Germline Determinants of the Somatic Mutation Landscape in 2,642 Cancer Genomes

Total Page:16

File Type:pdf, Size:1020Kb

Germline Determinants of the Somatic Mutation Landscape in 2,642 Cancer Genomes bioRxiv preprint doi: https://doi.org/10.1101/208330; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Germline determinants of the somatic mutation landscape in 2,642 cancer genomes Sebastian M Waszak1*, Grace Tiao2*, Bin Zhu3*, Tobias Rausch1*, Francesc Muyas4,5#, Bernardo Rodríguez-Martín6,7#, Raquel Rabionet4#, Sergei Yakneen1#, Georgia Escaramis4,8, Yilong Li9, Natalie Saini10, Steven A Roberts11, German M Demidov4,5, Esa Pitkänen1; Olivier Delaneau12-14, Jose Maria Heredia-Genestar15, Joachim Weischenfeldt1,16, Suyash S Shringarpure17, Jieming Chen18; Hidewaki Nakagawa19, Ludmil B Alexandrov20, Oliver Drechsel4,5, L Jonathan Dursi21, Ayellet V Segre2, Erik Garrison9, Serap Erkek1, Nina Habermann1, Lara Urban22, Ekta Khurana23, Andy Cafferkey22, Shuto Hayashi24, Seiya Imoto25, Lauri A Aaltonen26, Eva G Alvarez6,7, Adrian Baez-Ortega27, Matthew Bailey33, Mattia Bosio4,5, Alicia L Bruzos6,7, Ivo Buchhalter28, Carlos D. Bustamante29, Claudia Calabrese22, Anthony DiBiase30, Mark Gerstein31-33, Aliaksei Z Holik4,5, Xing Hua3, Kuan-lin Huang34, Ivica Letunic35, Leszek J Klimczak36, Roelof Koster3, Sushant Kumar31, Mike McLellan34, Jay Mashl34, Lisa Mirabello3, Steven Newhouse22, Aparna Prasad4,5, Gunnar Rätsch37, Matthias Schlesner28, Roland Schwarz38, Pramod Sharma30, Tal Shmaya17, Nikos Sidiropoulos16, Lei Song3, Hana Susak4,5, Tomas Tanskanen26, Marta Tojo6,7, David C Wedge39, Mark Wright29, Ying Wu17, Kai Ye40,41, Venkata D Yellapantula40,41, Jorge Zamora6,7, Atul J Butte18, Gad Getz2,42, Jared Simpson43, Li Ding34, Tomas Marques-Bonet15, Arcadi Navarro15, Alvis Brazma22, Peter Campbell44, Stephen J Chanock3, Nilanjan Chatterjee45, Oliver Stegle1, Reiner Siebert46, Stephan Ossowski4,5,47# , Olivier Harismendy48#, Dmitry A Gordenin10#, Jose MC Tubio6,7*, Francisco M De La Vega17,29*, Douglas F Easton49*@, Xavier Estivill4*@, Jan O Korbel1,22*@, on behalf of the PCAWG Germline Working group% and the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Network *these authors contributed equally #these authors contributed equally @To whom correspondence should be addressed: Douglas F. Easton ([email protected]), Xavier Estivill ([email protected]) and Jan O. Korbel ([email protected]) 1 European Molecular Biology Laboratory (EMBL), Genome Biology Unit, 69117 Heidelberg, Germany. 2 The Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02124, USA. 3 Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, 9609 Medical Center Drive, Bethesda, Maryland 20892, USA. 4 Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain. 5 Universitat Pompeu Fabra, Barcelona, Spain. 6 Mobile Genomes & Disease, The Biomedical Research Centre - CINBIO, University of Vigo, 36310 Vigo, Spain. 7 Department of Biochemistry, Genetics and Immunology, Faculty of Biology, University of Vigo, Vigo 36310, Spain. 8 CIBER Epidemiología y Salud Pública (CIBERESP), Spain. 9 Cancer Genome Project, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire CB10 1SA, UK. 10 Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, NC, USA. 11 School of Molecular Biosciences, Washington State University, Pullman, WA 99164, USA. 12 Swiss Institute of Bioinformatics, University of Geneva, 1 Michel Servet, Geneva CH1211, Switzerland. 13 Department of Genetic Medicine and Development, University of Geneva, 1 Michel Servet, Geneva CH1211, Switzerland. 14 Institute of Genetics and Genomics in Geneva, University of Geneva, 1 Michel Servet, Geneva CH1211, Switzerland. 15 Institute of Evolutionary Biology (UPF-CSIC), Department of Experimental and Health Sciences, Pompeu Fabra University, Barcelona Biomedical Research Park, Doctor Aiguader 88, Barcelona, 08003, Spain. 1 bioRxiv preprint doi: https://doi.org/10.1101/208330; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 16 Biotech Research &Innovation Centre (BRIC), Copenhagen University and Finsen Laboratory, Rigshospitalet, Denmark. 17 Annai Systems, 1700 Aviara Parkway 130063, Carlsbad, CA 92013, USA. 18 Institute for Computational Health Sciences and Department of Pediatrics, University of California, San Francisco, California 94143, USA. 19 RIKEN Center for Integrative Medical Sciences, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan. 20 Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA. 21 Ontario Institute for Cancer Research, 661 University Ave, Suite 510, Toronto, ON M5G 0A3, Canada. 22 European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, CB10 1SD Hinxton, Cambridge, UK. 23 Sandra and Edward Meyer Cancer Center, Institute for Computational Biomedicine, Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, New York, USA. 24 Human Genome Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 25 Health Intelligence Center, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan. 26 Department of Medical and Clinical Genetics, Genome-Scale Biology Research Program, University of Helsinki, Finland. 27 Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK. 28 Division of Theoretical Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany. 29 Departments of Genetics and Biomedical Data Science, Stanford University School of Medicine, Stanford, CA, USA. 30 Cray Inc. 901 Fifth Avenue, Seattle, WA 98164, USA. 31 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA. 32 Department of Computer Science, Yale University, New Haven, CT, 06520, USA. 33 Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, 06520, USA. 34 The McDonnell Genome Institute, Washington University in St. Louis, Forest Park Avenue, Campus Box 8501, St Louis, Missouri 63108, USA. 35 Biobyte solutions GmbH, Bothestrasse 142, 69126 Heidelberg, Germany. 36 Integrative Bioinformatics Support Group, National Institute of Environmental Health Sciences, US National Institutes of Health, Research Triangle Park, North Carolina, USA. 37 Department of Computer Science, Swiss Federal Institute of Technology in Zurich, 8092, Switzerland. 38 Berlin Institute for Medical Systems Biology, Max Delbrueck Center for Molecular Medicine, Berlin, Germany. 39 Oxford Big Data Institute and Oxford Centre for Cancer Gene Research, Wellcome Trust Centre for Human Genetics, Oxford, UK. 40 McDonnell Genome Institute, Washington University, St. Louis, Missouri 63108, USA. 41 Division of Oncology, Department of Medicine, Washington University, St. Louis, Missouri 63108, USA. 42 Harvard Medical School, Boston, Massachusetts 02115, USA. 43 Ontario Institute for Cancer Research, Toronto, Ontario M5G 0A3, Canada. 44 Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, UK. 45 Department of Biostatistics, Bloomberg School of Public Health and Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA. 46 Institute of Human Genetics, University of Ulm, Ulm, Germany. 47 Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany. 48 Moores Cancer Center, School of Medicine, University of California San Diego, La Jolla, CA, USA. 49 Centre for Cancer Genetic Epidemiology, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK. 2 bioRxiv preprint doi: https://doi.org/10.1101/208330; this version posted November 1, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract Cancers develop through somatic mutagenesis, however germline genetic variation can markedly contribute to tumorigenesis via diverse mechanisms. We discovered and phased 88 million germline single nucleotide variants, short insertions/deletions, and large structural variants in whole genomes from 2,642 cancer patients, and employed this genomic resource to study genetic determinants of somatic mutagenesis across 39 cancer types. Our analyses implicate damaging germline variants in a variety of cancer predisposition and DNA damage response genes with specific somatic mutation patterns. Mutations in the MBD4 DNA glycosylase gene showed association with elevated C>T mutagenesis at CpG dinucleotides, a ubiquitous mutational process acting across tissues. Analysis of somatic structural variation exposed complex rearrangement patterns, involving cycles of templated insertions and tandem duplications, in BRCA1-deficient tumours. Genome-wide association analysis implicated common genetic variation at the APOBEC3 gene cluster with reduced basal levels of somatic mutagenesis attributable to APOBEC cytidine deaminases
Recommended publications
  • C. Elegans Whole Genome Sequencing Reveals Mutational Signatures Related to Carcinogens and DNA Repair Deficiency
    Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press C. elegans whole genome sequencing reveals mutational signatures related to carcinogens and DNA repair deficiency Authors: Bettina Meier * (1); Susanna L Cooke * (2); Joerg Weiss (1); Aymeric P Bailly (1,3); Ludmil B Alexandrov (2); John Marshall (2); Keiran Raine (2); Mark Maddison (2); Elizabeth Anderson (2); Michael R Stratton (2); Anton Gartner * (1); Peter J Campbell * (2,4,5). * These authors contributed equally to this project. Institutions: (1) Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK. (2) Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton, UK. (3) CRBM/CNRS UMR5237, University of Montpellier, Montpellier, France. (4) Department of Haematology, University of Cambridge, Cambridge, UK. (5) Department of Haematology, Addenbrooke’s Hospital, Cambridge, UK. Address for correspondence: Dr Peter J Campbell, Dr Anton Gartner, Cancer Genome Project, Centre for Gene Regulation and Expression, Wellcome Trust Sanger Institute, The University of Dundee, Hinxton CB10 1SA, Dow Street, Cambridgeshire, Dundee DD1 5EH UK. UK. Tel: +44 (0) 1223 494745 Phone: +44 (0) 1382 385809 Fax: +44 (0) 1223 494809 E-mail: [email protected] E-mail: [email protected] Running title: mutation profiling in C. elegans Keywords: mutation pattern, genetic and environmental factors, C. elegans, cisplatin, aflatoxin B1, whole-genome sequencing. Downloaded from genome.cshlp.org on September 28, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Mutation is associated with developmental and hereditary disorders, ageing and cancer. While we understand some mutational processes operative in human disease, most remain mysterious.
    [Show full text]
  • Abstracts In
    ECCB 2014 Accepted Posters with Abstracts G: Bioinformatics of health and disease G01: Emile Rugamika Chimusa, Jacquiline Wangui Mugo and Nicola Mulder. Leveraging ancestry along the genome of admixed individuals to resolve missing heritability in disease scoring statistics Abstract: Human genetics has been haunted by the mystery of “missing heritability” of common traits. Although studies have discovered several variants associated with common diseases and traits, these variants typically appear to explain only a minority of the heritability. Resolving missing heritability, the difference between phenotypic variance explained by associated SNPs and estimates of narrow-sense heritability (h2), will inform strategies for disease mapping and prediction of complex traits. Among biased estimates of h2 due to epistatic interactions and rare variants not captured by genotyping arrays have been cited to be the most can be the most explanations for missing heritability. Here, we present an approach for estimating heritability of traits based on sharing local ancestry segments between pairs of unrelated individuals in an admixed population. From simulation data and real data, we demonstrated that our approach outperformed current approaches for estimating heritability of traits and holds values in admixture mapping for deconvoluting genes underlying ethnic differences in complex diseases risk. G02: Sylvain Mareschal, Pierre-Julien Viailly, Philippe Bertrand, Fabienne Desmots-Loyer, Elodie Bohers, Catherine Maingonnat, Karen Leroy, Thierry Fest and Fabrice Jardin. Next- Generation Sequencing applied to tailor targeted therapies in lymphoma: the RELYSE project Abstract: Non-Hodgkin Lymphomas (NHL) are lymphoid cell malignancies accounting for about 4% of all cancers, with an incidence rate of 12 cases per 100,000 and per year in Europe.
    [Show full text]
  • Human Genetics: International Projects and Personalized Medicine
    Drug Metabol Pers Ther 2016; 31(1): 3–8 Mini Review Maria Apellaniz-Ruiza, Cristina Gallegoa, Sara Ruiz-Pintoa, Angel Carracedo and Cristina Rodríguez-Antona* Human genetics: international projects and personalized medicine DOI 10.1515/dmpt-2015-0032 Received August 31, 2015; accepted October 19, 2015; previously Introduction published online November 18, 2015 Genetic variation databases describe naturally occur- Abstract: In this article, we present the progress driven ring genetic differences among individuals of the same by the recent technological advances and new revolu- species. This variation, accounting for 0.1% of our DNA tionary massive sequencing technologies in the field of [1], permits the flexibility and survival of a population human genetics. We discuss this knowledge in relation in the face of changing environmental circumstances, with drug response prediction, from the germline genetic but it also influences how people differ in their risk of variation compiled in the 1000 Genomes Project or in the disease or their response to drugs. It is well known that Genotype-Tissue Expression project, to the phenome- variability in response to drug therapy is the rule rather genome archives, the international cancer projects, such than the exception for most drugs, and these differences as The Cancer Genome Atlas or the International Cancer are among the major challenges in current clinical prac- Genome Consortium, and the epigenetic variation and its tice, drug development, and drug regulation [2, 3]. Thus, influence in gene expression, including the regulation of rather than accepting the “one drug fits all” approach, drug metabolism. This review is based on the lectures pre- researchers envision that drugs need to be tailored to fit sented by the speakers of the Symposium “Human Genet- the profile of each individual patient.
    [Show full text]
  • Strategic Plan 2011-2016
    Strategic Plan 2011-2016 Wellcome Trust Sanger Institute Strategic Plan 2011-2016 Mission The Wellcome Trust Sanger Institute uses genome sequences to advance understanding of the biology of humans and pathogens in order to improve human health. -i- Wellcome Trust Sanger Institute Strategic Plan 2011-2016 - ii - Wellcome Trust Sanger Institute Strategic Plan 2011-2016 CONTENTS Foreword ....................................................................................................................................1 Overview .....................................................................................................................................2 1. History and philosophy ............................................................................................................ 5 2. Organisation of the science ..................................................................................................... 5 3. Developments in the scientific portfolio ................................................................................... 7 4. Summary of the Scientific Programmes 2011 – 2016 .............................................................. 8 4.1 Cancer Genetics and Genomics ................................................................................ 8 4.2 Human Genetics ...................................................................................................... 10 4.3 Pathogen Variation .................................................................................................. 13 4.4 Malaria
    [Show full text]
  • Executive Summary Toward a Comprehensive Genomic Analysis
    National Cancer Institute and National Human Genome Research Institute National Institutes of Health U.S. Department of Health and Human Services Executive Summary Toward a Comprehensive Genomic Analysis of Cancer Convened by: Andrew von Eschenbach, M.D., Director, National Cancer Institute Francis Collins, M.D., Ph.D., Director, National Human Genome Research Institute July 20-22, 2005 The Ritz-Carlton Washington, DC Workshop Executive Summary Purpose of the Workshop “Toward a Comprehensive Genomic Analysis of Cancer” was co-organized by the National Cancer Institute (NCI) and the National Human Genome Research Institute (NHGRI) as part of their collaboration to implement the recommendation of the National Cancer Advisory Board’s Working Group on Biomedical Technology to initiate a pilot phase of the Human Cancer Genome Project (HCGP). The long-term goal of the HCGP is to develop a comprehensive catalog of the genomic changes that occur in tumors and obtain an in-depth understanding about the relation of these changes to the biological processes in cancer. Such a complete information set will potentially revolutionize the cancer research community’s strategies to develop and implement major new approaches to prevent, detect, diagnose, and treat cancer, through much more efficient clinical trials and accelerated introduction of more effective therapies. The workshop explored critical issues in cancer biology, genomic technologies, bioinformatics, and the bioethical, consent, and legal issues that must be factored into the design and implementation of a two- phase approach to an HCGP, starting with a focused pilot program. The aim of the pilot phase is to demonstrate that comprehensive characterization of a tumor type1, when analyzed in conjunction with carefully obtained, deep biological information about the tumor type, will facilitate the development of clinically meaningful applications in a way that has previously been unavailable to cancer researchers.
    [Show full text]
  • Human Genetics 1990–2009
    Portfolio Review Human Genetics 1990–2009 June 2010 Acknowledgements The Wellcome Trust would like to thank the many people who generously gave up their time to participate in this review. The project was led by Liz Allen, Michael Dunn and Claire Vaughan. Key input and support was provided by Dave Carr, Kevin Dolby, Audrey Duncanson, Katherine Littler, Suzi Morris, Annie Sanderson and Jo Scott (landscaping analysis), and Lois Reynolds and Tilli Tansey (Wellcome Trust Expert Group). We also would like to thank David Lynn for his ongoing support to the review. The views expressed in this report are those of the Wellcome Trust project team – drawing on the evidence compiled during the review. We are indebted to the independent Expert Group, who were pivotal in providing the assessments of the Wellcome Trust’s role in supporting human genetics and have informed ‘our’ speculations for the future. Finally, we would like to thank Professor Francis Collins, who provided valuable input to the development of the timelines. The Wellcome Trust is a charity registered in England and Wales, no. 210183. Contents Acknowledgements 2 Overview and key findings 4 Landmarks in human genetics 6 1. Introduction and background 8 2. Human genetics research: the global research landscape 9 2.1 Human genetics publication output: 1989–2008 10 3. Looking back: the Wellcome Trust and human genetics 14 3.1 Building research capacity and infrastructure 14 3.1.1 Wellcome Trust Sanger Institute (WTSI) 15 3.1.2 Wellcome Trust Centre for Human Genetics 15 3.1.3 Collaborations, consortia and partnerships 16 3.1.4 Research resources and data 16 3.2 Advancing knowledge and making discoveries 17 3.3 Advancing knowledge and making discoveries: within the field of human genetics 18 3.4 Advancing knowledge and making discoveries: beyond the field of human genetics – ‘ripple’ effects 19 Case studies 22 4.
    [Show full text]
  • Systems Biology and Experimental Model Systems of Cancer
    Journal of Personalized Medicine Review Systems Biology and Experimental Model Systems of Cancer Gizem Damla Yalcin y , Nurseda Danisik y, Rana Can Baygin y and Ahmet Acar * Department of Biological Sciences, Middle East Technical University, Universiteler Mah. Dumlupınar Bulvarı 1, Çankaya, Ankara 06800, Turkey; [email protected] (G.D.Y.); [email protected] (N.D.); [email protected] (R.C.B.) * Correspondence: [email protected] These authors contributed equally. y Received: 7 September 2020; Accepted: 16 October 2020; Published: 19 October 2020 Abstract: Over the past decade, we have witnessed an increasing number of large-scale studies that have provided multi-omics data by high-throughput sequencing approaches. This has particularly helped with identifying key (epi)genetic alterations in cancers. Importantly, aberrations that lead to the activation of signaling networks through the disruption of normal cellular homeostasis is seen both in cancer cells and also in the neighboring tumor microenvironment. Cancer systems biology approaches have enabled the efficient integration of experimental data with computational algorithms and the implementation of actionable targeted therapies, as the exceptions, for the treatment of cancer. Comprehensive multi-omics data obtained through the sequencing of tumor samples and experimental model systems will be important in implementing novel cancer systems biology approaches and increasing their efficacy for tailoring novel personalized treatment modalities in cancer. In this review, we discuss emerging cancer systems biology approaches based on multi-omics data derived from bulk and single-cell genomics studies in addition to existing experimental model systems that play a critical role in understanding (epi)genetic heterogeneity and therapy resistance in cancer.
    [Show full text]
  • Discover What COSMIC Has to Offer
    Discover what COSMIC has to offer COSMIC – the Catalogue of Somatic Mutations in Cancer – is the world's largest source of expert manually curated somatic mutation information relating to human cancers. COSMIC provides a huge breadth and depth of high quality somatic data, which has been carefully curated, combined and standardised, across 16 years of expert manual curation. To date, we list over 37 million coding mutations plus substantial coverage of all other oncogenic mutation mechanisms (COSMIC v92, August 2020) for exploration, available on both GRCh 37 (hg19) and GRCh 38 (hg38) with consequence annotations on both parallel transcriptomes and proteomes. We pride ourselves on being the gold standard in somatic databases and boast well over 10,000 citations. Our user base consists globally in excess of 20,000 registered scientists, bioinformaticians and clinicians, including multiple field leaders and prominent clinical and pharmaceutical companies. COSMIC Cell Lines Project (CLP) COSMIC 3D Cancer Gene Census (CGC) Cancer Mutation Census (CMC) Mutational Signatures Mutation Actionability in Precision Oncology Be sure to follow us on social media and sign up to our release announcements to keep abreast cosmic-sanger cosmic_sanger COSMIC blog of our latest developments. Version 2.2 March 2021 Discover what COSMIC has to offer COSMIC COSMIC – the Catalogue of Somatic Mutations in Cancer – is the world's largest source of expert manually curated somatic mutation information relating to human cancers. COSMIC provides a huge breadth and depth of high quality somatic data, which has been carefully curated, combined and standardised, across 16 years of expert manual curation. The COSMIC suite includes: Cell Lines Project (CLP) The Cell lines site provides an interface for the Cell Lines Project, based at the Wellcome Sanger Institute, (UK).
    [Show full text]
  • Accessing Molecular Biology Information * Genome Browsers
    Accessing molecular biology information * Genome browsers - UCSC * NCBI * Galaxy Flow of genetic information and databases Exon 1 Exon 2 Exon 3 Exon 4 intron intron intron DNA transcription 5' 3' RNA Genbank/ EMBL splicing 5' UTR 3' UTR polyA mature coding sequence mRNA translation protein GenPept / SwissProt folding / UniProt Protein Data Bank (PDB) Databases, cont. Redundancy at GenBank => RefSeq Many sequences are represented more than once in GenBank 2003 RefSeq collection : curated secondary database non-redundant selected organisms •Genome DNA (assemblies) •Transcripts (RNA) •Protein http://www.ncbi.nlm.nih.gov/books/bv.fcg i?rid=handbook RefSeq vs GenBank GenBank RefSeq Not curated Curated Author submits NCBI creates from existing data Only author can revise NCBI reivses as new data emerge Multiple records from same loci Single records for each molecule common of major organisms Records can contradict each other No limit to species included Limited to model organisms Akin to primary literature Akin to review articles Archives with nucleotide sequences • Genbank/EMBL • Sequence read archive (NCBI) • GEO (Gene expression omnibus, NCBI) • 1000 Genomes Project • The Cancer Genome Atlas • The Cancer Genome Project • Species-specific databases like –FlyBase – WormBase – Saccharomyces Genome Database Genome sequencing using a shotgun approach Sequenced eukaryotic genomes Sequencing going wild ... BGI : "capacity to sequence the equivalent of 1,600 complete human genomes each day" "BGI and BGI Americas aim to build a library of digital
    [Show full text]
  • Michael Stratton on What's Next in Sequence
    News iN depth News iN Depth Driver mutations and new Q&A: Michael stratton on cancer genes have been emerg- ing at a steady rate over the last what’s Next in sequence few years, and some of them make good targets for new Tackling the challenges and opportunities in whole- drugs, such as BRAF and vemu- genome analyses of cancer rafenib (Zelboraf; Genentech). After scientists completed sequencing the human genome However, a lot of the emerging in 2003, “the world paused, wondering whether DNA se- cancer genes are recessive can- quencing had delivered all that it was going to deliver in the cer genes (tumor suppressor form of reference genomes and sets of genes and sets of pre- genes), which aren’t easy to use dicted proteins,” says Michael Stratton, MD, PhD, director as targets for novel cancer thera- of the Wellcome Trust Sanger Institute. But since then, DNA peutics because they are already Wellcome Collection London inactivated. sequencing has roared ahead at an astonishing pace, adding and Sequencing the genomes of thou- deepening genomic information for many species. But knowing the whole cancer sands of cancer samples has shown Stratton, a molecular biologist who led the team that cloned landscape is what’s important. how heterogeneous the disease Because we’re beginning to see so really is. “If we had wanted to create BRCA2 in 1995, founded Sanger’s Cancer Genome Project in cancer in a way that we could treat, 2000. He was appointed director of the 900-person Institute last many combinations of mutated this is not how we would’ve de- year.
    [Show full text]
  • Towards the Routine Use of in Silico Screenings for Drug Discovery Using Metabolic Modelling
    Biochemical Society Transactions (2020) https://doi.org/10.1042/BST20190867 Review Article Towards the routine use of in silico screenings for drug discovery using metabolic modelling Tamara Bintener, Maria Pires Pacheco and Thomas Sauter Life Sciences Research Unit, University of Luxembourg, Esch-Alzette, Luxembourg Downloaded from https://portlandpress.com/biochemsoctrans/article-pdf/doi/10.1042/BST20190867/877922/bst-2019-0867c.pdf by guest on 07 May 2020 Correspondence: Thomas Sauter ([email protected]) Currently, the development of new effective drugs for cancer therapy is not only hindered by development costs, drug efficacy, and drug safety but also by the rapid occurrence of drug resistance in cancer. Hence, new tools are needed to study the underlying mechan- isms in cancer. Here, we discuss the current use of metabolic modelling approaches to identify cancer-specific metabolism and find possible new drug targets and drugs for repurposing. Furthermore, we list valuable resources that are needed for the reconstruc- tion of cancer-specific models by integrating various available datasets with genome- scale metabolic reconstructions using model-building algorithms. We also discuss how new drug targets can be determined by using gene essentiality analysis, an in silico method to predict essential genes in a given condition such as cancer and how synthetic lethality studies could greatly benefit cancer patients by suggesting drug combinations with reduced side effects. Introduction Since Otto Warburg, it is known that some cancer cells have an altered metabolism such as preferring the production of ATP from aerobic glycolysis over oxidative phosphorylation [1]. What was believed to be the consequence of high mutation rates in cancer cells, is now regarded as required rewiring of metabolism, tailored by mutations and selection, to meet the high need for energy and cellular build- ing blocks to sustain rapid proliferation rates [2].
    [Show full text]
  • Exome Sequencing Identifies Frequent Mutation of the SWI/SNF Complex Gene PBRM1 in Renal Carcinoma
    Europe PMC Funders Group Author Manuscript Nature. Author manuscript; available in PMC 2011 July 27. Published in final edited form as: Nature. 2011 January 27; 469(7331): 539–542. doi:10.1038/nature09639. Europe PMC Funders Author Manuscripts Exome sequencing identifies frequent mutation of the SWI/SNF complex gene PBRM1 in renal carcinoma Ignacio Varela1, Patrick Tarpey1, Keiran Raine1, Dachuan Huang2, Choon Kiat Ong2, Philip Stephens1, Helen Davies1, David Jones1, Meng-Lay Lin1, Jon Teague1, Graham Bignell1, Adam Butler1, Juok Cho1, Gillian L. Dalgliesh1, Danushka Galappaththige1, Chris Greenman1, Claire Hardy1, Mingming Jia1, Calli Latimer1, King Wai Lau1, John Marshall1, Stuart McLaren1, Andrew Menzies1, Laura Mudie1, Lucy Stebbings1, David A. Largaespada3, L.F.A. Wessels4, Stephane Richard5,6, Richard J Kahnoski7, John Anema7, David A. Tuveson8, Pedro A. Perez-Mancera8, Ville Mustonen8, Andrej Fischer9,10, David J. Adams11, Alistair Rust11, Waraporn Chan-on2, Chutima Subimerb2, Karl Dykema12, Kyle Furge12, Peter J. Campbell1, Bin Tean Teh2,14, Michael R. Stratton1,15, and P. Andrew Futreal1 1 Cancer Genome Project, Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK 2NCCS-VARI Translational Research Laboratory, National Cancer Centre Singapore, 11 Hospital Drive, 169610, Singapore 3 Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA 4Bioinformatics and Statistics, Department of Molecular Biology, The Netherlands Cancer Institute. Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands 5Génétique Oncologique EPHE-INSERM U753, Faculté de Médecine Paris-Sud and Institut de Cancérologie Gustave Roussy, 94805 Villejuif 6Centre Expert National Cancer Rares INCa “PREDIR“, Service d'Urologie, Hôpital de Bicêtre, AP-HP, 94276 Le Kremlin- Bicêtre, France 7Department of Europe PMC Funders Author Manuscripts Urology, Spectrum Health Hospital, Grand Rapids, Michigan 49503, USA.
    [Show full text]