Response of the Zooxanthellae of Palythoa Caribaeorum (Cnidaria
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Papahānaumokuākea Marine National Monument Permit Application Cover Sheet
Papahānaumokuākea Marine National Monument Permit Application Cover Sheet This Permit Application Cover Sheet is intended to provide summary information and status to the public on permit applications for activities proposed to be conducted in the Papahānaumokuākea Marine National Monument. While a permit application has been received, it has not been fully reviewed nor approved by the Monument Management Board to date. The Monument permit process also ensures that all environmental reviews are conducted prior to the issuance of a Monument permit. Summary Information Applicant Name: Ruth D Gates Affiliation: Hawaii Institute of Marine Biology Permit Category: Research Proposed Activity Dates: May - Spetember 2010 Proposed Method of Entry (Vessel/Plane): Hi'ialakai NOAA RV Proposed Locations: French Frigate Shoals, Pearl & Hermes Estimated number of individuals (including Applicant) to be covered under this permit: 4 Estimated number of days in the Monument: 30 Description of proposed activities: (complete these sentences): a.) The proposed activity would… identify and monitor biological indicators of coral disease, bleaching, and impact to the reef and assess the diversity of coral-endosymbionts in Papahānaumokuākea. b.) To accomplish this activity we would …. sample coral colonies to determine the molecular diversity of coral endosymbionts. These activities will be performed using SCUBA from small boat operations launched from the Hi'ialakai NOAA vessel. c.) This activity would help the Monument by … identifying biological indicators of disease; revealing the diversity of coral-endoymbionts in Papahānaumokuākea; and determining the affect of global climate change on the coral reef ecosystem. Other information or background: The scleractinian corals provide the structural and biological framework that supports the high diversity of marine organisms that inhabit coral reef ecosystems. -
An Aquarium Hobbyist Poisoning: Identification of New Palytoxins in Palythoa Cf
Toxicon 121 (2016) 41e50 Contents lists available at ScienceDirect Toxicon journal homepage: www.elsevier.com/locate/toxicon An aquarium hobbyist poisoning: Identification of new palytoxins in Palythoa cf. toxica and complete detoxification of the aquarium water by activated carbon * Luciana Tartaglione a, Marco Pelin b, Massimo Morpurgo c, Carmela Dell'Aversano a, , Javier Montenegro d, Giuseppe Sacco e, Silvio Sosa b, James Davis Reimer f, ** Patrizia Ciminiello a, Aurelia Tubaro b, a Department of Pharmacy, University of Napoli Federico II, Via D. Montesano 49, 80131 Napoli, Italy b Department of Life Sciences, University of Trieste, Via A. Valerio 6, 34127 Trieste, Italy c Museum of Nature South Tyrol, Via Bottai 1, 39100 Bolzano, Italy d Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Science and Engineering, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0212, Japan e General Hospital of Bolzano, Via L. Bohler€ 5, 39100 Bolzano, Italy f Molecular Invertebrate Systematics and Ecology Laboratory, Faculty of Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0212, Japan article info abstract Article history: Palytoxin (PLTX) is a lethal natural toxin often found in Palythoa zoantharians that, together with its Received 13 June 2016 congeners, may induce adverse effects in humans after inhalation of toxic aerosols both in open-air and Received in revised form domestic environments, namely in the vicinity of public and private aquaria. In this study, we describe a 15 August 2016 poisoning of an aquarium hobbyist who was hospitalized after handling a PLTXs-containing zoantharian Accepted 17 August 2016 hexacoral. Furthermore, we provide evidence for water detoxification. -
Microbiomes of Gall-Inducing Copepod Crustaceans from the Corals Stylophora Pistillata (Scleractinia) and Gorgonia Ventalina
www.nature.com/scientificreports OPEN Microbiomes of gall-inducing copepod crustaceans from the corals Stylophora pistillata Received: 26 February 2018 Accepted: 18 July 2018 (Scleractinia) and Gorgonia Published: xx xx xxxx ventalina (Alcyonacea) Pavel V. Shelyakin1,2, Sofya K. Garushyants1,3, Mikhail A. Nikitin4, Sofya V. Mudrova5, Michael Berumen 5, Arjen G. C. L. Speksnijder6, Bert W. Hoeksema6, Diego Fontaneto7, Mikhail S. Gelfand1,3,4,8 & Viatcheslav N. Ivanenko 6,9 Corals harbor complex and diverse microbial communities that strongly impact host ftness and resistance to diseases, but these microbes themselves can be infuenced by stresses, like those caused by the presence of macroscopic symbionts. In addition to directly infuencing the host, symbionts may transmit pathogenic microbial communities. We analyzed two coral gall-forming copepod systems by using 16S rRNA gene metagenomic sequencing: (1) the sea fan Gorgonia ventalina with copepods of the genus Sphaerippe from the Caribbean and (2) the scleractinian coral Stylophora pistillata with copepods of the genus Spaniomolgus from the Saudi Arabian part of the Red Sea. We show that bacterial communities in these two systems were substantially diferent with Actinobacteria, Alphaproteobacteria, and Betaproteobacteria more prevalent in samples from Gorgonia ventalina, and Gammaproteobacteria in Stylophora pistillata. In Stylophora pistillata, normal coral microbiomes were enriched with the common coral symbiont Endozoicomonas and some unclassifed bacteria, while copepod and gall-tissue microbiomes were highly enriched with the family ME2 (Oceanospirillales) or Rhodobacteraceae. In Gorgonia ventalina, no bacterial group had signifcantly diferent prevalence in the normal coral tissues, copepods, and injured tissues. The total microbiome composition of polyps injured by copepods was diferent. -
Acclimation of Symbiotic Reef-Building Corals to Extremely Low Light
Symbiosis, 33 (2002) 125-143 125 Balaban, Philadelphia/Rehovot Acclimation of Symbiotic Reef-Building Corals to Extremely Low Light E.A. TITLYANOVl,2*, T.V. TITLYANOVA2, and K. YAMAZATOl 1Tropical Biosphere Research Center, University of the Ryukyus, Sesoko Island, Okinawa 905, Japan; 2Jnstitute of Marine Biology, Far East Branch of Russian Academy of Sciences, Vladivostok 690041, Russia, Tel. +7-423-2310931, Fax. +7-423-2310900, Email. [email protected] Received March 13, 2002; Accepted August 2, 2002 Abstract This study investigated the photo-acclimation capacity of seven species of hermatypic corals subjected to 2%, 0.8% and 0.1% of incident surface photosynthetic active radiation (PARo) . Stylophora pistillata, Porites attenuata and Echinopora lamellosa photoacclimated to 2%, 0.8% and 0.1% PARO, Pocillopora damicornis only to 2% and 0.8% PARo, Seriatopora caliendrum, S. hystrix only to 2% PARo and the colonial hydroid Millepora intricata could not adapt to light intensity of 2% and lower. Physiological changes associated with photo• acclimation to extremely low light (i.e., 2%, 0.8% and 0.1% PARo) were a decline in zooxanthellae population densities, in zooxanthellae sizes, in cell division and degradation. Shade-intolerant species rapidly lost their zooxanthellae in extremely low light treatments and died, whereas shade-tolerant species maintained low zooxanthellae population densities in their tissue during 4 months and more. If the corals E. lamellosa and P. attenuata, acclimated to extremely low light, were transferred to dim light (30% PARo) , they regained their initial population densities within 90 days. We assume that specific distinction of corals under acclimation to extremely low light depends mainly on the composition of morphophysiologically and genetically different types of zooxanthellae living in a given colony of certain species. -
Zooxanthellae Expelled from Bleached Corals at 33°C Are
MARINE ECOLOGY PROGRESS SERIES Vol. 220: 163–168, 2001 Published September 27 Mar Ecol Prog Ser Zooxanthellae expelled from bleached corals at 33؇C are photosynthetically competent Peter J. Ralph1,*, Rolf Gademann2, Anthony W. D. Larkum3 1Department of Environmental Sciences, University of Technology, PO Box 123 Broadway, Sydney, New South Wales 2065, Australia 2Gademann Messtechnik, Würzburg, Germany 3School of Biological Sciences (A08), University of Sydney, New South Wales 2006, Australia ABSTRACT: While a number of factors have been linked to coral bleaching, such as high light, high temperature, low salinity, and UV exposure, the best explanation for recent coral bleaching events are small temperature excursions of 1 to 2°C above summer sea-surface temperatures in the tropics which induce the dinoflagellate symbionts (zooxanthellae) to be expelled from the host. The mecha- nism that triggers this expulsion of the algal symbionts is not resolved, but has been attributed to damage to the photosynthetic mechanism of the zooxanthellae. In the present investigation we addressed the question of whether such expelled zooxanthellae are indeed impaired irreversibly in their photosynthesis. We employed a Microscopy Pulse Amplitude-Modulated (PAM) fluorometer, by which individual zooxanthellae can be examined to study photosynthesis in zooxanthellae expelled when corals are subjected to a temperature of 33°C. We show that the expelled zooxanthellae from Cyphastrea serailia were largely unaffected in their photosynthesis and could be heated to 37°C before showing temperature-induced photosynthetic impairment. These results suggest strongly that the early events that trigger temperature-induced expulsion of zooxanthellae involve a dysfunction in the interaction of the zooxanthellae and the coral host tissue, and not a dysfunction in the zooxan- thellae per se. -
Taxonomic Checklist of CITES Listed Coral Species Part II
CoP16 Doc. 43.1 (Rev. 1) Annex 5.2 (English only / Únicamente en inglés / Seulement en anglais) Taxonomic Checklist of CITES listed Coral Species Part II CORAL SPECIES AND SYNONYMS CURRENTLY RECOGNIZED IN THE UNEP‐WCMC DATABASE 1. Scleractinia families Family Name Accepted Name Species Author Nomenclature Reference Synonyms ACROPORIDAE Acropora abrolhosensis Veron, 1985 Veron (2000) Madrepora crassa Milne Edwards & Haime, 1860; ACROPORIDAE Acropora abrotanoides (Lamarck, 1816) Veron (2000) Madrepora abrotanoides Lamarck, 1816; Acropora mangarevensis Vaughan, 1906 ACROPORIDAE Acropora aculeus (Dana, 1846) Veron (2000) Madrepora aculeus Dana, 1846 Madrepora acuminata Verrill, 1864; Madrepora diffusa ACROPORIDAE Acropora acuminata (Verrill, 1864) Veron (2000) Verrill, 1864; Acropora diffusa (Verrill, 1864); Madrepora nigra Brook, 1892 ACROPORIDAE Acropora akajimensis Veron, 1990 Veron (2000) Madrepora coronata Brook, 1892; Madrepora ACROPORIDAE Acropora anthocercis (Brook, 1893) Veron (2000) anthocercis Brook, 1893 ACROPORIDAE Acropora arabensis Hodgson & Carpenter, 1995 Veron (2000) Madrepora aspera Dana, 1846; Acropora cribripora (Dana, 1846); Madrepora cribripora Dana, 1846; Acropora manni (Quelch, 1886); Madrepora manni ACROPORIDAE Acropora aspera (Dana, 1846) Veron (2000) Quelch, 1886; Acropora hebes (Dana, 1846); Madrepora hebes Dana, 1846; Acropora yaeyamaensis Eguchi & Shirai, 1977 ACROPORIDAE Acropora austera (Dana, 1846) Veron (2000) Madrepora austera Dana, 1846 ACROPORIDAE Acropora awi Wallace & Wolstenholme, 1998 Veron (2000) ACROPORIDAE Acropora azurea Veron & Wallace, 1984 Veron (2000) ACROPORIDAE Acropora batunai Wallace, 1997 Veron (2000) ACROPORIDAE Acropora bifurcata Nemenzo, 1971 Veron (2000) ACROPORIDAE Acropora branchi Riegl, 1995 Veron (2000) Madrepora brueggemanni Brook, 1891; Isopora ACROPORIDAE Acropora brueggemanni (Brook, 1891) Veron (2000) brueggemanni (Brook, 1891) ACROPORIDAE Acropora bushyensis Veron & Wallace, 1984 Veron (2000) Acropora fasciculare Latypov, 1992 ACROPORIDAE Acropora cardenae Wells, 1985 Veron (2000) CoP16 Doc. -
Zooxanthellae) ROB ROWAN* and DENNIS A
Proc. Natl. Acad. Sci. USA Vol. 89, pp. 3639-3643, April 1992 Plant Biology Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae) ROB ROWAN* AND DENNIS A. POWERS Department of Biological Sciences, Stanford University, Hopkins Marine Station, Pacific Grove, CA 93950-3094 Communicated by Winslow R. Briggs, December 23, 1991 ABSTRACT Zooxanthellae are unicellular algae that oc- systematics can be obviated by applying molecular methods. cur as endosymbionts in many hundreds of common marine DNA sequences are excellent phylogenetic data (for reviews, invertebrates. The issue of zooxanthella diversity has been see refs. 15 and 16) that are especially useful for identifying difficult to address. Most zooxanthellae have been placed in the and classifying morphologically depauperate organisms like dinoflagellate genus Symbiodinium as one or several species that zooxanthellae. Furthermore, Symbiodinium genes can be are not easily distinguished. We compared Symbiodinium and obtained from intact symbioses using the polymerase chain nonsymbiotic dinoflageliates using small ribosomal subunit reaction (PCR; ref. 17), removing the obstacle of culturing RNA sequences. Surprisingly, small ribosomal subunit RNA zooxanthellae for the purpose of taxonomy (18). diversity within the genus Symbiodinium is comparable to that Various DNA sequences evolve at very different rates; observed among different orders of nonsymbiotic dinoflagel- which sequences are informative for a group depends upon lates. These data reinforce the conclusion that Symbiodinium- how closely related its members are. Having no a priori like zooxanthellae represent a collection of distinct species and information for Symbiodinium, we examined nuclear genes provide a precedent for a molecular genetic taxonomy of the that encode small ribosomal subunit RNA (ssRNA; 16S-like genus Symbiodinium. -
Temporal Variation in Nucleic Acid and Protein Ratios in Four Anthozoan-Dinoflagella Te Endosymbioses of the Indo-Pacific: Implications for Molecular Diagnostics
Platax 9: 1-24, 2012 Temporal variation in nucleic acid and protein ratios in four anthozoan-dinoflagella te endosymbioses of the Indo-Pacific: implications for molecular diagnostics 1* 1 Anderson B. Mayfield , Yi-Yuong Hsiao , Tung-Yung Fan1,2, Chii-Shiarng Chen1,3,4,5 1 National Museum of Marine Biology and Aquarium, Checheng, Pingtung 944, Taiwan, R.O.C. 2 Graduate Institute of Marine Biodiversity and Evolution, National Dong-Hwa University, Checheng, Pingtung 944, Taiwan, R.O.C. 3 Graduate Institute of Marine Biotechnology, National Dong-Hwa University, Checheng, Pingtung 944, Taiwan, R.O.C. 4 Taiwan Coral Research Center, Checheng, Pingtung 944, Taiwan, R.O.C. 5 Department of Marine Biotechnology and Resources, National Sun Yat-Sen University, Kaohsiung 804, Taiwan, R.O.C. *Corresponding author, email: [email protected] Abstract Given the threat of global climate change towards coral reefs and the endosymbiotic anthozoans that construct them, there is an urgent need to better understand the physiological response of these environmentally sensitive organisms. Unfortunately, many aspects of anthozoan biology are poorly understood, such as the cellular and molecular mechanisms underlying the stability of their association with dinoflagellates of the genus Symbiodinium. For instance, it has only recently been demonstrated that the molecular composition of these mutualisms is temporally variable; specifically, Symbiodinium DNA content has been shown to vary significantly across the light-dark cycle, and such variation could have implications for normalization of macromolecular expression data. For that reason, there was an interest in better understanding both spatio-temporal and interspecific variation in the concentrations of nucleic acids and pr oteins in reef-building corals and endosymbiotic sea anemones. -
Composition and Ecology of Deep-Water Coral Associations D
HELGOLK---~DER MEERESUNTERSUCHUNGEN Helgoltinder Meeresunters. 36, 183-204 (1983) Composition and ecology of deep-water coral associations D. H. H. Kfihlmann Museum ffir Naturkunde, Humboldt-Universit~t Berlin; Invalidenstr. 43, DDR- 1040 Berlin, German Democratic Republic ABSTRACT: Between 1966 and 1978 SCUBA investigations were carried out in French Polynesia, the Red Sea, and the Caribbean, at depths down to 70 m. Although there are fewer coral species in the Caribbean, the abundance of Scleractinia in deep-water associations below 20 m almost equals that in the Indian and Pacific Oceans. The assemblages of corals living there are described and defined as deep-water coral associations. They are characterized by large, flattened growth forms. Only 6 to 7 % of the species occur exclusively below 20 m. More than 90 % of the corals recorded in deep waters also live in shallow regions. Depth-related illumination is not responsible for depth differentiations of coral associations, but very likely, a complex of mechanical factors, such as hydrodynamic conditions, substrate conditions, sedimentation etc. However, light intensity deter- mines the general distribution of hermatypic Scleractinia in their bathymetric range as well as the platelike shape of coral colonies characteristic for deep water associations. Depending on mechani- cal factors, Leptoseris, Montipora, Porites and Pachyseris dominate as characteristic genera in the Central Pacific Ocean, Podabacia, Leptoseris, Pachyseris and Coscinarea in the Red Sea, Agaricia and Leptoseris in the tropical western Atlantic Ocean. INTRODUCTION Considerable attention has been paid to shallow-water coral associations since the first half of this century (Duerden, 1902; Mayer, 1918; Umbgrove, 1939). Detailed investigations at depths down to 20 m became possible only through the use of autono- mous diving apparatus. -
The Genetic Identity of Dinoflagellate Symbionts in Caribbean Octocorals
Coral Reefs (2004) 23: 465-472 DOI 10.1007/S00338-004-0408-8 REPORT Tamar L. Goulet • Mary Alice CofFroth The genetic identity of dinoflagellate symbionts in Caribbean octocorals Received: 2 September 2002 / Accepted: 20 December 2003 / Published online: 29 July 2004 © Springer-Verlag 2004 Abstract Many cnidarians (e.g., corals, octocorals, sea Introduction anemones) maintain a symbiosis with dinoflagellates (zooxanthellae). Zooxanthellae are grouped into The cornerstone of the coral reef ecosystem is the sym- clades, with studies focusing on scleractinian corals. biosis between cnidarians (e.g., corals, octocorals, sea We characterized zooxanthellae in 35 species of Caribbean octocorals. Most Caribbean octocoral spe- anemones) and unicellular dinoñagellates commonly called zooxanthellae. Studies of zooxanthella symbioses cies (88.6%) hosted clade B zooxanthellae, 8.6% have previously been hampered by the difficulty of hosted clade C, and one species (2.9%) hosted clades B and C. Erythropodium caribaeorum harbored clade identifying the algae. Past techniques relied on culturing and/or identifying zooxanthellae based on their free- C and a unique RFLP pattern, which, when se- swimming form (Trench 1997), antigenic features quenced, fell within clade C. Five octocoral species (Kinzie and Chee 1982), and cell architecture (Blank displayed no zooxanthella cladal variation with depth. 1987), among others. These techniques were time-con- Nine of the ten octocoral species sampled throughout suming, required a great deal of expertise, and resulted the Caribbean exhibited no regional zooxanthella cla- in the differentiation of only a small number of zoo- dal differences. The exception, Briareum asbestinum, xanthella species. Molecular techniques amplifying had some colonies from the Dry Tortugas exhibiting zooxanthella DNA encoding for the small and large the E. -
Volume 2. Animals
AC20 Doc. 8.5 Annex (English only/Seulement en anglais/Únicamente en inglés) REVIEW OF SIGNIFICANT TRADE ANALYSIS OF TRADE TRENDS WITH NOTES ON THE CONSERVATION STATUS OF SELECTED SPECIES Volume 2. Animals Prepared for the CITES Animals Committee, CITES Secretariat by the United Nations Environment Programme World Conservation Monitoring Centre JANUARY 2004 AC20 Doc. 8.5 – p. 3 Prepared and produced by: UNEP World Conservation Monitoring Centre, Cambridge, UK UNEP WORLD CONSERVATION MONITORING CENTRE (UNEP-WCMC) www.unep-wcmc.org The UNEP World Conservation Monitoring Centre is the biodiversity assessment and policy implementation arm of the United Nations Environment Programme, the world’s foremost intergovernmental environmental organisation. UNEP-WCMC aims to help decision-makers recognise the value of biodiversity to people everywhere, and to apply this knowledge to all that they do. The Centre’s challenge is to transform complex data into policy-relevant information, to build tools and systems for analysis and integration, and to support the needs of nations and the international community as they engage in joint programmes of action. UNEP-WCMC provides objective, scientifically rigorous products and services that include ecosystem assessments, support for implementation of environmental agreements, regional and global biodiversity information, research on threats and impacts, and development of future scenarios for the living world. Prepared for: The CITES Secretariat, Geneva A contribution to UNEP - The United Nations Environment Programme Printed by: UNEP World Conservation Monitoring Centre 219 Huntingdon Road, Cambridge CB3 0DL, UK © Copyright: UNEP World Conservation Monitoring Centre/CITES Secretariat The contents of this report do not necessarily reflect the views or policies of UNEP or contributory organisations. -
Zooxanthellae Regulation in Yellow Blotch/Band and Other Coral Diseases Contrasted with Temperature Related Bleaching: in Situ Destruction Vs Expulsion
Symbiosis, 37 (2004) 63–85 63 Balaban, Philadelphia/Rehovot Zooxanthellae Regulation in Yellow Blotch/Band and Other Coral Diseases Contrasted with Temperature Related Bleaching: In Situ Destruction vs Expulsion JAMES M. CERVINO1*, RAYMOND HAYES2, THOMAS J. GOREAU3, and GARRIET W. SMITH4 1University of South Carolina, Marine Sciences Department, Columbia, SC 29208, Email. [email protected]; 2College of Medicine, Howard University, Washington, DC; 3Global Coral Reef Alliance, Cambridge, MA; 4University of South Carolina, Aiken, SC, USA Received November 3, 2003; Accepted March 1, 2004 Abstract Impairment and breakdown in the symbiotic relationship between the coral host and its zooxanthellae has been documented in the major Caribbean reef building coral, Montastraea spp., when it is infected with yellow band/blotch disease (YBD) pathogens and/or exposed to unusually high seawater temperatures. Progressive degradation of zooxanthellar cellular integrity occurs, leading to the deterioration of coral tissue. Cytoplasmic organelles were displaced and chloroplasts are reduced and marginalized which is accompanied by internal swelling, vacuolization, fragmentation, and loss of cell wall structural integrity. Changes in algae that occur in YBD-infected corals differ from changes seen in corals undergoing solely temperature-induced coral bleaching, however. In many disease-infected corals, there is no evidence of zooxanthella in the mucus, unlike in thermal bleaching, where zooxanthellae was evident in the coral surface layer. Isolated zooxanthellae Presented at the 4th International Symbiosis Congress, August 17–23, 2003, Halifax, Canada *The author to whom correspondence should be sent. 0334-5114/2004/$05.50 ©2004 Balaban 64 J.M. CERVINO ET AL. inoculated with YBD pathogens showed a 96% decrease in chlorophyll a pigments compared to controls, and a 90% decrease in mitotic cell division over 96 hours of YBD bacterial inoculation (<p=0.0016).