyme purine nucleoside phosphorylase (PNP) and was present before development of T cell immunodeficiency. Guanosine triphosphate (GTP) depletion was noted in the erythrocytes of all surviving homozygotes and was of equivalent magnitude to that found in the Lesch-Nyhan syndrome (complete hypoxanthine-guanine phosphoribosyltransferase (HGPRT) deficiency). The similarity between the neurological complications in both disorders that the two major clinical consequences of complete PNP deficiency have differing indicates copyright. aetiologies: (1) neurological effects resulting from deficiency of the PNP enzyme products, which are the substrates for HGPRT, leading to functional deficiency of this enzyme. (2) immunodeficiency caused by accumulation of the PNP enzyme substrates, one of which, deoxyguanosine, is toxic to T cells. These studies show the need to consider PNP deficiency (suggested by the finding of hypouricaemia) in patients with neurological dysfunction, as well as in T cell immunodeficiency. http://adc.bmj.com/ They suggest an important role for GTP in normal central nervous system function.
    [Show full text]
  • Recommended Abbreviations for Von Willebrand Factor and Its Activities
    RECOMMENDED ABBREVIATIONS FOR VON WILLEBRAND FACTOR AND ITS ACTIVITIES On behalf of the von Willebrand Factor Subcommittee of the Scientific and Standardization Committee of the International Society on Thrombosis and Haemostasis Claudine Mazurier and Francesco Rodeghiero Previous official recommendations concerning the abbreviations for von Willebrand Factor (and factor VIII) are 15 years old and were limited to "vWf" for the protein and "vWf:Ag" for the antigen (1). Nowadays, the various properties of von Willebrand Factor (ristocetin cofactor activity and capacity to bind to either collagen or factor VIII) are better defined and may warrant specific abbreviations. Furthermore, the protein synthesized by the von Willebrand factor gene is now abbreviated as pre-pro-VWF (2). Accordingly, the subcommittee on von Willebrand Factor of the Scientific and Standardization Committee of the ISTH has recommended new abbreviations for von Willebrand Factor antigen and its various activities, currently measured by immunologic or functional assays (Table I). It is hoped that a uniform application of the abbreviations recommended here will improve communication among scientists and clinicians, especially for those who are less familiar with the field. Table 1: Recommended abbreviations for von Willebrand Factor and its activities Attribute Recommended abbreviations Mature protein VWF Antigen VWF:Ag Ristocetin cofactor activity VWF:RCo Collagen binding capacity VWF:CB Factor VIII binding capacity VWF:FVIIIB REFERENCES: 1 – Marder VJ, Mannucci PM, Firkin BG, Hoyer LW and Meyer D. Standard nomenclature for factor VIII and von Willebrand factor: a recommendation by the International Committee on Thrombosis and Haemostasis. Thromb. Haemost. 1985, 54, 871-2. 2 – Goodeve AC, Eikenboom JCJ, Ginsburg D, Hilbert L, Mazurier C, Peake IR, Sadler JE, Rodeghiero F on behalf of the ISTH SSC subcommittee on von Willebrand Factor.
    [Show full text]
  • Biomechanical Thrombosis: the Dark Side of Force and Dawn of Mechano-­ Medicine
    Open access Review Stroke Vasc Neurol: first published as 10.1136/svn-2019-000302 on 15 December 2019. Downloaded from Biomechanical thrombosis: the dark side of force and dawn of mechano- medicine Yunfeng Chen ,1 Lining Arnold Ju 2 To cite: Chen Y, Ju LA. ABSTRACT P2Y12 receptor antagonists (clopidogrel, pras- Biomechanical thrombosis: the Arterial thrombosis is in part contributed by excessive ugrel, ticagrelor), inhibitors of thromboxane dark side of force and dawn platelet aggregation, which can lead to blood clotting and A2 (TxA2) generation (aspirin, triflusal) or of mechano- medicine. Stroke subsequent heart attack and stroke. Platelets are sensitive & Vascular Neurology 2019;0. protease- activated receptor 1 (PAR1) antag- to the haemodynamic environment. Rapid haemodynamcis 1 doi:10.1136/svn-2019-000302 onists (vorapaxar). Increasing the dose of and disturbed blood flow, which occur in vessels with these agents, especially aspirin and clopi- growing thrombi and atherosclerotic plaques or is caused YC and LAJ contributed equally. dogrel, has been employed to dampen the by medical device implantation and intervention, promotes Received 12 November 2019 platelet thrombotic functions. However, this platelet aggregation and thrombus formation. In such 4 Accepted 14 November 2019 situations, conventional antiplatelet drugs often have also increases the risk of excessive bleeding. suboptimal efficacy and a serious side effect of excessive It has long been recognized that arterial bleeding. Investigating the mechanisms of platelet thrombosis
    [Show full text]
  • Guanosine Pentaphosphate Phosphohydrolase of Escherichia Coli Is a Long-Chain Exopolyphosphatase J
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 7029-7033, August 1993 Biochemistry Guanosine pentaphosphate phosphohydrolase of Escherichia coli is a long-chain exopolyphosphatase J. D. KEASLING*, LEROY BERTSCHt, AND ARTHUR KORNBERGtI *Department of Chemical Engineering, University of California, Berkeley, CA 94720-9989; and tDepartment of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305-5307 Contributed by Arthur Kornberg, April 14, 1993 ABSTRACT An exopolyphosphatase [exopoly(P)ase; EC MATERIALS AND METHODS 3.6.1.11] activity has recently been purified to homogeneity from a mutant strain of Escherichia coi which lacks the Reagents and Proteins. Sources were as follows: ATP, principal exopoly(P)ase. The second exopoly(P)ase has now ADP, nonradiolabeled nucleotides, poly(P)s, bovine serum been identified as guanosine pentaphosphate phosphohydro- albumin, and ovalbumin from Sigma; [y-32P]ATP at 6000 lase (GPP; EC 3.6.1.40) by three lines of evidence: (i) the Ci/mmol (1 Ci = 37 GBq) and [y-32P]GTP at 6000 Ci/mmol sequences of five btptic digestion fragments of the purified from ICN; Q-Sepharose fast flow, catalase, aldolase, Super- protein are found in the translated gppA gene, (u) the size ofthe ose-12 fast protein liquid chromatography (FPLC) column, protein (100 kDa) agrees with published values for GPP, and and Chromatofocusing column and reagents from Pharmacia (iu) the ratio of exopoly(P)ase activity to GPP activity remains LKB; DEAE-Fractogel, Pll phosphocellulose, and DE52 constant throughout a 300-fold purification in the last steps of DEAE-cellulose from Whatman; protein standards for SDS/ the procedure.
    [Show full text]