Time to Reality Check the Promises of Machine Learning-Powered

Total Page:16

File Type:pdf, Size:1020Kb

Time to Reality Check the Promises of Machine Learning-Powered Viewpoint Time to reality check the promises of machine learning- powered precision medicine Jack Wilkinson, Kellyn F Arnold, Eleanor J Murray, Maarten van Smeden, Kareem Carr, Rachel Sippy, Marc de Kamps, Andrew Beam, Stefan Konigorski, Christoph Lippert, Mark S Gilthorpe, Peter W G Tennant Machine learning methods, combined with large electronic health databases, could enable a personalised approach to Lancet Digital Health 2020 medicine through improved diagnosis and prediction of individual responses to therapies. If successful, this strategy Published Online would represent a revolution in clinical research and practice. However, although the vision of individually tailored September 16, 2020 medicine is alluring, there is a need to distinguish genuine potential from hype. We argue that the goal of personalised https://doi.org/10.1016/ S2589-7500(20)30200-4 medical care faces serious challenges, many of which cannot be addressed through algorithmic complexity, and call Centre for Biostatistics, for collaboration between traditional methodologists and experts in medical machine learning to avoid extensive Manchester Academic Health research waste. Science Centre, Division of Population Health, Health Introduction clinical diagnostics. However, acknowledging potential is Services Research and Primary Care, University of Manchester, Proponents of precision medicine make a compelling a poor substitute for robust scientific evidence of actual Manchester, UK 8 pitch: traditional approaches to health science have benefit, and here research is lacking. Although news (J Wilkinson PhD); Leeds Institute focused too much on comparing effectiveness in the media is filled with enthusiastic stories about novel mac­ for Data Analytics average person and too little on the needs of actual hine learning applications,9–12 a systematic review com­ (K F Arnold PhD, M de Kamps PhD, Prof M S Gilthorpe PhD, 1,2 individuals. The blame could lie with outdated statis­ paring the performance of deep learning versus health P W G Tennant PhD), Faculty tical and epidemiological tools, which might offer professional assessment in diagnosis of various diseases of Medicine and Health decreasing relevance to the needs of contemporary from medical images makes for sobering reading.13 Only (K F Arnold, Prof M S Gilthorpe, clinical decision making.3 The proposed solution speaks 20 (24%) of the 82 studies identified evaluated the P W G Tennant), and School of Computing (M de Kamps), to the zeitgeist: our newfound abundance of detailed and performance of their algorithm in an external cohort, and University of Leeds, Leeds, UK; accessible longitudinal data on individuals combined only 14 (17%) studies compared this out­of­sample perfor­ Department of Epidemiology, with the practical realisation of various flexible machine mance with that of health professionals. This number is Boston University School of learning approaches offer an exciting chance for alarmingly small, especially given that many of the Public Health, Boston, MA, USA (E J Murray ScD, A Beam PhD); 2 revolution. At the apex sits the dream of precision studies were flawed. The authors found that reporting Department of Clinical medicine crafted by machine learning, a new framework standards were typically poor, internal validation was Epidemiology, Leiden University that promises to revolutionise how we identify the best weak and, perhaps most worryingly, model performance Medical Center, therapy for each person as an individual, while auto­ was often evaluated under unrealistic conditions that had Leiden, Netherlands (M van Smeden PhD); 13 mating everyday tasks like diagnosis and prognosti­ little relevance to routine clinical practice. For example, Department of Biostatistics, cation with unprecedented accuracy.4 there is little use comparing the performance of a Harvard TH Chan School of But how realistic are these claims? And when, if ever, machine learning algorithm with health professional Public Health, Boston, MA, USA (K Carr MSc); Institute for Global can we expect them to be routinely realised? We consider judgment for making diagnoses from medical images Health and Translational the evidence underlying two of the most common claims without providing further contextual information about Science, SUNY Upstate Medical about the potential of machine learning­powered precision the patient, as this would never happen in practice.14 A University, Syracuse, NY, USA medicine and call for a reality check of expectations. more recent systematic review of studies comparing deep (R Sippy PhD); Department of Geography (R Sippy) and learning with clinical judgement corroborated the wide­ Emerging Pathogens Institute Claim 1: machine learning will enable automated spread issues with poor study design and reporting, but (R Sippy), University of Florida, diagnoses with unprecedented accuracy identified some well designed randomised clinical trials Gainesville, FL, USA; Digital Machine learning is often heralded by health and med­ that evaluated the technology.15 Health & Machine Learning Research Group, Hasso Plattner ical commentators as a powerful prediction tool that Emphasis on predictive performance over clinical utility Institut for Digital Engineering, will revolutionise disease screening and diagnosis. The is not unusual. The ability of machine learning to process Potsdam, Germany inherent flexibility and scope for automation makes high­dimensional data, for example, appears to be (S Konigorski PhD, machine learning well suited to examining complex distracting from the often greater benefits of simple Prof C Lippert PhD); Hasso 16 Plattner Institute for Digital high­dimensional data (ie, with many variables or clinical variables. Volkmann and colleagues showed how Health at Mount Sinai, Icahn features) that would be challenging to model using predictions based on large dimensional omics data can School of Medicine at conventional approaches. Such strategies have enabled easily be improved by including more common clinical Mount Sinai, New York, NY, USA the development of several innovative diagnostic algor­ information. Indeed, the added value of omics data for (S Konigorski, Prof C Lippert); and Alan Turing Institute, London, ithms—for example, to identify patients most in need clinical prediction can be marginal once all relevant UK (Prof M S Gilthorpe, 5 of intervention from knee MRI, to detect cardiac clinical variables are included. There is also an increasing P W G Tennant) 6 arrhythmias from electrocardiograms, and to diagnose focus on classifying patients into simple categories (eg, Correspondence to: pneumonia from chest x­rays.7 with and without the disease) rather than predicting a Dr Jack Wilkinson, Centre for Given such innovation, it is hard to dispute the revolu­ continuum of risk. This trend is an unfortunate departure Biostatistics, Manchester Academic Health Science Centre, tionary potential of machine learning for improving from the supposed aim of increasing individual relevance www.thelancet.com/digital-health Published online September 16, 2020 https://doi.org/10.1016/S2589-7500(20)30200-4 1 Viewpoint Division of Population Health, and is particularly puzzling because it is not a requirement identify the best treatment for an individual person by Health Services Research and of most machine learning methods. machine learning. Primary Care, University of In terms of using machine learning to automate This problem does not simply reflect the adage that Manchester, Manchester M13 9PL, UK diagnoses, this remains more of a potential promise than correlation does not imply causation, nor the widely held jack.wilkinson@manchester. a proven product, although notable exceptions exist, belief that causal inference can only be achieved in ac.uk such as an automated system for detection of diabetic experimental data. A suite of methodological approaches retinopathy.17 At present, the benefits of most proposals are available to aid estimation of causal effects in non­ to automate clinical diagnoses with machine learning are experimental data,23,24 such as electronic health records, unknown because they have not been meaningfully which potentially offer more diverse and relevant assessed. Novel machine learning studies are not samples than clinical trials (although representative unusual in this regard. Clinical journals are flooded with samples might not be necessary to achieve representative traditional prognostic models that were neither developed results25). The limitation arises because almost all nor evaluated using appropriate methods.18 However, machine learning algorithms have been designed to since few of these models ever end up being used, they make predictions (eg, to most accurately predict or are arguably benign. By contrast, there is tangible classify those with a particular trait or prognosis) and this concern that the scale of enthusiasm around machine is fundamentally distinct from causal explanation and learning means substandard models might get unduly causal effect estimation.26,27 adopted by a clinical audience that is not equipped to To estimate a causal effect, we instead need to estimate assess them. not just what is most likely to happen (ie, prediction) but Regardless, the performance and utility of a machine what would most likely have happened if things had been learning algorithm is highly dependent on the quality different (ie, counterfactual prediction27). Accordingly, the and relevance of the data on which it is trained. Training prospect of automated
Recommended publications
  • Integrative Analysis of Exogenous, Endogenous, Tumour and Immune
    Gut Online First, published on February 6, 2018 as 10.1136/gutjnl-2017-315537 Recent advances in basic science Integrative analysis of exogenous, endogenous, Gut: first published as 10.1136/gutjnl-2017-315537 on 6 February 2018. Downloaded from tumour and immune factors for precision medicine Shuji Ogino,1,2,3,4 Jonathan A Nowak,1 Tsuyoshi Hamada,2 Amanda I Phipps,5,6 Ulrike Peters,5,6 Danny A Milner Jr,7 Edward L Giovannucci,3,8,9 Reiko Nishihara,1,3,4,8,10 Marios Giannakis,4,11,12 Wendy S Garrett,4,11,13 Mingyang Song8,14,15 For numbered affiliations see ABSTRACT including inflammatory and immune cells. A fraction end of article. Immunotherapy strategies targeting immune checkpoints of somatic mutations may result in the generation of such as the CTLA4 and CD274 (programmed cell death new antigens (neoantigens) that can be recognised as Correspondence to 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, non-self by the immune system. During an individu- Dr Shuji Ogino, Program in MPE Molecular Pathological PD-1) T-cell coreceptor pathways are revolutionising al's life-course, cells may acquire somatic molecular Epidemiology, Brigham and oncology. The approval of pembrolizumab use for alterations, and some of these cells undergo clonal Women’s Hospital, Boston, MA solid tumours with high-level microsatellite instability expansion, displaying hallmarks of early neoplasia. 02215, USA; shuji_ ogino@ dfci. or mismatch repair deficiency by the US Food and Many of these cells are likely kept in check or killed harvard. edu Drug Administration highlights promise of precision by the host immune system before they can develop Received 24 October 2017 immuno-oncology.
    [Show full text]
  • The Future of Precision Medicine : Potential Impacts for Health Technology Assessment
    This is a repository copy of The Future of Precision Medicine : Potential Impacts for Health Technology Assessment. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/133069/ Version: Accepted Version Article: Love-Koh, James orcid.org/0000-0001-9009-5346, Peel, Alison, Rejon-Parilla, Juan Carlos et al. (6 more authors) (2018) The Future of Precision Medicine : Potential Impacts for Health Technology Assessment. Pharmacoeconomics. pp. 1439-1451. ISSN 1179-2027 https://doi.org/10.1007/s40273-018-0686-6 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The Future of Precision Medicine: Potential Impacts for Health Technology Assessment Title: The Future of Precision Medicine: Potential Impacts for Health Technology Assessment Authors: James Love-Koh1,2, Alison Peel1, Juan Carlos Rejon-Parilla3, Kate Ennis1,4, Rosemary Lovett3, Andrea Manca2,5, Anastasia Chalkidou6, Hannah Wood1, Matthew Taylor1 1 YorK Health Economics Consortium 2 Centre for Health Economics, University of YorK 3 National Institute for Health and Care Excellence 4 Institute of Infection and Global Health, University of Liverpool 5 Luxembourg Institute of Health 6 Kings Technology Evaluation Centre Corresponding Author Details: Name: James Love-Koh Address: Centre for Health Economics, Alcuin A Block, University of York, Heslington, York, YO10 5DD, UK.
    [Show full text]
  • What Are Precision Medicine and Personalized Medicine?
    What Are Precision Medicine and Personalized Medicine? Precision medicine, also known as personalized medicine, is a new frontier for healthcare combining genomics, big data analytics, and population health. Source: Thinkstock Since the beginning of recorded history, healthcare practitioners have striven to make their actions more effective for their patients by experimenting with different treatments, observing and sharing their results, and improving upon the efforts of previous generations. Becoming more accurate, precise, proactive, and impactful for each individual that comes under their care has always been the goal of all clinicians, no matter how basic the tools at their disposal. But now, modern physicians and scientists are now able to take this mission far, far beyond the reach of their ancestors with the help of electronic health records, genetic testing, big data analytics, and supercomputing – all the ingredients required to engage in what is quickly becoming truly precise and personalized medicine. Precision medicine, also commonly referred to as personalized medicine, is one of the most promising approaches to tackling diseases that have thus far eluded effective treatments or cures. Cancer, neurodegenerative diseases, and rare genetic conditions take an enormous toll on individuals, families and societies as a whole. Approximately 1.7 million new cancer cases were diagnosed in the United States in 2017. Around 600,000 deaths were expected during that year, according to the American Cancer Society. The Agency for Healthcare Research and Quality adds that the direct economic impact of cancer is around $80 billion per year – loss of productivity, wages, and caregiver needs sap billions more from the economy.
    [Show full text]
  • Advancing Standards for Precision Medicine
    Advancing Standards for Precision Medicine FINAL REPORT Prepared by: Audacious Inquiry on behalf of the Office of the National Coordinator for Health Information Technology under Contract No. HHSM-500-2017-000101 Task Order No. HHSP23320100013U January 2021 ONC Advancing Standards for Precision Medicine Table of Contents Executive Summary ...................................................................................................................................... 5 Standards Development and Demonstration Projects ............................................................................ 5 Mobile Health, Sensors, and Wearables ........................................................................................... 5 Social Determinants of Health (SDOH) ............................................................................................. 5 Findings and Lessons Learned .......................................................................................................... 6 Recommendations ........................................................................................................................................ 6 Introduction ................................................................................................................................................... 7 Background ................................................................................................................................................... 7 Project Purpose, Goals, and Objectives ..................................................................................................
    [Show full text]
  • Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings
    Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Nishihara, Reiko, Tyler J. VanderWeele, Kenji Shibuya, Murray A. Mittleman, Molin Wang, Alison E. Field, Edward Giovannucci, Paul Lochhead, and Shuji Ogino. 2015. “Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings.” European Journal of Epidemiology 30 (10): 1129–35. https://doi.org/10.1007/ s10654-015-0088-4. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41392032 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptEur J Epidemiol Author Manuscript. Author Author Manuscript manuscript; available in PMC 2016 October 07. Published in final edited form as: Eur J Epidemiol. 2015 October ; 30(10): 1129–1135. doi:10.1007/s10654-015-0088-4. Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings Reiko Nishiharaa,b,c, Tyler J. VanderWeeled,e, Kenji Shibuyac, Murray A. Mittlemand,f, Molin Wangd,e,g, Alison E. Fieldd,g,h,i, Edward Giovannuccia,d,g, Paul Lochheadi,j, and Shuji Oginob,d,k aDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, Massachusetts 02115 USA bDepartment of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, Massachusetts 02215 USA cDepartment of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan dDepartment of Epidemiology, Harvard T.H.
    [Show full text]
  • Molecular Epidemiology and Precision Medicine
    Pharmacogenetics: Past, Present, and Future Brooke L. Fridley, PhD Associate Professor of Biostatistics University of Kansas Medical Center Site Director, K-INBRE Bioinformatics Core Director, Biostatistics and Informatics Shared Resource, University of Kansas Cancer Center What is Pharmacogenomics? Pharmacogenomics & Precision Medicine Aims to deliver the correct drug or treatment: • At the right time • To the right patient • At the right dose Can only be achieved when we have accurate clinical tests (BIOMARKER) and companion drugs at our disposal What is a Biomarker? • Biomarker: “A characteristic that is objectively measured and evaluated as an indicator of – normal biological processes, – pathogenic processes, or – pharmacologic responses to a therapeutic intervention.” Biomarkers Definitions Working Group. Biomarkers and surrogate end points: preferred definitions and conceptual framework. Clin Pharmacol Ther 2001;69:89–95 Candidate Gene Era 1950 – 1990 – Structure of 1980 – 1985 – HGP DNA TPMT PCR begins 1997 – 1977 – 1983 – First 1987 – NHGRI Sanger human P450 formed Sequencing disease supergene gene family mapped Candidate • Genotyping Variant & • RT-PCR Gene • Re-sequencing genes (exons) with Sanger Studies Sequencing PK and PD and * Alleles (haplotypes) PGx Effect = Gene*Drug Interaction Drug 1 Drug 2 Genome-wide Array Era 2003 – FDA 2002 – issues draft 1998 -Illumina HapMap guidelines for founded begins PGx 2001 – 1st 2003 – 2004 – 1st NGS version of Completion of platform human HGP genome completed Genome- • SNP arrays (~mid 2000s) wide • mRNA arrays (~mid 1990s) Association Studies • Methylation arrays (~2008-2010) Study of Genetic Association with Drug Response Phenotypes Cases: Non-responders Cases: Responders Genetic association studies look at the frequency of genetic changes to try to determine whether specific changes are associated with a phenotype.
    [Show full text]
  • The Personalized Medicine Report
    THE PERSONALIZED MEDICINE REPORT 2017 · Opportunity, Challenges, and the Future The Personalized Medicine Coalition gratefully acknowledges graduate students at Manchester University in North Manchester, Indiana, and at the University of Florida, who updated the appendix of this report under the guidance of David Kisor, Pharm.D., Director, Pharmacogenomics Education, Manchester University, and Stephan Schmidt, Ph.D., Associate Director, Pharmaceutics, University of Florida. The Coalition also acknowledges the contributions of its many members who offered insights and suggestions for the content in the report. CONTENTS INTRODUCTION 5 THE OPPORTUNITY 7 Benefits 9 Scientific Advancement 17 THE CHALLENGES 27 Regulatory Policy 29 Coverage and Payment Policy 35 Clinical Adoption 39 Health Information Technology 45 THE FUTURE 49 Conclusion 51 REFERENCES 53 APPENDIX 57 Selected Personalized Medicine Drugs and Relevant Biomarkers 57 HISTORICAL PRECEDENT For more than two millennia, medicine has maintained its aspiration of being personalized. In ancient times, Hippocrates combined an assessment of the four humors — blood, phlegm, yellow bile, and black bile — to determine the best course of treatment for each patient. Today, the sequence of the four chemical building blocks that comprise DNA, coupled with telltale proteins in the blood, enable more accurate medical predictions. The Personalized Medicine Report 5 INTRODUCTION When it comes to medicine, one size does not fit all. Treatments that help some patients are ineffective for others (Figure 1),1 and the same medicine may cause side effects in only certain patients. Yet, bound by the constructs of traditional disease, and, at the same time, increase the care delivery models, many of today’s doctors still efficiency of the health care system by improving prescribe therapies based on population averages.
    [Show full text]
  • A Bioinformatics Approach for Precision Medicine Off-Label Drug
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE Cheng L, et al. J Am Med Inform Assoc 2016;23:741–749. doi:10.1093/jamia/ocw004, Research and Applications provided by IUPUIScholarWorks RECEIVED 5 September 2015 A bioinformatics approach for precision REVISED 10 December 2015 ACCEPTED 10 January 2016 medicine off-label drug selection among PUBLISHED ONLINE FIRST 23 April 2016 triple negative breast cancer patients Lijun Cheng,1,2 Bryan P Schneider,3,4 and Lang Li1,2,4 ABSTRACT .................................................................................................................................................... Background Cancer has been extensively characterized on the basis of genomics. The integration of genetic information about cancers with data on how the cancers respond to target based therapy to help to optimum cancer treatment. Objective The increasing usage of sequencing technology in cancer research and clinical practice has enormously advanced our understanding of cancer RESEARCH AND APPLICATIONS mechanisms. The cancer precision medicine is becoming a reality. Although off-label drug usage is a common practice in treating cancer, it suffers from the lack of knowledge base for proper cancer drug selections. This eminent need has become even more apparent considering the upcoming genomics data. Methods In this paper, a personalized medicine knowledge base is constructed by integrating various cancer drugs, drug-target database, and knowl- edge sources for the proper cancer drugs and their target selections. Based on the knowledge base, a bioinformatics approach for cancer drugs selec- tion in precision medicine is developed. It integrates personal molecular profile data, including copy number variation, mutation, and gene expression. Results By analyzing the 85 triple negative breast cancer (TNBC) patient data in the Cancer Genome Altar, we have shown that 71.7% of the TNBC patients have FDA approved drug targets, and 51.7% of the patients have more than one drug target.
    [Show full text]
  • Integration of Molecular Pathology, Epidemiology and Social Science for Global Precision Medicine
    Expert Review of Molecular Diagnostics ISSN: 1473-7159 (Print) 1744-8352 (Online) Journal homepage: http://www.tandfonline.com/loi/iero20 Integration of molecular pathology, epidemiology and social science for global precision medicine Akihiro Nishi, Danny A Milner Jr, Edward L Giovannucci, Reiko Nishihara, Andy S Tan, Ichiro Kawachi & Shuji Ogino To cite this article: Akihiro Nishi, Danny A Milner Jr, Edward L Giovannucci, Reiko Nishihara, Andy S Tan, Ichiro Kawachi & Shuji Ogino (2015): Integration of molecular pathology, epidemiology and social science for global precision medicine, Expert Review of Molecular Diagnostics, DOI: 10.1586/14737159.2016.1115346 To link to this article: http://dx.doi.org/10.1586/14737159.2016.1115346 Published online: 04 Dec 2015. Submit your article to this journal Article views: 82 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=iero20 Download by: [University of California, San Francisco] Date: 31 December 2015, At: 13:21 Perspectives Integration of molecular pathology, epidemiology and social science for global precision medicine Expert Rev. Mol. Diagn. Early online, 1–13 (2015) Akihiro Nishi1,2, The precision medicine concept and the unique disease principle imply that each patient has Danny A Milner Jr3,4, unique pathogenic processes resulting from heterogeneous cellular genetic and epigenetic Edward L alterations and interactions between cells (including immune cells) and exposures, including Giovannucci5,6,7, dietary, environmental, microbial and lifestyle factors. As a core method field in population health science and medicine, epidemiology is a growing scientific discipline that can analyze Reiko Nishihara5,6,8,9, 9,10 disease risk factors and develop statistical methodologies to maximize utilization of big data Andy S Tan , on populations and disease pathology.
    [Show full text]
  • Systems Biology and Experimental Model Systems of Cancer
    Journal of Personalized Medicine Review Systems Biology and Experimental Model Systems of Cancer Gizem Damla Yalcin y , Nurseda Danisik y, Rana Can Baygin y and Ahmet Acar * Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, Çankaya, Ankara 06800, Turkey; [email protected] (G.D.Y.); [email protected] (N.D.); [email protected] (R.C.B.) * Correspondence: [email protected] These authors contributed equally. y Received: 7 September 2020; Accepted: 16 October 2020; Published: 19 October 2020 Abstract: Over the past decade, we have witnessed an increasing number of large-scale studies that have provided multi-omics data by high-throughput sequencing approaches. This has particularly helped with identifying key (epi)genetic alterations in cancers. Importantly, aberrations that lead to the activation of signaling networks through the disruption of normal cellular homeostasis is seen both in cancer cells and also in the neighboring tumor microenvironment. Cancer systems biology approaches have enabled the efficient integration of experimental data with computational algorithms and the implementation of actionable targeted therapies, as the exceptions, for the treatment of cancer. Comprehensive multi-omics data obtained through the sequencing of tumor samples and experimental model systems will be important in implementing novel cancer systems biology approaches and increasing their efficacy for tailoring novel personalized treatment modalities in cancer. In this review, we discuss emerging cancer systems biology approaches based on multi-omics data derived from bulk and single-cell genomics studies in addition to existing experimental model systems that play a critical role in understanding (epi)genetic heterogeneity and therapy resistance in cancer.
    [Show full text]
  • Translational Bioinformatics: Biobanks in the Precision Medicine Era
    Pacific Symposium on Biocomputing 25:743-747(2020) Translational Bioinformatics: Biobanks in the Precision Medicine Era Marylyn D Ritchie Department of Genetics and Institute for Biomedical Informatics, The Perelman School of Medicine, University of Pennsylvania, A301 Richards Building, 3700 Hamilton Walk Philadelphia, PA 19104, USA Email: [email protected] Jason H Moore Department of Biostatistics, Epidemiology, & Informatics, Department of Genetics, and Institute for Biomedical Informatics, The Perelman School of Medicine, University of Pennsylvania, D202 Richards Building, 3700 Hamilton Walk Philadelphia, PA 19104, USA Email: [email protected] Ju Han Kim Department of Biomedical Sciences, Seoul National University Graduate School, Biomedical Science Building 117, 103 Daehakro, Jongro-gu, Seoul 110-799, Korea Email: [email protected] Translational bioinformatics (TBI) is focused on the integration of biomedical data science and informatics. This combination is extremely powerful for scientific discovery as well as translation into clinical practice. Several topics where TBI research is at the leading edge are 1) the use of large- scale biobanks linked to electronic health records, 2) pharmacogenomics, and 3) artificial intelligence and machine learning. This perspective discusses these three topics and points to the important elements for driving precision medicine into the future. Keywords: translational bioinformatics, precision medicine, pharmacogenomics, artificial intelligence, machine learning, electronic health records, biobank 1. Introduction Translational bioinformatics (TBI) is a multi-disciplinary and rapidly emerging field of biomedical data sciences and informatics that includes the development of technologies that efficiently translate basic molecular, genetic, cellular, and clinical data into clinical products or health implications. TBI is a relatively young discipline that spans a wide spectrum from big data to comprehensive analytics to diagnostics and therapeutics.
    [Show full text]
  • UNDERSTANDING the LANDSCAPE and INTEGRATION of PATHOLOGY with the COMMUNITY CANCER CARE TEAM Table of Contents
    UNDERSTANDING THE LANDSCAPE AND INTEGRATION OF PATHOLOGY WITH THE COMMUNITY CANCER CARE TEAM Table of Contents Introduction ..................................................................................................................... 2 Central Topics ................................................................................................................. 3 Cancer Biomarker Testing and Molecular Pathology ...................................................... 3 Cancer Diagnosis and Treatment Discussions ................................................................. 7 Hospital Tumor Boards, Case Conferences, and Cancer Committee ............................. 9 Clinical Practice Guideline Collaborations .................................................................... 10 Evolving Themes and Future Direction ......................................................................... 11 Summary ........................................................................................................................ 11 Publication Abstracts ..................................................................................................... 11 References ..................................................................................................................... 25 Introduction In an era of precision medicine and rapidly advancing cancer therapeutics, the role of pathology in the diagnosis and management of cancer is evolving. Pathologists are uniquely positioned at the intersection of multiple points along the cancer
    [Show full text]