High Resolution Meta-Transcriptomics Reveals the Ecological

Total Page:16

File Type:pdf, Size:1020Kb

High Resolution Meta-Transcriptomics Reveals the Ecological JVI Accepted Manuscript Posted Online 21 June 2017 J. Virol. doi:10.1128/JVI.00680-17 Copyright © 2017 American Society for Microbiology. All Rights Reserved. 1 High Resolution Meta-Transcriptomics Reveals the Ecological 2 Dynamics of Mosquito-Associated RNA Viruses in Western Downloaded from 3 Australia 4 5 Mang Shia, Peter Nevilleb,c, Jay Nicholsonb,c,d, John-Sebastian Edena,e, Allison Imriec*, 6 Edward C. Holmesa* 7 http://jvi.asm.org/ 8 aMarie Bashir Institute for Infectious Diseases and Biosecurity, Charles Perkins Centre, 9 School of Biological Sciences and Sydney Medical School, The University of Sydney, 10 Sydney, Australia. 11 bEnvironmental Health Directorate, Public Health Division, Department of Health, 12 Government of Western Australia, Australia. on May 27, 2018 by UNIV OF WESTERN AUSTRALIA M209 13 cSchool of Biomedical Sciences, The University of Western Australia, Australia. 14 dCenter for Vectorborne Diseases, Department of Pathology, Microbiology and Immunology, 15 School of Veterinary Medicine, University of California, Davis, USA. 16 eCentre for Virus Research, The Westmead Institute for Medical Research, Sydney, Australia. 17 18 *Corresponding authors: 19 Edward C. Holmes – [email protected] 20 Allison Imrie – [email protected] 21 22 Word count: Abstract – 247, Importance – 119, Main Text – 4835 23 Running title: Ecology of the Mosquito Virome 1 24 ABSTRACT Mosquitoes harbour a high diversity of RNA viruses, including many that 25 impact human health. Despite a growing effort to describe the extent and nature of the Downloaded from 26 mosquito virome, little is known about how these viruses persist, spread, and interact with 27 both their hosts and other microbes. To address this issue we performed a meta- 28 transcriptomics analysis of 12 Western Australian mosquito populations structured by species 29 and geographic location. Our results identified the complete genomes of 24 species of RNA http://jvi.asm.org/ 30 viruses from a diverse range of viral families and orders, among which 19 are newly 31 described. Comparisons of viromes revealed a striking difference between the two mosquito 32 genera, with viromes of mosquitoes from the Aedes genus exhibiting substantially less 33 diversity and lower abundance than those of Culex genus, within which viral abundance on May 27, 2018 by UNIV OF WESTERN AUSTRALIA M209 34 reached 16.87% of the total non-rRNA. In addition, there was little overlap in viral diversity 35 between the two genera, although the viromes were very similar among the three Culex 36 species studied, suggesting that host taxon plays a major role in structuring virus diversity. In 37 contrast, we found no evidence that geographic location played a major role in shaping RNA 38 virus diversity, and several viruses discovered here exhibited high similarity (95-98% 39 nucleotide identity) to those from Indonesia and China. Finally, using abundance level and 40 phylogenetic relationships we were able to distinguish potential mosquito viruses from those 41 present in co-infecting bacteria, fungi, and protists. In sum, our meta-transcriptomics 42 approach provides important insights into the ecology of mosquito RNA viruses. 43 44 IMPORTANCE Studies of virus ecology have generally focused on individual viral 45 species. However, recent advances in bulk RNA sequencing make it possible to utilize meta- 46 transcriptomic approaches to reveal both complete virus diversity and their relative 47 abundance. We used such a meta-transcriptomic approach to determine key aspects of the 48 ecology of mosquito viruses in Western Australia. Our results show that RNA viruses are one 2 49 of the most important components of the mosquito transcriptome, and we identified 19 new 50 virus species from a diverse set of virus families. A key result was that host genetic Downloaded from 51 background plays a more important role in shaping virus diversity than sampling location, 52 with Culex species harbouring more viruses at greater abundance than those from Aedes 53 mosquitoes. http://jvi.asm.org/ on May 27, 2018 by UNIV OF WESTERN AUSTRALIA M209 3 54 Mosquitoes (Diptera: Culicidae) act as vectors for a number of disease agents that infect 55 humans and domestic animals, including malaria, dengue virus, Chikungunya virus, and Zika Downloaded from 56 virus. However, in addition to their role as transmission vectors, mosquitoes harbour a far 57 larger virome, including many viruses that are confined to these insects, such that they are 58 “insect-specific” (1, 2). Although these insect-specific viruses that have no direct impact on 59 public health, they may modulate the transmission of viruses that are pathogenic to http://jvi.asm.org/ 60 vertebrates (3). The development of metagenomic sequencing approaches has therefore led to 61 a re-evaluation of the mosquito virome, including the recent discovery of viruses in the 62 families Bunyaviridae (4-8), Rhabdoviridae (6, 9-11), Orthomyxoviridae (6, 12), Flaviviridae 63 (13-15), Mesoviridae (16), Reoviridae (8, 17), as well as in the unclassified Chuvirus (6) and on May 27, 2018 by UNIV OF WESTERN AUSTRALIA M209 64 Negevirus (18) groups. In addition, metagenomics surveys have discovered viruses in 65 families not previously known to infect mosquitoes, such as the Iflaviridae, Dicistroviridae, 66 Totiviridae, Chrysoviridae, and Narnaviridae (8, 19-22). Although these viruses have not 67 been isolated or characterized in vivo, their host association is supported by the presence of 68 related endogenous viruses in the genomes of various mosquito species (8). Hence, it is clear 69 that mosquitoes harbour a substantial viral diversity, the majority of which may not be 70 associated with vertebrates (1, 2). 71 Despite our expanding knowledge of the mosquito virome, there have been fewer 72 studies of ecological aspects of these viruses within their hosts (1). It has been suggested that 73 most of these newly discovered viruses share features that distinguish them from “classic” 74 human pathogens, including (i) an inability to infect vertebrates or vertebrate cell lines, (ii) a 75 high prevalence, (iii) prolonged host infection, and (iv) vertical transmission (1, 2, 23). Based 76 on these features, these mosquito viruses have been referred to as “commensal” microbes (3). 77 In reality, however, little is known about their natural infection status (e.g. abundance, 78 frequency of superinfection), host specificity in relation to different mosquito species, 4 79 geographic distribution and movement, and interactions with hosts and other microbes that 80 may be present within a specific host. Downloaded from 81 To reveal more of the natural ecology of mosquito RNA viruses we employed a meta- 82 transcriptomics approach to characterise the entire RNA environment excluding ribosomal 83 RNA (rRNA) within a mosquito sample. Meta-transcriptomics has several advantages over 84 approaches such as cell culture, consensus PCR, and metagenomics methods based on viral http://jvi.asm.org/ 85 particle purification (24, 25), and has proven successful in characterizing the RNA viromes of 86 diverse invertebrates (6, 8, 14, 20). Specifically: (i) it reveals the entire RNA virome, with 87 sufficient coverage to reconstruct complete viral genomes, including those from co-infecting 88 parasites; (ii) it provides a reliable quantification and assessment of both viral and host on May 27, 2018 by UNIV OF WESTERN AUSTRALIA M209 89 RNAs; and (iii) it is relatively simple, requiring minimal sample processing. Most 90 importantly, meta-transcriptomics provides more information than the genome sequence 91 alone, allowing a straightforward characterization of viral diversity and ecology. 92 To infer aspects of virome ecology among mosquito species sampled from different 93 geographic locations we characterized the total transcriptome of 12 mosquito populations, 94 comprising five species collected from four locations in Western Australia. In particular, we 95 determined the number, type, and abundance of each virus within the context of the host 96 transcriptome and that of other microbial symbionts/parasites, and addressed whether these 97 parameters varied by species and/or sampling location. 98 99 RESULTS 100 The mosquito virome. We characterized the total transcriptome of 12 mosquito pools, 101 representing five species of mosquitoes sampled from four geographic locations in Western 102 Australia (Fig. 1). RNA sequencing of ribosomal (r) RNA-depleted libraries resulted in 40-47 103 million reads per pool, which were assembled de novo into 159,861 to 225,352 contigs. 5 104 Subsequent blast analyses revealed the complete genomes of 24 species of RNA viruses, of 105 which 19 are newly described here. These virus species fell into a wide range of RNA virus Downloaded from 106 groups, including those that fell within existing families and orders, namely the 107 Bunyaviridae, Mononegavirales, Orthomyxoviridae, Narnaviridae, Mesoniviridae, 108 Partitiviridae, Reoviridae, Totiviridae, Chrysoviridae, as well as in several newly described 109 groups: Qinvirus (a highly divergent group of negative-sense RNA viruses (8)), the Partiti- http://jvi.asm.org/ 110 like viruses, the Luteo-like viruses and the Negev-like viruses (Table 1). Importantly, these 111 viruses were unlikely to represent endogenous viral elements (EVEs) as they were present as 112 complete genomes without any interruption by frame-shifts, nonsense mutations, repeat 113 sequences, reverse transcriptases, or other features that are common to EVEs. on May 27, 2018 by UNIV OF WESTERN AUSTRALIA M209 114 For each library, the number of virus species varied from 1 to 10 (Table 1). The 115 abundance (i.e. frequency) of each virus also varied from 0.013% to 16.87% of total non- 116 rRNA reads within the pool (Table 1). In comparison, the host gene RPL32, which is often 117 used as a reference gene in quantitative PCR assays, showed consistent abundance levels 118 across all libraries (from 0.034 – 0.065%, Table 2). This suggests that the huge variation in 119 viral number and abundance is unlikely to be an artefact of sample processing or nucleic acid 120 extraction.
Recommended publications
  • Data-Driven Identification of Potential Zika Virus Vectors Michelle V Evans1,2*, Tad a Dallas1,3, Barbara a Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8
    RESEARCH ARTICLE Data-driven identification of potential Zika virus vectors Michelle V Evans1,2*, Tad A Dallas1,3, Barbara A Han4, Courtney C Murdock1,2,5,6,7,8, John M Drake1,2,8 1Odum School of Ecology, University of Georgia, Athens, United States; 2Center for the Ecology of Infectious Diseases, University of Georgia, Athens, United States; 3Department of Environmental Science and Policy, University of California-Davis, Davis, United States; 4Cary Institute of Ecosystem Studies, Millbrook, United States; 5Department of Infectious Disease, University of Georgia, Athens, United States; 6Center for Tropical Emerging Global Diseases, University of Georgia, Athens, United States; 7Center for Vaccines and Immunology, University of Georgia, Athens, United States; 8River Basin Center, University of Georgia, Athens, United States Abstract Zika is an emerging virus whose rapid spread is of great public health concern. Knowledge about transmission remains incomplete, especially concerning potential transmission in geographic areas in which it has not yet been introduced. To identify unknown vectors of Zika, we developed a data-driven model linking vector species and the Zika virus via vector-virus trait combinations that confer a propensity toward associations in an ecological network connecting flaviviruses and their mosquito vectors. Our model predicts that thirty-five species may be able to transmit the virus, seven of which are found in the continental United States, including Culex quinquefasciatus and Cx. pipiens. We suggest that empirical studies prioritize these species to confirm predictions of vector competence, enabling the correct identification of populations at risk for transmission within the United States. *For correspondence: mvevans@ DOI: 10.7554/eLife.22053.001 uga.edu Competing interests: The authors declare that no competing interests exist.
    [Show full text]
  • Application of the Mermithid Nematode, Romanomermis
    THE UNIVERSITY OF MANITOBA Application of the Mermithid Nematode, Romanomermis culicivorax Ross and Smith, 1976, for Mosquito Control in Manitoba and Taxonomic Investigations in the Genus Romanomermis Coman, 1961 by Terry Don Galloway A·THESIS SUBMITTED IN THE FACULTY OF GRADUATE STUDIES IN PARTIAL FULFILMENT OF THE REQUIRENiENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY DEPARTlflENT OF ENTOI\�OLOGY WINNIPEG, MANITOBA 1977 Applicati.on of the Mermi.thid Nematode, Romanomermis culicivorax Ross and Smith, 1976, for Mosquito Control in Manitoba and Taxonomic Investigations in the Genus Romanomermis Coman, 1961 by Terry Don Galloway A dissertation submitted to the Faculty of Graduate Stuuics of the University or Manitoba in partial fulfillmcnl of the requirements or l he degree of DOCTOR OF PHILOSOPHY © 1977 Permission has been granll'd lo lhc LIBRARY OF TIIE UNIVER­ SITY OF MAN ITO BA lo lend or sell copies of this dissertation, lo lhc NATIONAL LIBRARY OF CANADA to mil:mfilrn this dissertation and lo lend or sell copies or the film, and UNIVERSITY MICROFILMS to publish :111 abstr:tct of this dissert:1lion. The author reserves other public.ition rights, and· neither lht' dissertation nor extensive extracts from it may be printed or otl11:r­ wise reproduced without lhc author's written p,mnission. ii ABSTRACT Successful invasion by the mermithid Romanomermis culicivorax declined linearly from 93.6 to 1.5% in Culex tarsalis and from 73,1 to 1.6% in Aedes dorsalis larvae ° exposed in the laboratory at 18, 16, 14, 12 and 10 C for 48 hours, Larvae of C. tarsalis were more susceptible than ° those of A.
    [Show full text]
  • 82078843.Pdf
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Virology 489 (2016) 158–164 Contents lists available at ScienceDirect Virology journal homepage: www.elsevier.com/locate/yviro Brief Communication Molecular characterization of Botrytis ourmia-like virus, a mycovirus close to the plant pathogenic genus Ourmiavirus Livia Donaire a, Julio Rozas b, María A. Ayllón a,n a Centro de Biotecnología y Genómica de Plantas (UPM-INIA) and E.T.S.I. Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain b Departament de Genètica and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain article info abstract Article history: The molecular characterization of a novel single-stranded RNA virus, obtained by next generation Received 22 October 2015 sequencing using Illumina platform, in a field grapevine isolate of the plant pathogenic fungus Botrytis,is Returned to author for revisions reported in this work. The sequence comparison of this virus against the NCBI database showed a strong 20 November 2015 identity with RNA dependent RNA polymerases (RdRps) of plant pathogenic viruses belonging to the Accepted 25 November 2015 genus Ourmiavirus, therefore, this novel virus was named Botrytis ourmia-like virus (BOLV). BOLV has Available online 5 January 2016 one open reading frame of 2169 nucleotides, which encodes a protein of 722 amino acids showing Keywords: conserved domains of plant RNA viruses RdRps such as the most conserved GDD active domain. Our Botrytis analyses showed that BOLV is phylogenetically closer to the fungal Narnavirus and the plant Ourmiavirus Ourmiavirus than to Mitovirus of the family Narnaviridae.
    [Show full text]
  • Downloaded from the National Center for Cide Resistance Mechanisms
    Zhou et al. Parasites & Vectors (2018) 11:32 DOI 10.1186/s13071-017-2584-8 RESEARCH Open Access ASGDB: a specialised genomic resource for interpreting Anopheles sinensis insecticide resistance Dan Zhou, Yang Xu, Cheng Zhang, Meng-Xue Hu, Yun Huang, Yan Sun, Lei Ma, Bo Shen* and Chang-Liang Zhu Abstract Background: Anopheles sinensis is an important malaria vector in Southeast Asia. The widespread emergence of insecticide resistance in this mosquito species poses a serious threat to the efficacy of malaria control measures, particularly in China. Recently, the whole-genome sequencing and de novo assembly of An. sinensis (China strain) has been finished. A series of insecticide-resistant studies in An. sinensis have also been reported. There is a growing need to integrate these valuable data to provide a comprehensive database for further studies on insecticide-resistant management of An. sinensis. Results: A bioinformatics database named An. sinensis genome database (ASGDB) was built. In addition to being a searchable database of published An. sinensis genome sequences and annotation, ASGDB provides in-depth analytical platforms for further understanding of the genomic and genetic data, including visualization of genomic data, orthologous relationship analysis, GO analysis, pathway analysis, expression analysis and resistance-related gene analysis. Moreover, ASGDB provides a panoramic view of insecticide resistance studies in An. sinensis in China. In total, 551 insecticide-resistant phenotypic and genotypic reports on An. sinensis distributed in Chinese malaria- endemic areas since the mid-1980s have been collected, manually edited in the same format and integrated into OpenLayers map-based interface, which allows the international community to assess and exploit the high volume of scattered data much easier.
    [Show full text]
  • Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1
    Vol. XVII, No. 3, August, 1961 403 Potentialities for Accidental Establishment of Exotic Mosquitoes in Hawaii1 C. R. Joyce PUBLIC HEALTH SERVICE QUARANTINE STATION U.S. DEPARTMENT OF HEALTH, EDUCATION, AND WELFARE HONOLULU, HAWAII Public health workers frequently become concerned over the possibility of the introduction of exotic anophelines or other mosquito disease vectors into Hawaii. It is well known that many species of insects have been dispersed by various means of transportation and have become established along world trade routes. Hawaii is very fortunate in having so few species of disease-carrying or pest mosquitoes. Actually only three species are found here, exclusive of the two purposely introduced Toxorhynchites. Mosquitoes still get aboard aircraft and surface vessels, however, and some have been transported to new areas where they have become established (Hughes and Porter, 1956). Mosquitoes were unknown in Hawaii until early in the 19th century (Hardy, I960). The night biting mosquito, Culex quinquefasciatus Say, is believed to have arrived by sailing vessels between 1826 and 1830, breeding in water casks aboard the vessels. Van Dine (1904) indicated that mosquitoes were introduced into the port of Lahaina, Maui, in 1826 by the "Wellington." The early sailing vessels are known to have been commonly plagued with mosquitoes breeding in their water supply, in wooden tanks, barrels, lifeboats, and other fresh water con tainers aboard the vessels, The two day biting mosquitoes, Aedes ae^pti (Linnaeus) and Aedes albopictus (Skuse) arrived somewhat later, presumably on sailing vessels. Aedes aegypti probably came from the east and Aedes albopictus came from the western Pacific.
    [Show full text]
  • WHO VBC 80.766 Eng.Pdf (‎1.320
    5E:e Ai::>b ./ /fj S€f>ARAT£ t=".::.c..·l:::.c--Q WORLD HEALTH ORGANIZATION ~ WHO/VBC/80.766 VBC/BCDS/80.09 ORGANISATION MONDIALE DE LA SANTE ENGLISH ONLY DATA SHEET ON THE BIOLOGICAL CONTROL AGENT(l) INDEXED Romanomermis culicivorax (Ross and Smith 1976) Romanomermis culicivorax is an obligatory endoparasitic nematode, the parasitic larvae of which develop inside larval mosquitos. It has little genus and species specificity within the Culicidae faplily. A total of 87 species (including Anopheles stephensi, An. albimanus, An. gambiae and many other vector species) have been exposed to it either in the laboratory or in the field and were infected. R. culicivorax has been extensively studied for the past 10 years. It can be easily mass produced, is safe to mammals and other non-target organisms, and its environmental limitations are well documented. This parasite is effective when used in water habita~s with the following characteritstics: fresh and non polluted, semi-permanent or permanent, temperature rarely exceeding 40°C, and little water movement. Several natural predators among the aquatic organisms likely to dwell in mosquito pools have been shown to prey on R. culicivorax; but the size, amounts of open water, pH, vegetation densities and host densitie; are not significant factors in the successful use of this biological control agent. This nematode should now be operationally evaluated against vectors during large scale field trials in endemic areas. 1. Identification and Synonymy Nematoda: Mermithidae Romanomermis culicivorax (Ross and Smith, 1976), is a segregate of a complex known previously as Reesimermis nielseni (Tsai and Grundmann, 1969).
    [Show full text]
  • RDL Mutations Predict Multiple Insecticide Resistance in Anopheles Sinensis in Guangxi, China Chan Yang1,2, Zushi Huang1, Mei Li1, Xiangyang Feng3 and Xinghui Qiu1*
    Yang et al. Malar J (2017) 16:482 https://doi.org/10.1186/s12936-017-2133-0 Malaria Journal RESEARCH Open Access RDL mutations predict multiple insecticide resistance in Anopheles sinensis in Guangxi, China Chan Yang1,2, Zushi Huang1, Mei Li1, Xiangyang Feng3 and Xinghui Qiu1* Abstract Background: Anopheles sinensis is a major vector of malaria in China. The gamma-aminobutyric acid (GABA)-gated chloride channel, encoded by the RDL (Resistant to dieldrin) gene, is the important target for insecticides of widely varied structures. The use of various insecticides in agriculture and vector control has inevitably led to the develop- ment of insecticide resistance, which may reduce the control efectiveness. Therefore, it is important to investigate the presence and distribution frequency of the resistance related mutation(s) in An. sinensis RDL to predict resistance to both the withdrawn cyclodienes (e.g. dieldrin) and currently used insecticides, such as fpronil. Methods: Two hundred and forty adults of An. sinensis collected from nine locations across Guangxi Zhuang Autono- mous Region were used. Two fragments of An. sinensis RDL (AsRDL) gene, covering the putative insecticide resistance related sites, were sequenced respectively. The haplotypes of each individual were reconstructed by the PHASE2.1 software, and confrmed by clone sequencing. The phylogenetic tree was built using maximum-likelihood and Bayes- ian inference methods. Genealogical relations among diferent haplotypes were also analysed using Network 5.0. Results: The coding region of AsRDL gene was 1674 bp long, encoding a protein of 557 amino acids. AsRDL had 98.0% amino acid identity to that from Anopheles funestus, and shared common structural features of Cys-loop ligand- gated ion channels.
    [Show full text]
  • Origins and Evolution of the Global RNA Virome
    bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Origins and Evolution of the Global RNA Virome 2 Yuri I. Wolfa, Darius Kazlauskasb,c, Jaime Iranzoa, Adriana Lucía-Sanza,d, Jens H. 3 Kuhne, Mart Krupovicc, Valerian V. Doljaf,#, Eugene V. Koonina 4 aNational Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA 5 b Vilniaus universitetas biotechnologijos institutas, Vilnius, Lithuania 6 c Département de Microbiologie, Institut Pasteur, Paris, France 7 dCentro Nacional de Biotecnología, Madrid, Spain 8 eIntegrated Research Facility at Fort Detrick, National Institute of Allergy and Infectious 9 Diseases, National Institutes of Health, Frederick, Maryland, USA 10 fDepartment of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA 11 12 #Address correspondence to Valerian V. Dolja, [email protected] 13 14 Running title: Global RNA Virome 15 16 KEYWORDS 17 virus evolution, RNA virome, RNA-dependent RNA polymerase, phylogenomics, horizontal 18 virus transfer, virus classification, virus taxonomy 1 bioRxiv preprint doi: https://doi.org/10.1101/451740; this version posted October 24, 2018. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 19 ABSTRACT 20 Viruses with RNA genomes dominate the eukaryotic virome, reaching enormous diversity in 21 animals and plants. The recent advances of metaviromics prompted us to perform a detailed 22 phylogenomic reconstruction of the evolution of the dramatically expanded global RNA virome.
    [Show full text]
  • Virus World As an Evolutionary Network of Viruses and Capsidless Selfish Elements
    Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Koonin, E. V., & Dolja, V. V. (2014). Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements. Microbiology and Molecular Biology Reviews, 78(2), 278-303. doi:10.1128/MMBR.00049-13 10.1128/MMBR.00049-13 American Society for Microbiology Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Virus World as an Evolutionary Network of Viruses and Capsidless Selfish Elements Eugene V. Koonin,a Valerian V. Doljab National Center for Biotechnology Information, National Library of Medicine, Bethesda, Maryland, USAa; Department of Botany and Plant Pathology and Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, USAb Downloaded from SUMMARY ..................................................................................................................................................278 INTRODUCTION ............................................................................................................................................278 PREVALENCE OF REPLICATION SYSTEM COMPONENTS COMPARED TO CAPSID PROTEINS AMONG VIRUS HALLMARK GENES.......................279 CLASSIFICATION OF VIRUSES BY REPLICATION-EXPRESSION STRATEGY: TYPICAL VIRUSES AND CAPSIDLESS FORMS ................................279 EVOLUTIONARY RELATIONSHIPS BETWEEN VIRUSES AND CAPSIDLESS VIRUS-LIKE GENETIC ELEMENTS ..............................................280 Capsidless Derivatives of Positive-Strand RNA Viruses....................................................................................................280
    [Show full text]
  • ICTV Code Assigned: 2011.001Ag Officers)
    This form should be used for all taxonomic proposals. Please complete all those modules that are applicable (and then delete the unwanted sections). For guidance, see the notes written in blue and the separate document “Help with completing a taxonomic proposal” Please try to keep related proposals within a single document; you can copy the modules to create more than one genus within a new family, for example. MODULE 1: TITLE, AUTHORS, etc (to be completed by ICTV Code assigned: 2011.001aG officers) Short title: Change existing virus species names to non-Latinized binomials (e.g. 6 new species in the genus Zetavirus) Modules attached 1 2 3 4 5 (modules 1 and 9 are required) 6 7 8 9 Author(s) with e-mail address(es) of the proposer: Van Regenmortel Marc, [email protected] Burke Donald, [email protected] Calisher Charles, [email protected] Dietzgen Ralf, [email protected] Fauquet Claude, [email protected] Ghabrial Said, [email protected] Jahrling Peter, [email protected] Johnson Karl, [email protected] Holbrook Michael, [email protected] Horzinek Marian, [email protected] Keil Guenther, [email protected] Kuhn Jens, [email protected] Mahy Brian, [email protected] Martelli Giovanni, [email protected] Pringle Craig, [email protected] Rybicki Ed, [email protected] Skern Tim, [email protected] Tesh Robert, [email protected] Wahl-Jensen Victoria, [email protected] Walker Peter, [email protected] Weaver Scott, [email protected] List the ICTV study group(s) that have seen this proposal: A list of study groups and contacts is provided at http://www.ictvonline.org/subcommittees.asp .
    [Show full text]
  • Possible Insights Into the Use of Silver Nanoparticles in Targeting SARS-Cov-2 (COVID-19)
    Review Article Possible Insights into the Use of Silver Nanoparticles in Targeting SARS-CoV-2 (COVID-19) Abhinav Raj Ghosh, Bhooshitha AN, Chandan HM, KL Krishna* Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education and Research, Mysuru, Karnataka, INDIA. ABSTRACT Aim: The aims of this review are to assess the anti-viral and targeting strategies using nano materials and the possibility of using Silver nanoparticles for combating the SARS-CoV-2. Background: The novel Coronavirus (SARS-CoV-2) has become a global pandemic and has spread rapidly worldwide. Researchers have successfully identified the molecular structure of the novel coronavirus however significant success has not yet been observed with the therapies currently in clinical trials and exhaustive studies are yet to be carried out in the long road to discovery of a vaccine or a possible cure. Another hurdle associated with the discovery of a cure is the mutation of this virus which may occur at any point in time. Hypothesis: Previous studies have identified a wide number of strains of Coronaviruses with differences in virulent properties. Silver nanoparticles have been used extensively in anti-viral research with promising results in-vitro. However, it has not yet been tested for the same in clinical subjects. It has also been tested on two variants of coronavirus in-vitro with significant data to understand the pathogenesis and which may be implemented in further research possibly in other variants of coronavirus. Another interesting targeting approach would be to test the effect of Silver Nanoparticles on TNF-α as well as Interleukins in SARS-CoV-2 patients.
    [Show full text]
  • Mosquito-Borne Viruses, Insect-Specific
    FULL PAPER Virology Mosquito-borne viruses, insect-specific flaviviruses (family Flaviviridae, genus Flavivirus), Banna virus (family Reoviridae, genus Seadornavirus), Bogor virus (unassigned member of family Permutotetraviridae), and alphamesoniviruses 2 and 3 (family Mesoniviridae, genus Alphamesonivirus) isolated from Indonesian mosquitoes SUPRIYONO1), Ryusei KUWATA1,2), Shun TORII1), Hiroshi SHIMODA1), Keita ISHIJIMA3), Kenzo YONEMITSU1), Shohei MINAMI1), Yudai KURODA3), Kango TATEMOTO3), Ngo Thuy Bao TRAN1), Ai TAKANO1), Tsutomu OMATSU4), Tetsuya MIZUTANI4), Kentaro ITOKAWA5), Haruhiko ISAWA6), Kyoko SAWABE6), Tomohiko TAKASAKI7), Dewi Maria YULIANI8), Dimas ABIYOGA9), Upik Kesumawati HADI10), Agus SETIYONO10), Eiichi HONDO11), Srihadi AGUNGPRIYONO10) and Ken MAEDA1,3)* 1)Laboratory of Veterinary Microbiology, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan 2)Faculty of Veterinary Medicine, Okayama University of Science, 1-3 Ikoino-oka, Imabari, Ehime 794-8555, Japan 3)Department of Veterinary Science, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 4)Research and Education Center for Prevention of Global Infectious Diseases of Animals, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu, Tokyo 183-8508, Japan 5)Pathogen Genomics Center, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8640, Japan 6)Department of Medical Entomology, National Institute of Infectious Diseases, 1-23-1
    [Show full text]