Systems Biology and Experimental Model Systems of Cancer
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Integrative Analysis of Exogenous, Endogenous, Tumour and Immune
Gut Online First, published on February 6, 2018 as 10.1136/gutjnl-2017-315537 Recent advances in basic science Integrative analysis of exogenous, endogenous, Gut: first published as 10.1136/gutjnl-2017-315537 on 6 February 2018. Downloaded from tumour and immune factors for precision medicine Shuji Ogino,1,2,3,4 Jonathan A Nowak,1 Tsuyoshi Hamada,2 Amanda I Phipps,5,6 Ulrike Peters,5,6 Danny A Milner Jr,7 Edward L Giovannucci,3,8,9 Reiko Nishihara,1,3,4,8,10 Marios Giannakis,4,11,12 Wendy S Garrett,4,11,13 Mingyang Song8,14,15 For numbered affiliations see ABSTRACT including inflammatory and immune cells. A fraction end of article. Immunotherapy strategies targeting immune checkpoints of somatic mutations may result in the generation of such as the CTLA4 and CD274 (programmed cell death new antigens (neoantigens) that can be recognised as Correspondence to 1 ligand 1, PD-L1)/PDCD1 (programmed cell death 1, non-self by the immune system. During an individu- Dr Shuji Ogino, Program in MPE Molecular Pathological PD-1) T-cell coreceptor pathways are revolutionising al's life-course, cells may acquire somatic molecular Epidemiology, Brigham and oncology. The approval of pembrolizumab use for alterations, and some of these cells undergo clonal Women’s Hospital, Boston, MA solid tumours with high-level microsatellite instability expansion, displaying hallmarks of early neoplasia. 02215, USA; shuji_ ogino@ dfci. or mismatch repair deficiency by the US Food and Many of these cells are likely kept in check or killed harvard. edu Drug Administration highlights promise of precision by the host immune system before they can develop Received 24 October 2017 immuno-oncology. -
C. Elegans Whole Genome Sequencing Reveals Mutational Signatures Related to Carcinogens and DNA Repair Deficiency
Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press C. elegans whole genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency Authors: Bettina Meier * (1); Susanna L Cooke * (2); Joerg Weiss (1); Aymeric P Bailly (1,3); Ludmil B Alexandrov (2); John Marshall (2); Keiran Raine (2); Mark Maddison (2); Elizabeth Anderson (2); Michael R Stratton (2); Anton Gartner * (1); Peter J Campbell * (2,4,5). * These authors contributed equally to this project. Institutions: (1) Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK. (2) Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK. (3) CRBM/CNRS UMR5237, University of Montpellier, Montpellier, France. (4) Department of Haematology, University of Cambridge, Cambridge, UK. (5) Department of Haematology, Addenbrooke’s Hospital, Cambridge, UK. Address for correspondence: Dr Peter J Campbell, Dr Anton Gartner, Cancer Genome Project, Centre for Gene Regulation and Expression, Wellcome Trust Sanger Institute, The University of Dundee, Hinxton CB10 1SA, Dow Street, Cambridgeshire, Dundee DD1 5EH UK. UK. Tel: +44 (0) 1223 494745 Phone: +44 (0) 1382 385809 Fax: +44 (0) 1223 494809 E-mail: [email protected] E-mail: [email protected] Running title: mutation profiling in C. elegans Keywords: mutation pattern, genetic and environmental factors, C. elegans, cisplatin, aflatoxin B1, whole-genome sequencing. Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Mutation is associated with developmental and hereditary disorders, ageing and cancer. While we understand some mutational processes operative in human disease, most remain mysterious. -
Abstracts In
ECCB 2014 Accepted Posters with Abstracts G: Bioinformatics of health and disease G01: Emile Rugamika Chimusa, Jacquiline Wangui Mugo and Nicola Mulder. Leveraging ancestry along the genome of admixed individuals to resolve missing heritability in disease scoring statistics Abstract: Human genetics has been haunted by the mystery of “missing heritability” of common traits. Although studies have discovered several variants associated with common diseases and traits, these variants typically appear to explain only a minority of the heritability. Resolving missing heritability, the difference between phenotypic variance explained by associated SNPs and estimates of narrow-sense heritability (h2), will inform strategies for disease mapping and prediction of complex traits. Among biased estimates of h2 due to epistatic interactions and rare variants not captured by genotyping arrays have been cited to be the most can be the most explanations for missing heritability. Here, we present an approach for estimating heritability of traits based on sharing local ancestry segments between pairs of unrelated individuals in an admixed population. From simulation data and real data, we demonstrated that our approach outperformed current approaches for estimating heritability of traits and holds values in admixture mapping for deconvoluting genes underlying ethnic differences in complex diseases risk. G02: Sylvain Mareschal, Pierre-Julien Viailly, Philippe Bertrand, Fabienne Desmots-Loyer, Elodie Bohers, Catherine Maingonnat, Karen Leroy, Thierry Fest and Fabrice Jardin. Next- Generation Sequencing applied to tailor targeted therapies in lymphoma: the RELYSE project Abstract: Non-Hodgkin Lymphomas (NHL) are lymphoid cell malignancies accounting for about 4% of all cancers, with an incidence rate of 12 cases per 100,000 and per year in Europe. -
The Future of Precision Medicine : Potential Impacts for Health Technology Assessment
This is a repository copy of The Future of Precision Medicine : Potential Impacts for Health Technology Assessment. White Rose Research Online URL for this paper: https://eprints.whiterose.ac.uk/133069/ Version: Accepted Version Article: Love-Koh, James orcid.org/0000-0001-9009-5346, Peel, Alison, Rejon-Parilla, Juan Carlos et al. (6 more authors) (2018) The Future of Precision Medicine : Potential Impacts for Health Technology Assessment. Pharmacoeconomics. pp. 1439-1451. ISSN 1179-2027 https://doi.org/10.1007/s40273-018-0686-6 Reuse This article is distributed under the terms of the Creative Commons Attribution-NonCommercial (CC BY-NC) licence. This licence allows you to remix, tweak, and build upon this work non-commercially, and any new works must also acknowledge the authors and be non-commercial. You don’t have to license any derivative works on the same terms. More information and the full terms of the licence here: https://creativecommons.org/licenses/ Takedown If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing [email protected] including the URL of the record and the reason for the withdrawal request. [email protected] https://eprints.whiterose.ac.uk/ The Future of Precision Medicine: Potential Impacts for Health Technology Assessment Title: The Future of Precision Medicine: Potential Impacts for Health Technology Assessment Authors: James Love-Koh1,2, Alison Peel1, Juan Carlos Rejon-Parilla3, Kate Ennis1,4, Rosemary Lovett3, Andrea Manca2,5, Anastasia Chalkidou6, Hannah Wood1, Matthew Taylor1 1 YorK Health Economics Consortium 2 Centre for Health Economics, University of YorK 3 National Institute for Health and Care Excellence 4 Institute of Infection and Global Health, University of Liverpool 5 Luxembourg Institute of Health 6 Kings Technology Evaluation Centre Corresponding Author Details: Name: James Love-Koh Address: Centre for Health Economics, Alcuin A Block, University of York, Heslington, York, YO10 5DD, UK. -
Systems Biology Lecture Outline (Systems Biology) Michael K
Spring 2019 – Epigenetics and Systems Biology Lecture Outline (Systems Biology) Michael K. Skinner – Biol 476/576 CUE 418, 10:35-11:50 am, Tuesdays & Thursdays January 22 & 29, 2019 Weeks 3 and 4 Systems Biology (Components & Technology) Components (DNA, Expression, Cellular, Organ, Physiology, Organism, Differentiation, Development, Phenotype, Evolution) Technology (Genomics, Transcriptomes, Proteomics) (Interaction, Signaling, Metabolism) Omics (Data Processing and Resources) Required Reading ENCODE (2012) ENCODE Explained. Nature 489:52-55. Tavassoly I, Goldfarb J, Iyengar R. (2018) Essays Biochem. 62(4):487-500. Literature Sundaram V, Wang T. Transposable Element Mediated Innovation in Gene Regulatory Landscapes of Cells: Re-Visiting the "Gene-Battery" Model. Bioessays. 2018 40(1). doi: 10.1002/bies.201700155. Abil Z, Ellefson JW, Gollihar JD, Watkins E, Ellington AD. Compartmentalized partnered replication for the directed evolution of genetic parts and circuits. Nat Protoc. 2017 Dec;12(12):2493- 2512. Filipp FV. Crosstalk between epigenetics and metabolism-Yin and Yang of histone demethylases and methyltransferases in cancer. Brief Funct Genomics. 2017 Nov 1;16(6):320-325. Chen Z, Li S, Subramaniam S, Shyy JY, Chien S. Epigenetic Regulation: A New Frontier for Biomedical Engineers. Annu Rev Biomed Eng. 2017 Jun 21;19:195-219. Hollick JB. Paramutation and related phenomena in diverse species. Nat Rev Genet. 2017 Jan;18(1):5-23. Macovei A, Pagano A, Leonetti P, Carbonera D, Balestrazzi A, Araújo SS. Systems biology and genome-wide approaches to unveil the molecular players involved in the pre-germinative metabolism: implications on seed technology traits. Plant Cell Rep. 2017 May;36(5):669-688. Bagchi DN, Iyer VR. -
Csbc Research and Highlights (2016-2020)
Released March 2021 CSBC RESEARCH AND HIGHLIGHTS (2016-2020) Shannon Hughes, Ph.D. Hannah Dueck, Ph.D. Dan Gallahan, Ph.D. NCI Division of Cancer Biology June 15, 2020 1 Released March 2021 CSBC Research and Highlights (2016-2020) The major goal of the NCI Cancer Systems Biology Consortium initiative is to advance the mechanistic understanding of cancer using systems biology approaches that build and test predictive models of disease initiation, progression, and response to treatment. While a translational research component is not required for CSBC-supported Centers and Projects the ultimate goal of CSBC research is to make a positive impact on the lives of cancer patients. Although not explicitly solicited, five major research themes (U54s) and questions (U01s) have emerged across the CSBC portfolio: (a) the role of tumor heterogeneity and evolution in cancer; (b) biological mechanisms of therapeutic sensitivity and resistance; (c) tumor-immune interactions in cancer progression and treatment; (d) cell-cell interactions and complexities of the tumor microenvironment; and (e) systems analysis of metastatic disease. This document provides CSBC research highlights related to the five broad areas above as compiled by NCI Program Staff. The overview is not meant to be an exhaustive literature review within these areas of cancer biology but reflect contributions from CSBC investigators. Therefore, all references are purposefully limited to CSBC-supported manuscripts to highlight the breadth of research and impact across the CSBC portfolio. In some cases, links to papers currently under review are provided. Only a subset of the over 430 consortium publications (as of May 15, 2020) are highlighted here, a more complete collection of publications and tools associated with CSBC research is available through the Cancer Complexity Knowledge Portal. -
Epigenetics and Systems Biology 1St Edition Ebook
EPIGENETICS AND SYSTEMS BIOLOGY 1ST EDITION PDF, EPUB, EBOOK Leonie Ringrose | 9780128030769 | | | | | Epigenetics and Systems Biology 1st edition PDF Book Regulation of lipogenic gene expression by lysine-specific histone demethylase-1 LSD1. BEDTools: a flexible suite of utilities for comparing genomic features. New technologies are also needed to study higher order chromatin organization and function. For example, acetylation of the K14 and K9 lysines of the tail of histone H3 by histone acetyltransferase enzymes HATs is generally related to transcriptional competence. The idea that multiple dynamic modifications regulate gene transcription in a systematic and reproducible way is called the histone code , although the idea that histone state can be read linearly as a digital information carrier has been largely debunked. Namespaces Article Talk. It seems existing structures act as templates for new structures. As part of its efforts, the society launched a journal, Epigenetics , in January with the goal of covering a full spectrum of epigenetic considerations—medical, nutritional, psychological, behavioral—in any organism. Sooner or later, with the advancements in biomedical tools, the detection of such biomarkers as prognostic and diagnostic tools in patients could possibly emerge out as alternative approaches. Genotype—phenotype distinction Reaction norm Gene—environment interaction Gene—environment correlation Operon Heritability Quantitative genetics Heterochrony Neoteny Heterotopy. The lysine demethylase, KDM4B, is a key molecule in androgen receptor signalling and turnover. Khan, A. Hidden categories: Webarchive template wayback links All articles lacking reliable references Articles lacking reliable references from September Wikipedia articles needing clarification from January All articles with unsourced statements Articles with unsourced statements from June This mechanism enables differentiated cells in a multicellular organism to express only the genes that are necessary for their own activity. -
Human Genetics: International Projects and Personalized Medicine
Drug Metabol Pers Ther 2016; 31(1): 3–8 Mini Review Maria Apellaniz-Ruiza, Cristina Gallegoa, Sara Ruiz-Pintoa, Angel Carracedo and Cristina Rodríguez-Antona* Human genetics: international projects and personalized medicine DOI 10.1515/dmpt-2015-0032 Received August 31, 2015; accepted October 19, 2015; previously Introduction published online November 18, 2015 Genetic variation databases describe naturally occur- Abstract: In this article, we present the progress driven ring genetic differences among individuals of the same by the recent technological advances and new revolu- species. This variation, accounting for 0.1% of our DNA tionary massive sequencing technologies in the field of [1], permits the flexibility and survival of a population human genetics. We discuss this knowledge in relation in the face of changing environmental circumstances, with drug response prediction, from the germline genetic but it also influences how people differ in their risk of variation compiled in the 1000 Genomes Project or in the disease or their response to drugs. It is well known that Genotype-Tissue Expression project, to the phenome- variability in response to drug therapy is the rule rather genome archives, the international cancer projects, such than the exception for most drugs, and these differences as The Cancer Genome Atlas or the International Cancer are among the major challenges in current clinical prac- Genome Consortium, and the epigenetic variation and its tice, drug development, and drug regulation [2, 3]. Thus, influence in gene expression, including the regulation of rather than accepting the “one drug fits all” approach, drug metabolism. This review is based on the lectures pre- researchers envision that drugs need to be tailored to fit sented by the speakers of the Symposium “Human Genet- the profile of each individual patient. -
Strategic Plan 2011-2016
Strategic Plan 2011-2016 Wellcome Trust Sanger Institute Strategic Plan 2011-2016 Mission The Wellcome Trust Sanger Institute uses genome sequences to advance understanding of the biology of humans and pathogens in order to improve human health. -i- Wellcome Trust Sanger Institute Strategic Plan 2011-2016 - ii - Wellcome Trust Sanger Institute Strategic Plan 2011-2016 CONTENTS Foreword ....................................................................................................................................1 Overview .....................................................................................................................................2 1. History and philosophy ............................................................................................................ 5 2. Organisation of the science ..................................................................................................... 5 3. Developments in the scientific portfolio ................................................................................... 7 4. Summary of the Scientific Programmes 2011 – 2016 .............................................................. 8 4.1 Cancer Genetics and Genomics ................................................................................ 8 4.2 Human Genetics ...................................................................................................... 10 4.3 Pathogen Variation .................................................................................................. 13 4.4 Malaria -
What Are Precision Medicine and Personalized Medicine?
What Are Precision Medicine and Personalized Medicine? Precision medicine, also known as personalized medicine, is a new frontier for healthcare combining genomics, big data analytics, and population health. Source: Thinkstock Since the beginning of recorded history, healthcare practitioners have striven to make their actions more effective for their patients by experimenting with different treatments, observing and sharing their results, and improving upon the efforts of previous generations. Becoming more accurate, precise, proactive, and impactful for each individual that comes under their care has always been the goal of all clinicians, no matter how basic the tools at their disposal. But now, modern physicians and scientists are now able to take this mission far, far beyond the reach of their ancestors with the help of electronic health records, genetic testing, big data analytics, and supercomputing – all the ingredients required to engage in what is quickly becoming truly precise and personalized medicine. Precision medicine, also commonly referred to as personalized medicine, is one of the most promising approaches to tackling diseases that have thus far eluded effective treatments or cures. Cancer, neurodegenerative diseases, and rare genetic conditions take an enormous toll on individuals, families and societies as a whole. Approximately 1.7 million new cancer cases were diagnosed in the United States in 2017. Around 600,000 deaths were expected during that year, according to the American Cancer Society. The Agency for Healthcare Research and Quality adds that the direct economic impact of cancer is around $80 billion per year – loss of productivity, wages, and caregiver needs sap billions more from the economy. -
Advancing Standards for Precision Medicine
Advancing Standards for Precision Medicine FINAL REPORT Prepared by: Audacious Inquiry on behalf of the Office of the National Coordinator for Health Information Technology under Contract No. HHSM-500-2017-000101 Task Order No. HHSP23320100013U January 2021 ONC Advancing Standards for Precision Medicine Table of Contents Executive Summary ...................................................................................................................................... 5 Standards Development and Demonstration Projects ............................................................................ 5 Mobile Health, Sensors, and Wearables ........................................................................................... 5 Social Determinants of Health (SDOH) ............................................................................................. 5 Findings and Lessons Learned .......................................................................................................... 6 Recommendations ........................................................................................................................................ 6 Introduction ................................................................................................................................................... 7 Background ................................................................................................................................................... 7 Project Purpose, Goals, and Objectives .................................................................................................. -
Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings
Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation Nishihara, Reiko, Tyler J. VanderWeele, Kenji Shibuya, Murray A. Mittleman, Molin Wang, Alison E. Field, Edward Giovannucci, Paul Lochhead, and Shuji Ogino. 2015. “Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings.” European Journal of Epidemiology 30 (10): 1129–35. https://doi.org/10.1007/ s10654-015-0088-4. Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:41392032 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Open Access Policy Articles, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#OAP HHS Public Access Author manuscript Author Manuscript Author ManuscriptEur J Epidemiol Author Manuscript. Author Author Manuscript manuscript; available in PMC 2016 October 07. Published in final edited form as: Eur J Epidemiol. 2015 October ; 30(10): 1129–1135. doi:10.1007/s10654-015-0088-4. Molecular Pathological Epidemiology Gives Clues to Paradoxical Findings Reiko Nishiharaa,b,c, Tyler J. VanderWeeled,e, Kenji Shibuyac, Murray A. Mittlemand,f, Molin Wangd,e,g, Alison E. Fieldd,g,h,i, Edward Giovannuccia,d,g, Paul Lochheadi,j, and Shuji Oginob,d,k aDepartment of Nutrition, Harvard T.H. Chan School of Public Health, 655 Huntington Ave., Boston, Massachusetts 02115 USA bDepartment of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, 450 Brookline Ave., Boston, Massachusetts 02215 USA cDepartment of Global Health Policy, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, Japan dDepartment of Epidemiology, Harvard T.H.