Characteristics of Ourmia Melon Virus

Total Page:16

File Type:pdf, Size:1020Kb

Characteristics of Ourmia Melon Virus داﻧﺶ ﺑﻴﻤﺎري ﺷﻨﺎﺳﻲ ﮔﻴﺎﻫﻲ ( ﺷﺎﭘﺎي ا: 6290- 2588 ، ﺷﺎﭘﺎي چ : -9270 2251) ﺳﺎل ﻫﻔﺘﻢ، ﺟﻠﺪ 2 ، ﺑﻬﺎر و ﺗﺎﺑﺴﺘﺎن 1397 Plant Pathology Science (eISSN:2588-6290, pISSN:2251-9270) Vol. 7(2), 2018 Characteristics of Ourmia melon virus (OuMV ) MINA RASTGOU Department of Plant Protection, Urmia University, Urmia, Iran (Corresponding author: [email protected]) Received: 13.04.2017 Accepted: 17.08.2017 Rastgou M. 2018. Characteristics of Ourmia melon virus (OuMV ). Plant Pathology Science 7(2): 34-46. DOI :10.2982/PPS.7.2.34 Abstract: Ourmia melon virus (OuMV ) is one of the viruses that cause mosaic disease in melon (Cucumis melo L.), in West-Azerbaijan Province and some other parts of Iran including Guilan, Fars and Alborz Provinces. This virus was first detected in diseased cucurbits with mosaic and ring spot symptoms, in Urmia in 1978. The virus has unique characteristics that differentiate it from other viruses that infect cucurbits. The virus particles are bacilliform with conical ends. Genome consists of three linear positive-sense single-stranded RNAs, each encoding one protein. Host range mostly limited to Cucurbitaceae and Solanaceae families. Ourmia melon virus , Epirus cherry virus and Cassava virus C are three species those are placed in the genus Ourmiavirus . Key words: Melon, Mosaic, Ringspot, Narnaviridae ﺧﺼﻮﺻﻴﺎت وﻳﺮوس ﺧﺮﺑﺰه ي اروﻣﻴﻪ ( OuMV ) ) ﻣﻴﻨﺎ راﺳﺘﮕﻮ ﮔﺮوه ﮔﻴﺎه ﭘﺰﺷﻜﻲ، داﻧﺸﮕﺎه اروﻣﻴﻪ درﻳﺎﻓﺖ: /24 /01 1396 ﭘﺬﻳﺮش : /26 /05 1396 راﺳﺘﮕﻮ م . 1397 . ﺧﺼﻮﺻﻴﺎت وﻳﺮوس ﺧﺮﺑﺰه ي اروﻣﻴﻪ ( OuMV ). داﻧﺶ ﺑ ﻴﻤﺎري ﺷﻨﺎﺳﻲ ﮔﻴﺎﻫﻲ ):2(7 46 -34 . -34 6 4 DOI :10.2982/PPS.7.2.34 ﭼﻜﻴﺪه : وﻳﺮوس ﺧﺮﺑﺰه ي اروﻣﻴﻪ ﻳﻜﻲ از ﻋﻮاﻣﻞ ﺑﻴﻤﺎري ﻣﻮزاﻳﻴﻚ ﺧﺮﺑﺰه (.Cucumis melo L ) در اﺳﺘﺎن آذرﺑﺎﻳﺠﺎن ﻏﺮﺑﻲ و ﺳ ﺎﻳﺮ ﻧﻘﺎط اﻳﺮان از ﺟﻤﻠﻪ اﺳﺘﺎﻧ ﻬﺎي ﮔﻴﻼن ، ﻓﺎرس و اﻟﺒﺮز اﺳﺖ . اﻳﻦ وﻳﺮوس اوﻟﻴﻦ ﺑﺎر در ﺳﺎل 1978 از روي ﻛﺪوﻳ ﻴﺎن داراي ﻧﺸﺎﻧﻪ ﻣﻮزاﻳ ﻴﻚ و ﻟﻜﻪ ﺣﻠﻘﻮي در اروﻣﻴﻪ ﺷﻨﺎﺳﺎﻳﻲ ﺷﺪ . از ﻫﻤﺎن اﺑﺘﺪاي ﺗﺤﻘﻴﻖ روي اﻳﻦ وﻳﺮوس ﻣﺸﺨﺺ ﺷﺪ ﻛﻪ وﻳﺮوس داراي ﺧﺼﻮﺻﻴﺎت ﻣﻨﺤﺼﺮ ﺑﻪ ﻓﺮدي اﺳﺖ ﻛﻪ آن را از ﺳﺎ ﻳﺮ وﻳﺮوس ﻫﺎي آﻟﻮده ﻛﻨﻨﺪه ﻛﺪوﻳﻴﺎن ﻣﺘﻤﺎﻳﺰ ﻣﻲ .ﺪﻨﻛ ﭘﻴﻜﺮه ﻫﺎي وﻳﺮوس ﺗﺎ اﻧﺪازه اي ﺑﺎﺳﻴﻠﻲ ﺷﻜﻞ ﻫﺴﺘﻨﺪ و دو اﻧﺘﻬﺎي آن ﻫﺎ زاوﻳﻪ دار اﺳﺖ . ژﻧﻮم وﻳﺮوس ﺑﻪ ﺻﻮرت ﺳﻪ ﻗﻄﻌﻪ آر . .ان اي ﺗﻚ رﺷﺘﻪ اي ﺑﺎ ﻗﻄﺒﻴﺖ ﻣﺜﺒﺖ ﻣﻲ ﺑﺎﺷﺪ ﻛﻪ ﻫﺮ ﻛﺪام ﻳﻚ ﭘﺮوﺗﻴﻴﻦ ﻛﺪ ﻣﻲ ﻛﻨﻨﺪ . داﻣﻨﻪ ﻣﻴﺰﺑﺎﻧﻲ وﻳﺮوس در ﻃﺒ ﻴﻌﺖ ﺑﻴﺸﺘﺮ ﺷﺎﻣﻞ ﮔﻴﺎﻫﺎن ﺗﻴﺮه ﻛﺪوﻳﻴﺎن و ﺑﺎدﻣﺠﺎﻧﻴﺎن اﺳﺖ . ﻧﺎﻗﻞ ﻃﺒﻴﻌﻲ ﺑﺮاي وﻳﺮوس ﻣﺸﺨﺺ ﻧﺸﺪه اﺳﺖ . وﻳﺮوس ﺧﺮﺑﺰه ي اروﻣﻴﻪ ﻫﻤﺮاه ﺑﺎ وﻳﺮوس اﭘﻴﺮوس ﮔﻴﻼس و وﻳﺮوس ﺳﻲ ﻛﺎﺳﺎوا در ﺟﻨﺲ اورﻣﻴﺎوﻳﺮوس ( Ourmiavirus ) ﻗﺮار داده ﺷﺪه اﺳﺖ . واژه ﻫﺎي ﻛﻠﻴﺪي: ﺧﺮﺑﺰه، ﻣﻮزاﻳﻴﻚ، ﻟﻜﻪ ﺣﻠﻘﻮي، Narnaviridae ﻣﺴﻮل ﻣﻜﺎﺗﺒﻪ : [email protected] 34 ﺧﺼﻮﺻﻴﺎت وﻳﺮوس ﺧﺮﺑﺰه اي اروﻣﻴﻪ ( OuMV) راﺳﺘﮕﻮ Plant Pathology Science Yasouj University, RICeST & ISC (Iran) Vol. 7(2), 2018 ﻣﻘﺪﻣﻪ وﻳﺮوس ﺧﺮﺑﺰه ي اروﻣﻴﻪ ( Ourmia melon virus , OuMV ) در اﺳﺘﺎن آذرﺑﺎﻳﺠﺎن ﻏﺮﺑﻲ ( راﺳﺘﮕﻮ و ﻫﻤﻜﺎران 1389 ) و ﻧﻴﺰ در ﺳﺎﻳﺮ ﻧﻘﺎط اﻳﺮان از ﺟﻤﻠﻪ اﺳﺘﺎن ﮔﻴﻼن ( Gholamalizadeh et al. 2008 ،) ﺷﻴﺮاز و ﻛﺮج از وﻳﺮوس ﻫﺎي آﻟﻮده ﻛﻨﻨ ﺪه ﻛﺪوﻳﻴﺎن ﻣﺤﺴﻮب ﻣﻲ ﺷﻮد ( راﺳﺘﮕﻮ و ﻫﻤﻜﺎران 1389 .) ﺑﺮ اﺳﺎس ﺗﻔﺎﻫﻢ ﻫﻤﻜﺎري ﺑﻴﻦ ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت اروﻣﻴﻪ و ﻣﺮﻛﺰ ﺗﺤﻘﻴﻘﺎت ﺑﻴﻤﺎري ﻫﺎي وﻳﺮوﺳﻲ ﮔﻴﺎﻫﻲ در ﺗﻮرﻳﻦ اﻳﺘﺎﻟﻴﺎ ( ,Torino Italy ) در ﺳﺎل 1987 ﺗﻌﺪادي ﻧﻤﻮﻧﻪ ﻛﺪوﻳﻴﺎن ﺑﺎ ﻧﺸﺎﻧﻪ ﻣﻮزاﻳﻴﻚ و ﻟﻜﻪ ﺣﻠﻘﻮي از ﻣﺰارع اﻃﺮاف اروﻣﻴﻪ ﺟﻤﻊ آوري و ﺑﻪ اﻳﻦ ﻣﺮﻛﺰ ﻓﺮﺳﺘﺎده ﺷﺪ (Lisa et al . 1988a, b ). از 46 ﻧﻤﻮﻧﻪ ﻓﺮﺳﺘﺎده ﺷﺪه، 11 ﻧﻤﻮﻧﻪ آﻟﻮده ﺑﻪ وﻳﺮوس ﺧﺮﺑﺰه اروﻣﻴﻪ ﺑﻮدﻧﺪ ( Caciagli et al. 1989 ). در ﺳﺎل 1982 ﻳﻚ ﺑﻴﻤﺎري ﺷﺒﻪ وﻳﺮوﺳﻲ روي ﮔﻴﻼس (.Prunus avium L ) در ﺑﺎﻏﻲ در اﭘﻴﺮوس ( Giannina ) در ﺷﻤﺎل ﻏﺮب ﻳﻮﻧﺎن ﮔﺰارش ﺷﺪ ﻛﻪ ﺑﻌﺪﻫﺎ ﻧﺎم ﻋﺎﻣﻞ ﺑﻴﻤﺎري وﻳﺮوس اﭘﻴﺮوس ﮔﻴﻼس ( Epirus cherry virus, EpCV ) ﻧﺎﻣﮕﺬاري ﺷﺪ . ﺟﻨﺲ Ourmiavirus در اﺑﺘﺪا ﺑﺮاي دو ﮔﻮﻧﻪ وﻳﺮوس ﺧﺮﺑﺰه اروﻣﻴﻪ و وﻳﺮوس اﭘﻴﺮوس ﮔﻴﻼس ﺑﺪﻟﻴﻞ ﺷﻜﻞ ﺷﻨﺎﺳﻲ ﭘﻴﻜﺮه ﻫﺎ ﭘﻴﺸﻨ ﻬﺎد ﺷﺪ ( Accotto et al. 1990 ) . اًﺑﻌﺪ وﻳﺮوس ﺳﻲ ﻛﺎﺳﺎوا ( Cassava virus C= Cassava Ivorian bacilliform virus, CsVC ) از ﮔﻴﺎه ﻛﺎﺳﺎواي (.Manihot esculenta Crantz ) آﻟﻮده ﺑﻪ وﻳﺮوس ﻣﻮزاﻳﻴﻚ آﻓﺮﻳﻘﺎﻳﻲ ﻛﺎﺳﺎوا ( African cassava mosaic virus ) در Touresso ( ﺳﺎﺣﻞ ﻋﺎج ) ﺟﺪاﺳﺎزي و ﺑﻪ ﻋﻨﻮان ﮔﻮﻧﻪ ﺳﻮم ﺑﻪ اﻳﻦ ﺟﻨﺲ اﺿﺎﻓﻪ ﮔﺮدﻳﺪ ( Accotto et al. 1990, Rastgou et al. 2011 ). ﺑﻌﺪﻫﺎ ﻣﺸﺨﺺ ﺷﺪ ﻛﻪ ﺳﻴﺘﻮﭘﺎﺗﻮﻟﻮژي ﺳﻠﻮل ﻫﺎي آﻟﻮده ﺑﻪ OuMV و CsVC ﺷﺒﻴﻪ اﺳﺖ اﻣﺎ ﺑﺎ ﺑﻘﻴﻪ وﻳﺮوس ﻫﺎ ي ﺷﻨﺎﺧﺘﻪ ﺷﺪه روي اﻳﻦ ﮔﻴﺎﻫﺎن ﺗﻔﺎوت دارد ( ﺳﻴﺘﻮﭘﺎﺗﻮﻟﻮژ ﻲ EpCV ﮔﺰارش ﻧﺸﺪه اﺳﺖ ). داﻣﻨﻪ ﻣﻴﺰﺑﺎﻧﻲ آزﻣﺎﻳﺸﮕﺎﻫﻲ ﻫﺮ ﺳﻪ وﻳﺮوس ﻛﻪ ﺑﺎ ﻣﺎﻳﻪ زﻧﻲ ﻣﻜﺎﻧﻴﻜﻲ ﺗﻌﻴﻴﻦ ﺷﺪه اﺳﺖ ﺷﺒﻴﻪ اﺳﺖ و ﻧﺸﺎﻧﻪ ﻫﺎ ﻣﻌﻤﻮﻻً ﺷﺎﻣﻞ ﻟﻜﻪ ﺣﻠﻘﻮي ﺳﻴﺴﺘﻤﻴﻚ، ﭘﻴﺴﻚ، ﻣﻮزاﻳﻴﻚ و ﻧﻜﺮوز روي ﺑﺮگ ﻣﻲ ﺑﺎﺷﺪ . ژﻧﻮم اﻳﻦ وﻳﺮوس ﻫﺎ از ﺳﻪ ﻗﻄﻌﻪ RNA ﺗﻚ ﻻي ﻣﺜﺒﺖ ﺗﺸﻜﻴﻞ ﺷﺪه ﻛﻪ در ﺳﻪ وﻳﺮوس اﻧﺪازه ﻣﺸﺎﺑﻬﻲ دارﻧﺪ . اﻳﻦ ﺳﻪ وﻳﺮوس در ﺳﻪ ﮔﻮﻧﻪ ﻣﺘﻔﺎوت ﻗﺮارﮔﺮﻓﺘﻨﺪ : ﺑﺎ ﺗﻮﺟﻪ ﺑﻪ اﻳﻨﻜﻪ اﻳﻦ ﺳﻪ وﻳﺮوس در ﻃﺒﻴﻌﺖ داﻣﻨﻪ ﻣﻴﺰﺑﺎﻧﻲ ﻫﻤﭙﻮﺷﺎﻧﻲ ﻧﺪارﻧﺪ ( ﺑﺘﺮﺗﻴﺐ ﺷﺎﻣﻞ : ﻛﺪوﻳﻴﺎن ، ﮔﻴﻼس، ﻛﺎﺳﺎوا ،) ﭘﺮوﺗﻴﻴﻦ ﭘﻮﺷﺸﻲ OuMV و EpCV ﺗﻨﻬﺎ ارﺗﺒﺎط ﺳﺮوﻟﻮژﻳﻜﻲ د وري ﺑﺎ ﻫﻢ دارﻧﺪ و اﻧﺪازه آن ﻫﺎ ﻧﻴﺰ ﺑﺎ ﻫﻢ ﻓﺮق دارد . CsVC ﺑﺎ OuMV ﻧﻴﺰ ارﺗﺒﺎط ﺳﺮو ﻟﻮژﻳﻜﻲ ﻧﺪارد ( Accotto et al. 1990 ). ). 35 داﻧﺶ ﺑﻴﻤﺎري ﺷﻨﺎﺳﻲ ﮔﻴﺎﻫﻲ ﺳﺎل ﻫﻔﺘﻢ، ﺟﻠﺪ2 ، ﺑﻬﺎر و ﺗﺎﺑﺴﺘﺎن 1397 Plant Pathology Science Yasouj University, RICeST & ISC (Iran) Vol. 7(2), 2018 -1 ﻣﺸﺨﺼﺎت ﭘﻴﻜﺮه ﻫﺎي وﻳﺮوس ﭘﻴﻜﺮه ﻫﺎي وﻳﺮوس ﺗﺎ اﻧﺪازه اي ﺑﺎﺳﻴﻠﻲ ﺷﻜﻞ ( quasi-bacilliform ) ﻫﺴﺘﻨﺪ اﻣﺎ اﻧﺘﻬﺎي ﮔﺮد ﻧﺪاﺷﺘﻪ و دو اﻧﺘﻬﺎي آن ﻫﺎ زاوﻳﻪ دار و ﻧﺴﺒﺘﺎً ﻧﻮك ﺗﻴﺰ اﺳﺖ . ﭘﻴﻜﺮه ﻫﺎ ﺑﻪ ﻗﻄﺮ 18 ﻧﺎﻧﻮﻣﺘﺮ و ﺑﻪ ﻃﻮل ﻫﺎي ﻣﺘﻔﺎوت 62 /5، 45 ، 37 37 و 30 ﻧﺎﻧﻮﻣﺘﺮ ﻣﻲ ﺑﺎﺷﻨﺪ . ﻗﺴﻤﺖ اﺳﺘﻮاﻧﻪ اي ﭘﻴﻜﺮه ﺣﺎوي ردﻳﻒ ﻫﺎﻳﻲ از دﻳﺴﻚ ﻫﺎي دوﺗﺎﻳﻲ اﺳﺖ . ﻣﺘﺪاول ﺗﺮﻳﻦ ﭘﻴﻜﺮه ﻫﺎ دو دﻳﺴﻚ دوﺗﺎﻳﻲ دارﻧﺪ ﻛﻪ ﻃﻮل ﺣﺪود 30 ﻧﺎﻧﻮﻣﺘﺮ را ﺑﻪ ﭘﻴﻜﺮه ﻣﻲ دﻫﻨﺪ . دوﻣﻴﻦ ﻧﻮع ﭘﻴﻜﺮه ﻣﺘﺪاول ﺑﺎ ﻃﻮل 37 ﻧﺎﻧﻮﻣﺘﺮ ﺳﻪ دﻳﺴﻚ دوﺗﺎﻳﻲ دارد . ﭘﻴﻜﺮه ﻫﺎي ﺑﺎ ﻃﻮل /5 45 ﻧﺎﻧﻮﻣﺘﺮ ﭼﻬﺎر دﻳﺴﻚ دوﺗﺎﻳﻲ و ﭘﻴﻜﺮه ﻫﺎي ﺑﻠﻨﺪﺗﺮ ﺑﻪ ﻃﻮل 62 ﻧﺎﻧﻮﻣﺘﺮ ﺷﺶ دﻳﺴﻚ دوﺗﺎﻳﻲ دارﻧﺪ . ﭘﻴﻜﺮه ﻫﺎ ﻓﺎﻗﺪ ﻏﻼف ﻟﻴﭙﻮ ﭘﺮوﺗﻴﻴﻨﻲ ﻣﻲ ﺑﺎﺷﻨﺪ . ﭼﮕﺎﻟﻲ ﺷﻨﺎور در ﻛﻠﺮﻳﺪ ﺳﺰﻳﻮم 375 1/ ﻣﻲ ﺑﺎﺷﺪ . ﭘﻴﻜﺮه ﻫﺎ در ﭘﻲ اچ ﺣﺪود 7 ﭘﺎﻳﺪار ﻫﺴﺘ ﻨﺪ، ﺑﻪ ﺗﻴﻤﺎر ﺑﺎ ﻛﻠﺮوﻓﺮم ﺣﺴﺎس ﻧﺒﻮده وﻟﻲ ﺑﻪ ﺗﻴﻤﺎر ﺑﺎ ان - ﺑﻮﺗﺎﻧﻮل ﺣﺴﺎس ﻫﺴﺘﻨﺪ ( Lisa et al . 1988b, Rastgou et al. 2011 ). ﻛﺮﺑﻮﻫﻴﺪرات و ﻟﻴﭙﻴﺪ در ﭘﻴﻜﺮه ﺷﻨﺎﺳﺎﻳﻲ ﻧﺸﺪه اﺳﺖ . وزن ﻣﻮﻟﻜﻮﻟﻲ و ﺿﺮﻳﺐ رﺳﻮب وﻳﺮﻳﻮن ﻫﺎ ﻣﺸﺨﺺ ﻧﻴﺴﺖ ( Rastgou et al. 2011 ). ﻋﺼﺎره ﮔﻴﺎه آﻟﻮده ﺑﻌﺪ از 10 دﻗ ﻴﻘﻪ در دﻣﺎ ي ˚70c و ˚c 35 در دﻣﺎي اﺗﺎق آﻟﻮده ﻛﻨﻨﺪه ﺑﻮده اﺳﺖ . اﻳﻦ ﻧﺘﺎﻳﺞ ﻧﺸﺎن ﻣﻲ دﻫﺪ ﻛﻪ ﭘﻴﻜﺮه ﻫﺎ ﭘﺎﻳﺪاري ﻧﺴﺒﺘﺎً ﺧﻮﺑﻲ دارﻧﺪ ( ,Lisa et al . 1990 Rastgou et al. 2011 ). در ﺑﺮش ﻫﺎي ﻧﺎزك ﮔﻴﺎه ﺗﻮﺗﻮن ( Nicotiana benthamiana ) ﺗﻬﻴﻪ ﺷﺪه ﭘﻴﻜﺮهﻫ ﺎي وﻳﺮوس در ﺳﻴﺘﻮﭘﻼﺳﻢ ﺳﻠﻮل ﻫﺎي ﭘﺎراﻧﺸﻴﻢ ﮔﻴﺎه آﻟﻮده و ﮔﺎﻫﻲ اوﻗﺎت ﺑﺼﻮرت ﺳﺎﺧﺘﺎرﻫﺎي pad-like و داﺧﻞ ﻟﻮﻟﻪ ﻫﺎ ( tubules ) ﻗﺎﺑﻞ ﺷﻨﺎﺳﺎﻳﻲ ﻫﺴﺘﻨﺪ ( ﺷﻜﻞ )Milne and Masenga 1988, 1989 ) 1 ). ). -2 داﻣﻨﻪ ﻣﻴﺰﺑﺎﻧﻲ وﻳﺮوس وﻳﺮوس در ﺷﺮاﻳﻂ آزﻣﺎﻳﺸﮕﺎﻫﻲ ﺑﻪ آﺳﺎﻧ ﻲ ﺑﻪ داﻣﻨﻪ وﺳﻴﻌﻲ از ﮔﻴﺎﻫﺎن ﻣﺤﻚ ﺑﻪ ﻃﻮر ﻣﻜﺎﻧﻴﻜﻲ ﻗﺎﺑﻞ اﻧﺘﻘﺎل ﺑﻮده و در اﻛﺜﺮ آن ﻫﺎ ﻧﺸﺎﻧﻪ ﻫﺎي ﻣﺸﺨﺼﻲ را اﻳﺠﺎد ﻛﺮده اﺳﺖ . وﻳﺮوس 34 ﮔﻮﻧﻪ از 14 ﺗﻴﺮه ﮔﻴﺎﻫﻲ را آﻟﻮده ﻣﻲ ﻛﻨﺪ . در اﺛﺮ ﻣﺎﻳﻪ زﻧﻲ ﺑﺎ وﻳﺮوس ﺗﻌﺪاد زﻳﺎدي ﻟﻜﻪ ﻣﻮﺿﻌﻲ روي .Chenopodium quinoa Willd و .Gomphrena globosa L در ﻋﺮض 3-4 روز اﻳﺠﺎد ﻣﻲ ﺷﻮد . روي Nicotiana clevelandii A. Gray ﻧﺸﺎﻧﻪ ﻫﺎي ﻟﻜﻪ ﻣﻮﺿﻌﻲ ﺑﻌﺪ از 4 2- روز و ﻣﻮزاﻳﻴﻚ ﻧﻜﺮوﺗﻴﻚ ﺳﻴﺴﺘﻤﻴﻚ ﺑﻌﺪ از 4-7 روز ﻇﺎﻫﺮ ﻣﻲ ﺷﻮﻧﺪ . ٣۶ ﺧﺼﻮﺻﻴﺎت وﻳﺮوس ﺧﺮﺑﺰه اي اروﻣﻴﻪ ( OuMV) راﺳﺘﮕﻮ Plant Pathology Science Yasouj University, RICeST & ISC (Iran) Vol. 7(2), 2018 ﺷﻜﻞ A 1- . ﭘﻴﻜﺮه ﻫﺎي وﻳﺮوس ﺧﺮﺑﺰه اروﻣﻴﻪ ﺑﻌﺪ از ﻋﺒﻮر از ﺳﺘﻮن ﺳﻮﻛﺮوز ﻛـﻪ رﻧـ ﮓآﻣﻴـﺰي ﻣﻨﻔـﻲ ﺷـﺪ هاﻧـﺪ ( B ،(Bar= 100nm . ﺑﺮش ﻧﺎزك ﺗﻬﻴﻪ ﺷﺪه از ﺑﺮگ ﮔﻴﺎه Nicotiana clevelandii ﭼﻬﺎر ﻫﻔﺘﻪ ﺑﻌﺪ از آﻟﻮدﮔﻲ ﺳﻴﺴــﺘﻤﻴﻚ : ﺳــﺎﺧﺘﺎرﻫﺎي ﻟﻮﻟــﻪ ﻣﺎﻧﻨــﺪ ﺣــﺎوي ﭘﻴﻜــﺮهﻫــﺎي وﻳــﺮوس در ﺳﻴﺘﻮﭘﻼﺳــﻢ ﻗﺎﺑــﻞ ﻣﺸــﺎﻫﺪه اﺳــﺖ ( C ،(Bar= 200nm و D . ﻋﺼﺎره ﺧﺎم از ﮔﻴﺎه N. benthamiana آﻟﻮده ﻫﻔﺖ روز ﺑﻌﺪ از آﻟﻮدﮔﻲ ﺳﻴﺴﺘﻤﻴﻚ، C . ﺳﺎﺧﺘﺎر ﻟﻮﻟﻪ ﻣﺎﻧﻨﺪ ﺣﺎوي ﭘﻴﻜﺮه ﻫﺎي وﻳﺮوس در ﺳﻴﺘﻮﭘﻼﺳﻢ ﮔﻴﺎﻫﺎن آﻟﻮده، D . ﭘﻴﻜﺮهﻫـﺎي وﻳـﺮوس در ﻳـﻚ ردﻳﻒ ﭘﺸﺖ ﺳﺮ ﻫﻢ در داﺧﻞ ﻟﻮﻟﻪ ﻗﺮارﮔﺮﻓﺘﻪ اﻧﺪ ( Bar= 100nm .) .) Figure 1. A. Oumia melon virus particles after negative staining (Bar= 100 nm), B. Thin section of leaf tissue from a 4 week systemic infection in Nicotiana clevelandii showing cytoplasm with tubules containing virus particles (Bar= 200 nm), C and D. Crude sap extract of a 7 day systemic infection in N. benthamiana , C. A tubule containing virus particles in cytoplasm of infected plants, D. Virus particles laid in a row (Bar=100 nm). ﻧﺸﺎﻧﻪ ﻫﺎي ﻣﺸﺎﺑﻬﻲ روي N. benthamiana Domin و N. megalosiphon Van Heurck and Mull اﻳﺠﺎد ﻣﻲ ﺷﻮد . آﻟﻮدﮔﻲ روي ﮔﻮﺟﻪ ﻓﺮﻧﮕﻲ ( Solanum lycopersicum) ، ﻓﻠﻔﻞ ( Capsicum annuum .Callistephus chinensis (L.) Nees. ،(L ، اﺳﻔﻨﺎج (.Spinacia oleracea L) ، ﺑﻨﻔﺸﻪ ﺳﻪ رﻧﮓ ( Viola .tricolor L ) و ﮔﻞ آﻫﺎر (. Zinnia elegans Jacq ) ﺷﺪﻳﺪ ﻣﻲ ﺑﺎﺷﺪ . ﮔﻴﺎه زﻳﻨﺘﻲ اﻃﻠﺴﻲ ( Petunia hybrid . Juss ) ﺑﺎ ﻧﺸﺎﻧﻪ ﻫﺎي ﻣﻮزاﻳﻴﻚ و ﻟﻜﻪ ﺣﻠﻘﻮي روي ﺑﺮگ ﻫﺎ و ﮔﺎﻫﻲ ﺧﻄﻮط ﻧﻜﺮوﺗﻴﻚ روي ﮔﻞ ﻫﺎ ﺑﻪ اﻳﻦ وﻳﺮوس واﻛﻨﺶ ﻧﺸﺎن ﻣﻲ دﻫﺪ . آﻟﻮدﮔﻲ در ﺧﻴﺎر (.Cucumis sativus L) ، ﺧﺮﺑﺰه (C. melo) ، ﻛﻴﻮاﻧﻮ 37 داﻧﺶ ﺑﻴﻤﺎري ﺷﻨﺎﺳﻲ ﮔﻴﺎﻫﻲ ﺳﺎل ﻫﻔﺘﻢ، ﺟﻠﺪ2 ، ﺑﻬﺎر و ﺗﺎﺑﺴﺘﺎن 1397 Plant Pathology Science Yasouj University, RICeST & ISC (Iran) Vol. 7(2), 2018 ( C. metuliferus E. Mey ) و ﻟﻴﻒ ( .Luffa acutangula (L.) Roxb ) دﻳﺪه ﺷﺪه اﺳﺖ . وﻳﺮوس در ﺗﻤﺎم ارﻗﺎم ﺧﻴﺎر ﺑﺮرﺳﻲ ﺷﺪه ﻟﻜﻪ ﻫﺎي ﻣﻮﺿﻌﻲ ﻧﻜﺮوﺗﻴﻚ، ﻣﻮزاﻳﻴﻚ ﺳﻴﺴﺘﻤﻴﻚ، ﻟﻜﻪ ﺣﻠﻘﻮي و ﻟﻜﻪ ﻫﺎي ﻛﻠﺮوﺗﻴﻚ ﻛﻪ ﺑﺎ ﮔﺬﺷﺖ زﻣﺎن ﻧﻜﺮوﺗﻴﻚ ﻣﻲ ﺷﻮﻧﺪ اﻳﺠﺎد ﻣﻲ ﻛﻨﺪ . روي ﺧﺮﺑﺰه ﻟﻜﻪ ﻣﻮﺿﻌﻲ دﻳ ﺪه ﻧﻤﻲ ﺷﻮد و در ﺗﻤﺎم ارﻗﺎم ﻧﺸﺎﻧﻪ ﻫﺎي ﺳﻴﺴﺘﻤﻴﻚ ﺷﺎﻣﻞ ﻟﻜﻪ ﻫﺎي ﻛﻠﺮوﺗﻴﻚ، ﭼﺮوﻛﻴﺪﮔﻲ ﺑﺮگ و ﻟﻜﻪ ﺣﻠﻘﻮي ﻏﻴﺮﻣﻨﻈﻢ دﻳﺪه ﻣﻲ ﺷﻮد .
Recommended publications
  • 82078843.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 489 (2016) 158–164 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Brief Communication Molecular characterization of Botrytis ourmia-like virus, a mycovirus close to the plant pathogenic genus Ourmiavirus Livia Donaire a, Julio Rozas b, María A. Ayllón a,n a Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain b Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain article info abstract Article history: The molecular characterization of a novel single-stranded RNA virus, obtained by next generation Received 22 October 2015 sequencing using Illumina platform, in a field grapevine isolate of the plant pathogenic fungus Botrytis,is Returned to author for revisions reported in this work. The sequence comparison of this virus against the NCBI database showed a strong 20 November 2015 identity with RNA dependent RNA polymerases (RdRps) of plant pathogenic viruses belonging to the Accepted 25 November 2015 genus Ourmiavirus, therefore, this novel virus was named Botrytis ourmia-like virus (BOLV). BOLV has Available online 5 January 2016 one open reading frame of 2169 nucleotides, which encodes a protein of 722 amino acids showing Keywords: conserved domains of plant RNA viruses RdRps such as the most conserved GDD active domain. Our Botrytis analyses showed that BOLV is phylogenetically closer to the fungal Narnavirus and the plant Ourmiavirus Ourmiavirus than to Mitovirus of the family Narnaviridae.
    [Show full text]
  • Origins and Evolution of the Global RNA Virome
    bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Origins and Evolution of the Global RNA Virome 2 Yuri I. Wolfa, Darius Kazlauskasb,c, Jaime Iranzoa, Adriana Lucía-Sanza,d, Jens H. 3 Kuhne, Mart Krupovicc, Valerian V. Doljaf,#, Eugene V. Koonina 4 aNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA 5 b Vilniaus universitetas biotechnologijos institutas, Vilnius, Lithuania 6 c Département de Microbiologie, Institut Pasteur, Paris, France 7 dCentro Nacional de Biotecnología, Madrid, Spain 8 eIntegrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious 9 Diseases, National Institutes of Health, Frederick, Maryland, USA 10 fDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA 11 12 #Address correspondence to Valerian V. Dolja, [email protected] 13 14 Running title: Global RNA Virome 15 16 KEYWORDS 17 virus evolution, RNA virome, RNA-dependent RNA polymerase, phylogenomics, horizontal 18 virus transfer, virus classification, virus taxonomy 1 bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 ABSTRACT 20 Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in 21 animals and plants. The recent advances of metaviromics prompted us to perform a detailed 22 phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Molecular Characterization of a Novel Ssrna Ourmia-Like Virus from The
    Molecular characterization of a novel ssRNA ourmia-like virus from the rice blast fungus Magnaporthe oryzae Adriana Illana1,2, Marco Marconi1,2, Julio Rodríguez-Romero1,2, Ping Xu3, Tamas Dalmay3, Mark Wilkinson1,2, Maria Ángeles Ayllón1,2, and Ane Sesma1,2 1Centro de Biotecnología y Genómica de Plantas. Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA Campus Montegancedo UPM) 28223-Pozuelo de Alarcón (Madrid), Spain; 2Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040- Madrid, Spain. 3School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ (UK). *Correspondence: [email protected]; phone:+34 91 336 4593. ABSTRACT In this study we characterize a novel positive and single stranded RNA (ssRNA) mycovirus isolated from the rice field isolate of Magnaporthe oryzae Guy11. The ssRNA contains a single open reading frame (ORF) of 2,373 nucleotides in length and encodes an RNA-dependent RNA polymerase (RdRp) closely related to ourmiaviruses (plant viruses) and ourmia-like mycoviruses. Accordingly, we name this virus Magnaporthe oryzae ourmia-like virus 1 (MOLV1). Although phylogenetic analysis suggests that MOLV1 is closely related to ourmia and ourmia-like viruses, it has some features never reported before within the Ourmiavirus genus. 3’ RLM-RACE (RNA ligase-mediated rapid amplification of cDNA ends) and extension poly(A) tests (ePAT) suggest that the MOLV1 genome contains a poly(A) tail whereas the three cystein and the three guanine residues present in 5’ and 3’ untranslated regions (UTRs) of ourmia viruses are not observed in the MOLV1 sequence.
    [Show full text]
  • Shedding Light on Mushroom Viruses
    CELU Shedding light on mushroom viruses A complex of novel viruses was discovered in commercial mushrooms in the early 2000s, which reduced the quality of this premium horticultural product across Europe. TEAGASC - and EU-funded research has now characterised the viruses and shown that the Agaricus bisporus mushroom is a model system to study fungal viromes. Mushroom virus disease them contained an RNA-dependent RNA polymerase (RdRp) domain, Mushrooms are a high-value export crop, with an annual production characteristic of fungal viruses, and we propose that these represent 18 value in Ireland in the region of €130 million. They can suffer from distinct viruses ( Figure 2 ). A nomenclature is proposed of Agaricus economically damaging viral diseases such as La France disease, which bisporus Virus N (N replaced by a sequential number). Sixteen of the emerged in the 1960s, and which has largely disappeared from modern viruses had a monopartite structure of a single RNA molecule while two farms due to increased hygiene levels. It was a big surprise therefore viruses were segmented viruses: AbV6 consisted of two separate contigs, when virus-like symptoms started to recur in the late 1990s and 2000s, while AbV16 contained four separate contigs. AbV16 is the fungal virus but mushrooms were negative for the 35 nanometre virus particles associated with the brown mushroom symptoms seen in crops affected associated with La France disease. The term Mushroom Virus X (MVX) by MVX. The RdRps of the 18 viruses have closest amino acid homology disease was coined to cover a range of symptoms, which included to a diverse array of positive sense single-stranded RNA viral widespread brown discolouration of what should be pristine white orders/families/genera (ss(+)RNA): Hypoviridae , Tymovirales mushrooms, rendering them unmarketable ( Figure 1 ).
    [Show full text]
  • Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia Longipalpis Using Genomic and Virus–Host Interaction Signatures
    viruses Article Characterization of a Novel Mitovirus of the Sand Fly Lutzomyia longipalpis Using Genomic and Virus–Host Interaction Signatures Paula Fonseca 1 , Flavia Ferreira 2, Felipe da Silva 3, Liliane Santana Oliveira 4,5 , João Trindade Marques 2,3,6 , Aristóteles Goes-Neto 1,3, Eric Aguiar 3,7,*,† and Arthur Gruber 4,5,8,*,† 1 Department of Microbiology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] (P.F.); [email protected] (A.G-N.) 2 Department of Biochemistry and Immunology, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] (F.F.); [email protected] (J.T.M.) 3 Bioinformatics Postgraduate Program, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte 30270-901, Brazil; [email protected] 4 Bioinformatics Postgraduate Program, Universidade de São Paulo, São Paulo 05508-000, Brazil; [email protected] 5 Department of Parasitology, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-000, Brazil 6 CNRS UPR9022, Inserm U1257, Université de Strasbourg, 67084 Strasbourg, France 7 Department of Biological Science (DCB), Center of Biotechnology and Genetics (CBG), State University of Santa Cruz (UESC), Rodovia Ilhéus-Itabuna km 16, Ilhéus 45652-900, Brazil 8 European Virus Bioinformatics Center, Leutragraben 1, 07743 Jena, Germany * Correspondence: [email protected] (E.A.); [email protected] (A.G.) † Both corresponding authors contributed equally to this work. Citation: Fonseca, P.; Ferreira, F.; da Silva, F.; Oliveira, L.S.; Marques, J.T.; Goes-Neto, A.; Aguiar, E.; Gruber, Abstract: Hematophagous insects act as the major reservoirs of infectious agents due to their intimate A.
    [Show full text]
  • Three Ourmia-Like Viruses and Their Associated Rnas in Pyricularia
    Virology 534 (2019) 25–35 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/virology Three ourmia-like viruses and their associated RNAs in Pyricularia oryzae T Shuhei Ohkitaa,1, Yui Leea,1, Quyet Nguyena, Kenichi Ikedaa, Nobuhiro Suzukib, ∗ Hitoshi Nakayashikia, a Laboratory of Cell Function and Structure, Graduate School of Agricultural Science, Kobe University, Nada Kobe, 657-8501, Japan b Agrivirology Laboratory, Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama, 710-0046, Japan ARTICLE INFO ABSTRACT Keywords: Three ourmia-like viruses, designated Pyricularia oryzae ourmia-like virus (PoOLV) 1 to 3, were identified in a Ourmia-like virus wheat-infecting isolate of P. oryzae. The sizes of the full-length PoOLV1-3 genomes were determined to be 2,528, Subviral RNA 1,671, and 2,557 nt. Interestingly, we also found two abundant single-stranded RNAs sharing their 5’ terminal 25 Mycovirus and 255 nt with PoOLV1 RNA and PoOLV3 RNA, respectively. The PoOLV1- and PoOLV3-associated RNAs (ARNA1 and ARNA3) were 639 and 514 nt in length, and possessed one and two small ORFs, respectively. In the field isolates of P. oryzae, PoOLVs and ARNAs were detectable at varying levels, and the levels of PoOLV1 and ARNA1 as well as those of PoOLV3 and ARNA3, were tightly correlated. In addition, gene silencing of PoOLV1 and PoOLV3 resulted in a reduction of ARNA1 and ARNA3, respectively. There results indicated that replication of ARNA1 and ARNA3 was associated with PoOLV1 and PoOLV3, respectively. 1. Introduction (Solorzano et al., 2000). In contrast, members of Mitovirus, the other genus in Narnaviridae, are thought to replicate in mitochondria since Ourmiavirus is a genus of plant viruses infecting melon, cherry, and they often use mitochondrial genetic code (Hong et al., 1998; Polashock cassava (Lisa et al., 1988; Turina et al., 2017).
    [Show full text]
  • Armillaria Root Rot Fungi Host Single-Stranded RNA Viruses
    www.nature.com/scientificreports OPEN Armillaria root rot fungi host single‑stranded RNA viruses Riikka Linnakoski1,5, Suvi Sutela1,5, Martin P. A. Coetzee2, Tuan A. Duong2, Igor N. Pavlov3,4, Yulia A. Litovka3,4, Jarkko Hantula1, Brenda D. Wingfeld2 & Eeva J. Vainio1* Species of Armillaria are distributed globally and include some of the most important pathogens of forest and ornamental trees. Some of them form large long‑living clones that are considered as one of the largest organisms on earth and are capable of long‑range spore‑mediated transfer as well as vegetative spread by drought‑resistant hyphal cords called rhizomorphs. However, the virus community infecting these species has remained unknown. In this study we used dsRNA screening and high‑throughput sequencing to search for possible virus infections in a collection of Armillaria isolates representing three diferent species: Armillaria mellea from South Africa, A. borealis from Finland and Russia (Siberia) and A. cepistipes from Finland. Our analysis revealed the presence of both negative‑ sense RNA viruses and positive‑sense RNA viruses, while no dsRNA viruses were detected. The viruses included putative new members of virus families Mymonaviridae, Botourmiaviridae and Virgaviridae and members of a recently discovered virus group tentatively named “ambiviruses” with ambisense bicistronic genomic organization. We demonstrated that Armillaria isolates can be cured of viruses by thermal treatment, which enables the examination of virus efects on host growth and phenotype using isogenic virus‑infected and virus‑free strains. Te fungal genus Armillaria (Fr.) Staude includes more than 40 described species1. Tey are mainly known as notorious plant pathogens of managed natural forests and plantations of non-native tree species that infect hundreds of diferent plants, including economically important conifers (e.g.
    [Show full text]
  • ICTV Virus Taxonomy Profile: Botourmiaviridae
    ICTV VIRUS TAXONOMY PROFILE Ayllón et al., Journal of General Virology 2020;101:454–455 DOI 10.1099/jgv.0.001409 ICTV ICTV Virus Taxonomy Profile: Botourmiaviridae María A. Ayllón1,*, Massimo Turina2, Jiatao Xie3, Luca Nerva2,4, Shin- Yi Lee Marzano5, Livia Donaire6, Daohong Jiang7 and ICTV Report Consortium Abstract The family Botourmiaviridae includes viruses infecting plants and filamentous fungi containing a positive- sense, ssRNA genome that can be mono- or multi- segmented. Genera in the family include: Ourmiavirus (plant viruses), and Botoulivirus, Magoulivirus and Scleroulivirus (fungal viruses). This is a summary of the International Committee on Taxonomy of Viruses (ICTV) Report on the taxonomy of the family Botourmiaviridae, which is available at ictv. global/ report/ botourmiaviridae. Table 1. Characteristics of members of the family Botourmiaviridae Typical member: Ourmia melon virus VE9 (RNA1: EU770623; RNA2: EU770624; RNA3: EU770625), species Ourmia melon virus, genus Ourmiavirus Virion Bacilliform (18×30–62 nm) with a 23.8 kDa coat protein (Ourmiavirus) or unencapsidated (members of other genera) Genome Positive- sense RNA of 2–3 kb (Botoulivirus, Magoulivirus and Scleroulivirus) or three segments of 2.8, 1.1 and 0.97 kb (Ourmiavirus) Replication Cytoplasmic; virion assembly is coupled to active replication Translation From genomic RNA; each genomic segment is monocistronic Host range Plants and fungi Taxonomy Realm Riboviria, kingdom Orthornavira, phylum Lenarviricota, class Miaviricetes, order Ourlivirales, family Botourmiaviridae, several genera each with multiple species VIRION GENOME Members of the genus Ourmiavirus are plant viruses with The genome of ourmiaviruses consists of three segments of non- enveloped bacilliform virions that are composed of a positive- sense, ssRNA (2814, 1064 and 974 nt for Ourmia single 23.8 kDa coat protein.
    [Show full text]
  • Discovery of New Mycoviral Genomes Within Publicly Available Fungal Transcriptomic Datasets
    bioRxiv preprint doi: https://doi.org/10.1101/510404; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Discovery of new mycoviral genomes within publicly available fungal transcriptomic datasets 1 1 1,2 1 Kerrigan B. Gilbert ,​ Emily E. Holcomb ,​ Robyn L. Allscheid ,​ James C. Carrington *​ ​ ​ ​ ​ 1 ​ Donald Danforth Plant Science Center, Saint Louis, Missouri, USA 2 ​ Current address: National Corn Growers Association, Chesterfield, Missouri, USA * Address correspondence to James C. Carrington E-mail: [email protected] Short title: Virus discovery from RNA-seq data ​ bioRxiv preprint doi: https://doi.org/10.1101/510404; this version posted January 3, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract The distribution and diversity of RNA viruses in fungi is incompletely understood due to the often cryptic nature of mycoviral infections and the focused study of primarily pathogenic and/or economically important fungi. As most viruses that are known to infect fungi possess either single-stranded or double-stranded RNA genomes, transcriptomic data provides the opportunity to query for viruses in diverse fungal samples without any a priori knowledge of virus infection. ​ ​ Here we describe a systematic survey of all transcriptomic datasets from fungi belonging to the subphylum Pezizomycotina.
    [Show full text]
  • Multipartite Viruses: Organization, Emergence and Evolution
    UNIVERSIDAD AUTÓNOMA DE MADRID FACULTAD DE CIENCIAS DEPARTAMENTO DE BIOLOGÍA MOLECULAR MULTIPARTITE VIRUSES: ORGANIZATION, EMERGENCE AND EVOLUTION TESIS DOCTORAL Adriana Lucía Sanz García Madrid, 2019 MULTIPARTITE VIRUSES Organization, emergence and evolution TESIS DOCTORAL Memoria presentada por Adriana Luc´ıa Sanz Garc´ıa Licenciada en Bioqu´ımica por la Universidad Autonoma´ de Madrid Supervisada por Dra. Susanna Manrubia Cuevas Centro Nacional de Biotecnolog´ıa (CSIC) Memoria presentada para optar al grado de Doctor en Biociencias Moleculares Facultad de Ciencias Departamento de Biolog´ıa Molecular Universidad Autonoma´ de Madrid Madrid, 2019 Tesis doctoral Multipartite viruses: Organization, emergence and evolution, 2019, Madrid, Espana. Memoria presentada por Adriana Luc´ıa-Sanz, licenciada en Bioqumica´ y con un master´ en Biof´ısica en la Universidad Autonoma´ de Madrid para optar al grado de doctor en Biociencias Moleculares del departamento de Biolog´ıa Molecular en la facultad de Ciencias de la Universidad Autonoma´ de Madrid Supervisora de tesis: Dr. Susanna Manrubia Cuevas. Investigadora Cient´ıfica en el Centro Nacional de Biotecnolog´ıa (CSIC), C/ Darwin 3, 28049 Madrid, Espana. to the reader CONTENTS Acknowledgments xi Resumen xiii Abstract xv Introduction xvii I.1 What is a virus? xvii I.2 What is a multipartite virus? xix I.3 The multipartite lifecycle xx I.4 Overview of this thesis xxv PART I OBJECTIVES PART II METHODOLOGY 0.5 Database management for constructing the multipartite and segmented datasets 3 0.6 Analytical
    [Show full text]