Deciphering S-Rnase Allele Patterns in Cultivated and Wild Accessions of Italian Pear Germplasm
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Genome-Wide Characterization of Simple Sequence Repeats in Pyrus
Xue et al. BMC Genomics (2018) 19:473 https://doi.org/10.1186/s12864-018-4822-7 RESEARCH ARTICLE Open Access Genome-wide characterization of simple sequence repeats in Pyrus bretschneideri and their application in an analysis of genetic diversity in pear Huabai Xue1,2†, Pujuan Zhang1†, Ting Shi1, Jian Yang2, Long Wang2, Suke Wang2, Yanli Su2, Huirong Zhang2, Yushan Qiao1* and Xiugen Li2* Abstract Background: Pear (Pyrus spp.) is an economically important temperate fruit tree worldwide. In the past decade, significant progress has been made in pear molecular genetics based on DNA research, but the number of molecular markers is still quite limited, which hardly satisfies the increasing needs of geneticists and breeders. Results: In this study, a total of 156,396 simple sequence repeat (SSR) loci were identified from a genome sequence of Pyrus bretschneideri ‘Dangshansuli’. A total of 101,694 pairs of SSR primers were designed from the SSR loci, and 80,415 of the SSR loci were successfully located on 17 linkage groups (LGs). A total of 534 primer pairs were synthesized and preliminarily screened in four pear cultivars, and of these, 332 primer pairs were selected as clear, stable, and polymorphic SSR markers. Eighteen polymorphic SSR markers were randomly selected from the 332 polymorphic SSR markers in order to perform a further analysis of the genetic diversity among 44 pear cultivars. The 14 European pears and their hybrid materials were clustered into one group (European pear group); 29 Asian pear cultivars were clustered into one group (Asian pear group); and the Zangli pear cultivar ‘Deqinli’ from Yunnan Province, China, was grouped in an independent group, which suggested that the cultivar ‘Deqinli’ is a distinct and valuable germplasm resource. -
Natural Fermentation of Pyrus Communis (Pear) Mesocarp by Associated Consortium Fungal Species
obiolog Adedeji and Audu, J Microbiol Pathol 2018, 2:1 icr y & M P f a o t l h a o n l o r g u y o J Journal of Microbiology and Pathology Research Article Article OpenOpen Access Access Natural Fermentation of Pyrus communis (Pear) Mesocarp by Associated Consortium Fungal Species Oluwatosin Adewusi Adedeji* and Temitope Mulikat Audu Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ife, Nigeria Abstract This study was conducted to evaluate the effect of associated consortium fungal species on the natural fermentation of the mesocarp of Pyrus communis (Pear). The combined role played by the fungi (moulds and yeasts) involve in the natural fermentation of the Pear mesocarp were also investigated. Fresh and ripe pears were washed and surface sterilized with ethanol. The mesocarp was then scraped into a bowl and covered with a net to allow the action of aerobic fermentation for 50 days. Fungi were isolated from the samples at interval of 5 days. The morphological, microscopic and biochemical characteristics as well as the fungal count were also carried out according to standard methods. The physicochemical parameters of the pear’s mesocarp such as pH, total titrable acidity (TTA), moisture contents and total reducing sugar were also determined at every 5 days according to standard methods. The results showed that there were eight strains of mould namely: Aspergillus niger, Aspergillus flavus, Aspergillus oryzae, Aspergillus fumigatus, Mucor mucedo, Penicillum frequentas, Penicillum chrysogemun and Fusarium solani; and three strains of yeasts namely Saccharomyces cerivisae, Schizoaccharomyces pombe and Saccharomyces ludwigii were identified to be involved in the fermentation process for the fifty days. -
Effect of Maturity on the Phenolic Compositions of Pear Juice and Cell Wall Effects on Procyanidins Transfer
Effect of maturity on the phenolic compositions ofpear juice and cell wall effects on procyanidins transfer Marwa Brahem, Severin Eder, Catherine Renard, Michele Loonis, Carine Le Bourvellec To cite this version: Marwa Brahem, Severin Eder, Catherine Renard, Michele Loonis, Carine Le Bourvellec. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT - Food Science and Technology, Elsevier, 2017, 85, pp.380-384. 10.1016/j.lwt.2016.09.009. hal-02619109 HAL Id: hal-02619109 https://hal.inrae.fr/hal-02619109 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version définitive du manuscrit publiée dans / Final version of the manuscript published in : LWT – Food Science and Technology (2016), DOI: 10.1016/j.lwt.2016.09.009 Journal homepage : http://www.elsevier.com/locate/lwt ipt cr nus a m Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer / Author * r Marwa Brahem , Severin Eder, Catherine M.G.C. Renard, Michele Loonis, u e Carine Le Bourvellec ut UMR408 SQPOV (Securite et Qualite des Produits d'Origine Vegetale), INRA, Avignon University, F-84000 Avignon, France ’a it d cr article info abstract nus a Article history: Perry pear polyphenols were characterized in fruit, juice and pomace for two cultivars and at two M Received 28 June 2016 maturity stage. -
Noble Hardwoods Network
EUROPEAN FOREST GENETIC RESOURCES PROGRAMME (EUFORGEN) Noble Hardwoods Network Report of the second meeting 22-25 March 1997 Lourizan, Spain J. Turok, E. Collin, B. Demesure, G. Eriksson, J. Kleinschmit, M. Rusanen and R. Stephan, compilers ii NOBLE HARDWOODS NETWORK: SECOND MEETING The International Plant Genetic Resources Institute (IPGRl) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRl's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRl's headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRl is conferred under an Establishment Agreement which, by January 1998, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Cote d'Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. Financial support for the Research Agenda of -
Pyrus Communis (L.)
CPVO-TP/015/1 Final Date: 27/03/2003 EUROPEAN UNION COMMUNITY PLANT VARIETY OFFICE PROTOCOL FOR DISTINCTNESS, UNIFORMITY AND STABILITY TESTS Pyrus communis (L.) PEAR UPOV Species Code: PYRUS_COM Adopted on 27/03/2003 CPVO-TP/015/1 Final Date: 27/03/2003 I SUBJECT OF THE PROTOCOL The protocol describes the technical procedures to be followed in order to meet the Council Regulation 2100/94 on Community Plant Variety Rights. The technical procedures have been agreed by the Administrative Council and are based on general UPOV Document TG/1/3 and UPOV Guideline TG/15/3 dated 04/05/2000 for the conduct of tests for Distinctness, Uniformity and Stability. This protocol applies to fruit varieties of Pyrus communis L. II SUBMISSION OF PLANT MATERIAL 1. The Community Plant Variety Office (CPVO) is responsible for informing the applicant of • the closing date for the receipt of plant material; • the minimum amount and quality of plant material required; • the examination office to which material is to be sent. A sub-sample of the material submitted for test will be held in the variety collection as the definitive sample of the candidate variety. The applicant is responsible for ensuring compliance with any customs and plant health requirements. 2. Final dates for receipt of documentation and material by the Examination Office The final dates for receipt of requests, technical questionnaires and the final date or submission period for plant material will be decided by the CPVO and each Examination Office chosen. The Examination Office is responsible for immediately acknowledging the receipt of requests for testing, and technical questionnaires. -
Origin, Domestication, and Dispersing of Pear (Pyrus Spp.)
Hindawi Publishing Corporation Advances in Agriculture Volume 2014, Article ID 541097, 8 pages http://dx.doi.org/10.1155/2014/541097 Review Article Origin, Domestication, and Dispersing of Pear (Pyrus spp.) G. J. Silva, Tatiane Medeiros Souza, Rosa Lía Barbieri, and Antonio Costa de Oliveira Plant Genomics and Breeding Center, Federal University of Pelotas, 96001-970 Pelotas, RS, Brazil Correspondence should be addressed to Antonio Costa de Oliveira; [email protected] Received 11 March 2014; Accepted 29 April 2014; Published 9 June 2014 Academic Editor: Innocenzo Muzzalupo Copyright © 2014 G. J. Silva et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. The pear (Pyrus communis L.) is a typical fruit of temperate regions, having its origin and domestication at two different points, China and Asia Minor until the Middle East. It is the fifth most widely produced fruit in the world, being produced mainly in China, Europe, and the United States. Pear belongs to rosaceous family, being a close “cousin” of the apple, but with some particularities that make this fruit special with a delicate flavor. Thus, it deserves a special attention and a meticulous review of all the history involved, and the recent research devoted to it, because of the economic and cultural importance of this fruit in a range of countries and cultures. Therefore, the purpose of this literature review is to approach the history of the origin, domestication, and dispersal of pears, as well as reporting their botany, their current scenario in the world, and their breeding and conservation. -
The Rise and Fall of the Ornamental Callery Pear Tree
The Rise and Fall of the Ornamental Callery Pear Tree Theresa M. Culley ne of the most notable heralds of spring in the eastern United States Ois the profuse blooming of orna- mental pear trees in front yards and along ARCHIVES OF THE ARNOLD ARBORETUM city streets. The Callery pear (Pyrus calleryana), and particularly its many cultivars such as ‘Bradford’, ‘Cleveland Select’, and ‘Aristocrat’, has become one of the most popular ornamental trees in North America. However, its commercial success has now become overshadowed by its tendency to spread along roadways and into natural areas through reseeding. Today this tree is considered invasive in many states, in stark contrast to how it grows in its native range in Asia. How did this tree become the scourge of land man- agers across North America? What has led to its fall from grace? To understand this fascinating story, we need to start at the beginning. Seeds From China Plant collector Frank N. Meyer in China in 1908. Toward the end of the nineteenth century, farm- stamina to tolerate the physical discomforts ing began to replace ranching in the western and social isolation of travelling for months in United States and there was a growing demand distant lands. He found Frank N. Meyer (1875– for improved crops that could thrive there. 1918), a Dutch immigrant and former gardener The United States Department of Agriculture who had a deep fascination with plants and saw (USDA) began to focus on importing new plants nothing unusual about walking hundreds of for testing and, in 1898, created the Foreign miles on a botanical foray. -
Hybridations Inter-Spécifiques Chez Le Pommier Et Co-Évolution Hôte-Pathogène Alice Feurtey
Hybridations inter-spécifiques chez le pommier et co-évolution hôte-pathogène Alice Feurtey To cite this version: Alice Feurtey. Hybridations inter-spécifiques chez le pommier et co-évolution hôte-pathogène. Géné- tique des populations [q-bio.PE]. Université Paris Saclay (COmUE), 2016. Français. NNT : 2016SACLS446. tel-01941395 HAL Id: tel-01941395 https://tel.archives-ouvertes.fr/tel-01941395 Submitted on 1 Dec 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Introduction générale de la section 1 NNT : 2016SACLS446 THÈSE DE DOCTORAT DE L’UNIVERSITÉ PARIS-SACLAY, préparée à l’Université Paris-Sud ÉCOLE DOCTORALE N° 567 Sciences du Végétal : du Gène à l’Ecosystème Biologie Par Madame Alice Feurtey Hybridations inter -spécifiques chez le pommier et co-évolution hôte-pathogène Thèse présentée et soutenue à Orsay, le 29 novembre 2016 : Composition du Jury : M. Dominique de Vienne Professeur, Université Paris-Sud Président du jury Mme Véronique Decroocq DR, INRA Rapporteur M. Rémy Petit DR, INRA Rapporteur M. Pascal Frey DR, INRA Examinateur Mme Tatiana Giraud DR, CNRS Directrice de thèse - 1 - Remerciements : - 2 - Introduction générale de la section 1 Seen in the light of evolution, biology is, perhaps, intellectually the most satisfying and inspiring science. -
Characterization of Aromatic Volatile Constituents in 11 Asian Pear Cultivars Belonging to Different Species
African Journal of Agricultural Research Vol. 7(34), pp. 4761-4770, 4 September, 2012 Available online at http://www.academicjournals.org/AJAR DOI: 10.5897/AJAR12.563 ISSN 1991-637X ©2012 Academic Journals Full Length Research Paper Characterization of aromatic volatile constituents in 11 Asian pear cultivars belonging to different species Guopeng Li, Huijuan Jia, Ruiyuan Wu, Sayed Hussain and Yuanwen Teng* Department of Horticulture, State Agricultural Ministry Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Zhejiang University, Hangzhou 310058, Zhejiang Province, People’s Republic of China. Accepted 25 June, 2012 Aroma is an important fruit sensory attributes that is influenced by the volatile compounds present in the fruit, and it determines whether a fruit is acceptable to consumers. The volatile compounds in 11 pear cultivars from different species were investigated by headspace solid phase microextraction and gas chromatography-mass spectrometry. In total, 70 volatile compounds, including three alcohols, six aldehydes, fifty-two esters, three acids, three terpenes and three ketones were identified and quantified. Ester was the dominant chemical class of which a total of 52 compounds were detected. Hexanal, hexyl acetate, ethyl hexanoate, ethyl 2-methylbutanoate and ethyl butanoate were the major volatile compounds. Pyrus ussuriensis Maxim showed a higher concentration of volatiles, and higher ester content than in the other Asian pear species studied. Cultivars were clearly grouped into four clusters based on the concentration and number of different volatile compounds present in each cultivar. The clusters of different cultivars could be discriminated from each others using the first two principal components. The volatile profiles of the pears were qualitatively and quantitatively influenced by the cultivar. -
Silviculture and the Conservation of Genetic Resources for Sustainable Forest Management
Silviculture and the Conservation of Genetic Resources for Sustainable Forest Management Proceedings of the Symposium of the North American Forest Commission, Forest Genetic Resources and Silviculture Working Groups, and the International Union of Forest Research Organizations (IUFRO) Quebec City, Canada, September 21, 2003 J. Beaulieu (éditeur/editor) Ressources naturelles Canada – Natural Resources Canada Service canadien des forêts – Canadian Forest Service Centre de foresterie des Laurentides – Laurentian Forestry Centre Rapport d’information – Information Report LAU-X-128 DONNÉES DE CATALOGAGE AVANT PUBLICATION (CANADA) / NATIONAL LIBRARY OF CANADA CATALOGUING IN PUBLICATION DATA Photos de la couverture / Cover photos (de gauche à Symposium of the North American Forest Commission, Forest droite / from left to right): Genetic Resources and Silviculture Working Groups, and the 1. Séquoias géants (Sequoiadendron giganteum) du parc International Union of Forest Research Organizations (2003 : de Calaveras, Californie, États-Unis / Giant sequoias Québec, Québec) (Sequoiadendron giganteum) in the Calaveras Big Trees State Park, California, USA (J. Beaulieu) Silviculture and the conservation of genetic resources for sustainable 2. Plantation de chênes à gros fruits (Quercus forest management macrocarpa) à Saint-Nicolas, Québec, Canada / Bur oak (Quercus macrocarpa) plantation at Saint-Nicolas, (Information report; LAU-X-128) Quebec, Canada (J. Beaulieu) “Proceedings of the Symposium of the North American Forest 3. Peuplement naturel de pin blanc (Pinus strobus) au lac Commission, Forest Genetic Resources and Silviculture Working Susy, Ontario, Canada / Eastern white pine (Pinus Groups, and the International Union of Forest Research strobus) natural stand at Susy Lake, Ontario, Canada Organizations (IUFRO), Quebec City, Canada, September 21, 2003” (J. Beaulieu) ISBN 0-662-35937-2 4. -
Rosaceae): a New Record and a New Synonym, with Data on Seed Morphology
Plant & Fungal Research (2019) 2(1): 2-8 © The Institute of Botany, ANAS, Baku, AZ1004, Azerbaijan http://dx.doi.org/10.29228/plantfungalres.11 June 2019 Taxonomic and biogeographic notes on the genus Pyrus L. (Rosaceae): a new record and a new synonym, with data on seed morphology Zübeyde Uğurlu Aydın¹ Iran, Central Asia and Afghanistan, while oriental pears Ali A. Dönmez are widespread in East Asia. Pyrus pashia is accepted Department of Biology, Faculty of Science, Hacettepe University, as a link between Occidental and Oriental pear species Beytepe, Ankara, Turkey. [Rubtsov, 1944; Zheng et al., 2014] because it is native to China, Bhutan, India, Kashmir, Laos, Myanmar, Ne- Abstract: Species of the genus Pyrus distributed in Eu- pal, the western part of Pakistan, Thailand, Vietnam, Af- rope include P. communis L., P. pyraster, P. nivalis Jacq., ghanistan [Gu & Spongberg, 2003], and have been also and P. cordata Desv. subsp. cordata. Pyrus pyraster is recently recorded from northeastern Iran [Zamani et al., occasionally regarded as a variety or subspecies of P. 2009]. It is placed in Pyrus sect. Pashia, with morpho- communis. However, a molecular study has recently logically similar P. cordata Desv. subsp. boissieriana demonstrated that P. communis is more closely related (Buhse) Uğurlu & Dönmez. These taxa also share simi- to P. caucasica and P. nivalis, rather than to P. pyraster. lar distribution patterns, and their taxonomic delimita- In this study, Pyrus pyraster is reported from Turkey for tions remain unclear [Zamani et al., 2009]. In order to the first time. Pyrus vallis-demonis, a species recently close this gap, a detailed description of P. -
Tg Pyrus Proj 1.Pdf
E TG/PYRUS(proj.1) ORIGINAL: English DATE: 2015-07-24 INTERNATIONAL UNION FOR THE PROTECTION OF NEW VARIETIES OF PLANTS Geneva DRAFT * Pear, Japanese Pear UPOV Code: PYRUS_BRE; PYRUS_COM; PYRUS_LEC; PYRUS_PYR; PYRUS_PYR_CUL; PYRUS_USS Pyrus communis L.; Pyrus pyrifolia (Burm. f.) Nakai; Pyrus pyrifolia (Burm. f.) Nakai var. culta (Mak.) Nakai; Pyrus ussuriensis Maxim.; Pyrus xbretschneideri Rehder; Pyrus ×lecontei Rehder GUIDELINES FOR THE CONDUCT OF TESTS FOR DISTINCTNESS, UNIFORMITY AND STABILITY prepared by (an) expert(s) from New Zealand to be considered by the Technical Working Party for Fruit Crops at its forty-sixth session to be held in Mpumalanga, South Africa from 2015-08-24 to 2015-08-28 Alternative Names:* Botanical name English French German Spanish Pyrus communis L., European Pear, Pear Poirier Birne Peral Pyrus communis L. var sativa DC. Pyrus pyrifolia Asian pear, Chinese poirier japonais China-Birne, Nashi- pera (Burm. f.) Nakai pear, Chinese sand Birne, Sandbirnbaum pear, Japanese pear, Nashi, Nashi pear, Oriental pear, Sand pear * These names were correct at the time of the introduction of these Test Guidelines but may be revised or updated. [Readers are advised to consult the UPOV Code, which can be found on the UPOV Website (www.upov.int), for the latest information.] TG/PYRUS(proj.1) Pear, Japanese Pear, 2015-07-10 - 2 - Alternative Names:* Botanical name English French German Spanish Pyrus pyrifolia poirier japonais Chinesische Birne, peral japonés (Burm. f.) Nakai var. Nashi, Sandbirne culta (Mak.) Nakai, Chinese