Cancer Imaging with Radiolabeled Antibodies
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse
Welcome to More Choice CD Marker Handbook For more information, please visit: Human bdbiosciences.com/eu/go/humancdmarkers Mouse bdbiosciences.com/eu/go/mousecdmarkers Human and Mouse CD Marker Handbook Human and Mouse CD Marker Key Markers - Human Key Markers - Mouse CD3 CD3 CD (cluster of differentiation) molecules are cell surface markers T Cell CD4 CD4 useful for the identification and characterization of leukocytes. The CD CD8 CD8 nomenclature was developed and is maintained through the HLDA (Human Leukocyte Differentiation Antigens) workshop started in 1982. CD45R/B220 CD19 CD19 The goal is to provide standardization of monoclonal antibodies to B Cell CD20 CD22 (B cell activation marker) human antigens across laboratories. To characterize or “workshop” the antibodies, multiple laboratories carry out blind analyses of antibodies. These results independently validate antibody specificity. CD11c CD11c Dendritic Cell CD123 CD123 While the CD nomenclature has been developed for use with human antigens, it is applied to corresponding mouse antigens as well as antigens from other species. However, the mouse and other species NK Cell CD56 CD335 (NKp46) antibodies are not tested by HLDA. Human CD markers were reviewed by the HLDA. New CD markers Stem Cell/ CD34 CD34 were established at the HLDA9 meeting held in Barcelona in 2010. For Precursor hematopoetic stem cell only hematopoetic stem cell only additional information and CD markers please visit www.hcdm.org. Macrophage/ CD14 CD11b/ Mac-1 Monocyte CD33 Ly-71 (F4/80) CD66b Granulocyte CD66b Gr-1/Ly6G Ly6C CD41 CD41 CD61 (Integrin b3) CD61 Platelet CD9 CD62 CD62P (activated platelets) CD235a CD235a Erythrocyte Ter-119 CD146 MECA-32 CD106 CD146 Endothelial Cell CD31 CD62E (activated endothelial cells) Epithelial Cell CD236 CD326 (EPCAM1) For Research Use Only. -
A CD22-Shp1 Phosphatase Axis Controls Integrin Β7 Display and B Cell Function in Mucosal Immunity
UCSF UC San Francisco Previously Published Works Title A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity. Permalink https://escholarship.org/uc/item/27j4g9rr Journal Nature immunology, 22(3) ISSN 1529-2908 Authors Ballet, Romain Brennan, Martin Brandl, Carolin et al. Publication Date 2021-03-01 DOI 10.1038/s41590-021-00862-z Peer reviewed eScholarship.org Powered by the California Digital Library University of California Europe PMC Funders Group Author Manuscript Nat Immunol. Author manuscript; available in PMC 2021 August 15. Published in final edited form as: Nat Immunol. 2021 March 01; 22(3): 381–390. doi:10.1038/s41590-021-00862-z. Europe PMC Funders Author Manuscripts A CD22-Shp1 phosphatase axis controls integrin β7 display and B cell function in mucosal immunity Romain Ballet1,2,#, Martin Brennan1,2,10, Carolin Brandl3,10, Ningguo Feng1,4, Jeremy Berri1,2, Julian Cheng1,2, Borja Ocón1,2, Amin Alborzian Deh Sheikh5, Alex Marki6, Yuhan Bi1,2, Clare L. Abram7, Clifford A. Lowell7, Takeshi Tsubata5, Harry B. Greenberg1,4, Matthew S. Macauley8,9, Klaus Ley6, Lars Nitschke3, Eugene C. Butcher1,2,# 1The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System and The Palo Alto Veterans Institute for Research, Palo Alto, CA, United States 2Laboratory of Immunology and Vascular Biology, Department of Pathology, School of Medicine, Stanford University, Stanford, CA, United States 3Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, -
CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy
Published OnlineFirst September 17, 2012; DOI: 10.1158/0008-5472.CAN-12-0173 Cancer Therapeutics, Targets, and Chemical Biology Research CD22 Antigen Is Broadly Expressed on Lung Cancer Cells and Is a Target for Antibody-Based Therapy Joseph M. Tuscano1,2, Jason Kato1, David Pearson3, Chengyi Xiong1, Laura Newell4, Yunpeng Ma1, David R. Gandara1, and Robert T. O'Donnell1,2 Abstract Most patients with lung cancer still die from their disease, necessitating additional options to improve treatment. Here, we provide evidence for targeting CD22, a cell adhesion protein known to influence B-cell survival that we found is also widely expressed in lung cancer cells. In characterizing the antitumor activity of an established anti-CD22 monoclonal antibody (mAb), HB22.7, we showed CD22 expression by multiple approaches in various lung cancer subtypes, including 7 of 8 cell lines and a panel of primary patient specimens. HB22.7 displayed in vitro and in vivo cytotoxicity against CD22-positive human lung cancer cells and tumor xenografts. In a model of metastatic lung cancer, HB22.7 inhibited the development of pulmonary metastasisandextendedoverallsurvival.Thefinding that CD22 is expressed on lung cancer cells is significant in revealing a heretofore unknown mechanism of tumorigenesis and metastasis. Our work suggests that anti- CD22 mAbs may be useful for targeted therapy of lung cancer, a malignancy that has few tumor-specific targets. Cancer Res; 72(21); 5556–65. Ó2012 AACR. Introduction lymphoma (NHL), HB22.7, effectively binds lung cancer cells fi in vitro in vivo In the United States, lung cancer is the most common and mediates speci c and killing. -
Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. -
Immune Regulation by CD52-Expressing CD4 T Cells
Cellular & Molecular Immunology (2013) 10, 379–382 ß 2013 CSI and USTC. All rights reserved 1672-7681/13 $32.00 www.nature.com/cmi RESEARCH HIGHLIGHT Immune regulation by CD52-expressing CD4 T cells Ban-Hock Toh1, Tin Kyaw1,2, Peter Tipping1 and Alex Bobik2 T-cell regulation by CD52-expressing CD4 T cells appears to operate by two different and possibly synergistic mechanisms. The first is by its release from the cell surface of CD4 T cells that express high levels of CD52 that then binds to the inhibitory sialic acid-binding immunoglobulin-like lectins-10 (Siglec-10) receptor to attenuate effector T-cell activation by impairing phosphorylation of T-cell receptor associated lck and zap-70. The second mechanism appears to be by crosslinkage of the CD52 molecules by an as yet unidentified endogenous ligand that is mimicked by a bivalent anti-CD52 antibody that results in their expansion. Cellular & Molecular Immunology (2013) 10, 379–382; doi:10.1038/cmi.2013.35; published online 12 August 2013 he immune system is designed to appears in the affirmative, and includes suppression was lost by cleavage of N- T protect its host from invading players such as IL-10-secreting Tr1 and glycans from CD52-Fc by peptide N- pathogens and yet remain non-reactive TGF-b-secreting Th3. cells. Absence of glycosidase or by removal of sialic acid to self. Immunological homeostasis is surface markers limited the usefulness residues by neuraminidase. Suppression maintained by purging self-reactive lym- of these other regulators. However, the was also blocked by antibody to the phocytes by clonal deletion coupled with recent report that CD49b and lympho- extracellular domain of Siglec-10 and a regulatory population of lymphocytes cyte activation gene-3 are highly and sta- by soluble Siglec-10-Fc. -
USAN Naming Guidelines for Monoclonal Antibodies |
Monoclonal Antibodies In October 2008, the International Nonproprietary Name (INN) Working Group Meeting on Nomenclature for Monoclonal Antibodies (mAb) met to review and streamline the monoclonal antibody nomenclature scheme. Based on the group's recommendations and further discussions, the INN Experts published changes to the monoclonal antibody nomenclature scheme. In 2011, the INN Experts published an updated "International Nonproprietary Names (INN) for Biological and Biotechnological Substances—A Review" (PDF) with revisions to the monoclonal antibody nomenclature scheme language. The USAN Council has modified its own scheme to facilitate international harmonization. This page outlines the updated scheme and supersedes previous schemes. It also explains policies regarding post-translational modifications and the use of 2-word names. The council has no plans to retroactively change names already coined. They believe that changing names of monoclonal antibodies would confuse physicians, other health care professionals and patients. Manufacturers should be aware that nomenclature practices are continually evolving. Consequently, further updates may occur any time the council believes changes are necessary. Changes to the monoclonal antibody nomenclature scheme, however, should be carefully considered and implemented only when necessary. Elements of a Name The suffix "-mab" is used for monoclonal antibodies, antibody fragments and radiolabeled antibodies. For polyclonal mixtures of antibodies, "-pab" is used. The -pab suffix applies to polyclonal pools of recombinant monoclonal antibodies, as opposed to polyclonal antibody preparations isolated from blood. It differentiates polyclonal antibodies from individual monoclonal antibodies named with -mab. Sequence of Stems and Infixes The order for combining the key elements of a monoclonal antibody name is as follows: 1. -
Monoclonal Antibody Playbook
Federal Response to COVID-19: Monoclonal Antibody Clinical Implementation Guide Outpatient administration guide for healthcare providers 2 SEPTEMBER 2021 1 Introduction to COVID-19 Monoclonal Antibody Therapy 2 Overview of Emergency Use Authorizations 3 Site and Patient Logistics Site preparation Patient pathways to monoclonal administration 4 Team Roles and Responsibilities Leadership Administrative Clinical Table of 5 Monoclonal Antibody Indications and Administration Indications Contents Preparation Administration Response to adverse events 6 Supplies and Resources Infrastructure Administrative Patient Intake Administration 7 Examples: Sites of Administration and Staffing Patterns 8 Additional Resources 1 1. Introduction to Monoclonal Therapy 2 As of 08/13/21 Summary of COVID-19 Therapeutics 1 • No Illness . Health, no infections • Exposed Asymptomatic Infected . Scope of this Implementation Guide . Not hospitalized, no limitations . Monoclonal Antibodies for post-exposure prophylaxis (Casirivimab + Imdevimab (RGN)) – EUA Issued. • Early Symptomatic . Scope of this Implementation Guide . Not hospitalized, with limitations . Monoclonal Antibodies for treatment (EUA issued): Bamlanivimab + Etesevimab1 (Lilly) Casirivimab + Imdevimab (RGN) Sotrovimab (GSK/Vir) • Hospital Adminission. Treated with Remdesivir (FDA Approved) or Tocilizumab (EUA Issued) . Hospitalized, no acute medical problems . Hospitalized, not on oxygen . Hospitlaized, on oxygen • ICU Admission . Hospitalized, high flow oxygen, non-invasive ventilation -
REGENERON PHARMACEUTICALS, INC. (Exact Name of Registrant As Specified in Charter)
UNITED STATES SECURITIES AND EXCHANGE COMMISSION Washington, DC 20549 FORM 8-K CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934 Date of Report (Date of earliest event reported): February 9, 2017 (February 9, 2017) REGENERON PHARMACEUTICALS, INC. (Exact Name of Registrant as Specified in Charter) New York 000-19034 13-3444607 (State or other jurisdiction (Commission (IRS Employer of Incorporation) File No.) Identification No.) 777 Old Saw Mill River Road, Tarrytown, New York 10591-6707 (Address of principal executive offices, including zip code) (914) 847-7000 (Registrant's telephone number, including area code) Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions: ☐ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425) ☐ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12) ☐ Pre-commencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b)) ☐ Pre-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c)) Item 2.02 Results of Operations and Financial Condition. On February 9, 2017, Regeneron Pharmaceuticals, Inc. issued a press release announcing its financial and operating results for the quarter and year ended December 31, 2016. A copy of the press release is being furnished to the Securities and Exchange Commission as Exhibit 99.1 to this Current Report on Form 8-K and is incorporated by reference to this Item 2.02. -
Supplementary Table 1: Adhesion Genes Data Set
Supplementary Table 1: Adhesion genes data set PROBE Entrez Gene ID Celera Gene ID Gene_Symbol Gene_Name 160832 1 hCG201364.3 A1BG alpha-1-B glycoprotein 223658 1 hCG201364.3 A1BG alpha-1-B glycoprotein 212988 102 hCG40040.3 ADAM10 ADAM metallopeptidase domain 10 133411 4185 hCG28232.2 ADAM11 ADAM metallopeptidase domain 11 110695 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 195222 8038 hCG40937.4 ADAM12 ADAM metallopeptidase domain 12 (meltrin alpha) 165344 8751 hCG20021.3 ADAM15 ADAM metallopeptidase domain 15 (metargidin) 189065 6868 null ADAM17 ADAM metallopeptidase domain 17 (tumor necrosis factor, alpha, converting enzyme) 108119 8728 hCG15398.4 ADAM19 ADAM metallopeptidase domain 19 (meltrin beta) 117763 8748 hCG20675.3 ADAM20 ADAM metallopeptidase domain 20 126448 8747 hCG1785634.2 ADAM21 ADAM metallopeptidase domain 21 208981 8747 hCG1785634.2|hCG2042897 ADAM21 ADAM metallopeptidase domain 21 180903 53616 hCG17212.4 ADAM22 ADAM metallopeptidase domain 22 177272 8745 hCG1811623.1 ADAM23 ADAM metallopeptidase domain 23 102384 10863 hCG1818505.1 ADAM28 ADAM metallopeptidase domain 28 119968 11086 hCG1786734.2 ADAM29 ADAM metallopeptidase domain 29 205542 11085 hCG1997196.1 ADAM30 ADAM metallopeptidase domain 30 148417 80332 hCG39255.4 ADAM33 ADAM metallopeptidase domain 33 140492 8756 hCG1789002.2 ADAM7 ADAM metallopeptidase domain 7 122603 101 hCG1816947.1 ADAM8 ADAM metallopeptidase domain 8 183965 8754 hCG1996391 ADAM9 ADAM metallopeptidase domain 9 (meltrin gamma) 129974 27299 hCG15447.3 ADAMDEC1 ADAM-like, -
The Future of Antibodies As Cancer Drugs
REVIEWS Drug Discovery Today Volume 17, Numbers 17/18 September 2012 The biopharmaceutical industry’s pipeline of anticancer antibodies includes 165 candidates with substantial diversity in composition, targets and mechanisms of action that hold promise to be the cancer drugs of the future. Reviews FOUNDATION REVIEW Foundation review: The future of antibodies as cancer drugs 1 2 Dr Janice Reichert Janice M. Reichert and Eugen Dhimolea is Research Assistant Professor at Tufts 1 Center for the Study of Drug Development, Tufts University School of Medicine, 75 Kneeland Street, University’s Center for the Study of Drug Development Suite 1100, Boston, MA 02111, USA 2 (CSDD). She is also Founder Department of Medical Oncology, Dana-Farber Cancer Institute/Harvard Medical School, 77 Louis Pasteur Ave., and Editor-in-Chief of mAbs, Harvard Institutes of Medicine, Room 309, Boston, MA 02215, USA a peer-reviewed, PubMed- indexed biomedical journal that focuses on topics relevant to antibody research Targeted therapeutics such as monoclonal antibodies (mAbs) have proven and development; President of the board of directors of The Antibody Society; and a member of the board successful as cancer drugs. To profile products that could be marketed in of the Peptide Therapeutics Foundation. At CSDD, the future, we examined the current commercial clinical pipeline of mAb Dr Reichert studies innovation in the pharmaceutical and biotechnology industries. Her work focuses on candidates for cancer. Our analysis revealed trends toward development of strategic analyses of investigational candidates and marketed products, with an emphasis on the clinical a variety of noncanonical mAbs, including antibody–drug conjugates development and approval of new therapeutics and (ADCs), bispecific antibodies, engineered antibodies and antibody vaccines. -
CYRAMZA (Ramucirumab) Injection Label
1 HIGHLIGHTS OF PRESCRIBING INFORMATION • 500 mg/50 mL (10 mg per mL) solution, single-dose vial (3) These highlights do not include all the information needed to use CYRAMZA safely and effectively. See full prescribing information ------------------------------- CONTRAINDICATIONS ------------------------------ for CYRAMZA. None CYRAMZA (ramucirumab) injection, for intravenous infusion ------------------------ WARNINGS AND PRECAUTIONS ----------------------- Initial U.S. Approval: 2014 • Arterial Thromboembolic Events (ATEs): Serious, sometimes fatal WARNING: HEMORRHAGE ATEs have been reported in clinical trials. Discontinue CYRAMZA for severe ATEs. (5.2) See full prescribing information for complete boxed warning. • Hypertension: Monitor blood pressure and treat hypertension. CYRAMZA increased the risk of hemorrhage, including severe Temporarily suspend CYRAMZA for severe hypertension. and sometimes fatal hemorrhagic events. Permanently Discontinue CYRAMZA for hypertension that cannot be medically discontinue CYRAMZA in patients who experience severe controlled. (5.3) bleeding [see Dosage and Administration (2.3), Warnings and • Infusion-Related Reactions: Monitor for signs and symptoms Precautions (5.1)]. during infusion. (5.4) • Gastrointestinal Perforation: Discontinue CYRAMZA. (5.5) --------------------------- RECENT MAJOR CHANGES -------------------------- • Impaired Wound Healing: Withhold CYRAMZA prior to surgery. Indications and Usage 11/2014 (5.6) • Clinical Deterioration in Patients with Cirrhosis: New onset or Dosage and Administration: -
COVID-19 Immunotherapy: Novel Humanized 47D11 Monoclonal Antibody
Review Article ISSN: 2574 -1241 DOI: 10.26717/BJSTR.2020.29.004828 COVID-19 Immunotherapy: Novel Humanized 47D11 Monoclonal Antibody Basma H Marghani* Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Egypt *Corresponding author: Basma H Marghani, Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Egypt ARTICLE INFO ABSTRACT Received: August 10, 2020 Published: August 18, 2020 rapidly to the other countries all over the world, caused a novel Coronavirus-2019 (COV- SARS-CoV-2 was appeared firstly in Wuhan, China in December 2019, then spread- gency. After infection, virus entry the host cell through spike proteins (S)- angiotensin Citation: Basma H Marghani. COVID-19 ID-19). The World Health Organization was branded COVID-19 as a global health emer Immunotherapy: Novel Humanized 47D11 converting enzyme 2 (ACE2) cell membrane receptor via their S-Binding domain, then Monoclonal Antibody. Biomed J Sci & Tech virus replication caused acute respiratory disease syndrome (ARDS). Till now there was Res 29(4)-2020. BJSTR. MS.ID.004828. no vaccines or anti-viral drugs for coronavirus infection. One effective treatment is the use of human monoclonal antibodies (mAbs) which are engineered to target and block Keywords: COVID-19; Immunotherapy; cell surface receptor. mAbs could be given to people in the early stages of COVID-19 as a Full-Length Humanized Monoclonal Anti- therapeutic, or used prophylactically to give immediate, long-term immunity to vulnera- bodies; ACE Inhibitor ble people such as healthcare workers. The neutralizing humanized 47D11 monoclonal antibody targets a common epitope on SARS-CoV2 virus and may offer potential for pre- Abbreviations: ACE2: Angiotensin-Con- vention and treatment of COVID-19.89U (Graphical Abstract 1).