Astrophysics in 2005

Total Page:16

File Type:pdf, Size:1020Kb

Load more

UC Irvine UC Irvine Previously Published Works Title Astrophysics in 2005 Permalink https://escholarship.org/uc/item/2807g1h2 Journal Publications of the Astronomical Society of the Pacific, 118(845) ISSN 0004-6280 Authors Trimble, V Aschwanden, MJ Hansen, CJ Publication Date 2006-07-01 DOI 10.1086/506157 License https://creativecommons.org/licenses/by/4.0/ 4.0 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Publications of the Astronomical Society of the Pacific, 118: 947–1047, 2006 July ᭧ 2006. The Astronomical Society of the Pacific. All rights reserved. Printed in U.S.A. Astrophysics in 2005 Virginia Trimble Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575; and Las Cumbres Observatory, Santa Barbara, CA; [email protected] Markus J. Aschwanden Lockheed Martin Advanced Technology Center, Solar and Astrophysics Laboratory, Organization ADBS, Building 252, 3251 Hanover Street, Palo Alto, CA 94304; [email protected] and Carl J. Hansen JILA, Department of Astrophysical and Planetary Sciences, University of Colorado, Boulder, CO 80309; [email protected] Received 2006 May 3; accepted 2006 May 23; published 2006 July 14 ABSTRACT. We bring you, as usual, the Sun and Moon and stars, plus some galaxies and a new section on astrobiology. Some highlights are short (the newly identified class of gamma-ray bursts, and the Deep Impact on Comet 9P/Tempel 1), some long (the age of the universe, which will be found to have the Earth at its center), and a few metonymic, for instance the term “down-sizing” to describe the evolution of star formation rates with redshift. 1. INTRODUCTION A few papers are mentioned as deserving of gold stars, green The ApXX series celebrates its quincean˜era by adding a new, dots, and other colorful recognition. This is as nice as we get. astrobiology, section and co-opting an additional author to write Among the people who appear in the following pages are Jack it and to cope with many other problems.1 Used in compiling Benny, the Keen Amateur Dentist, the Faustian Acquaintance, §§ 3–6 and 8–13 were the issues that arrived as paper between and the Medical Musician. All are pseudonyms, for Benjamin 1 October 2004 and 30 September 2005 of Nature, Physical Kubelsky and three colleagues, left as an exercise for readers, Review Letters,theAstrophysical Journal (plus Letters and not intended to include the also-pseudonymous Mr. H., who is Supplement Series), Monthly Notices of the Royal Astronomical supposed to be completing a thesis in X-ray astronomy. Society (including Letters up to December 2004 only), As- tronomy and Astrophysics (plus Reviews), Astronomical Jour- 1.1. Terminations nal, Acta Astronomica, Revista Mexicana Astronomia y As- trofisica, Astrophysics and Space Science, Astronomy Reports, We record here a number of things that came to an end, Astronomy Letters, Astrofizica, Astronomische Nachrichten, surely or probably, in the index year. Beginnings appear in Publications of the Astronomical Society of Japan, Journal of § 1.2 and more complicated relationships in 1.3. (1) The last Astrophysics and Astronomy, Bulletin of the Astronomical So- launch of a Skylark sounding rocket happened on 30 April ciety of India, Contributions of the Astronomical Observatory 2005; the first was from Woomera during International Geo- Skalnate Pleso, New Astronomy (plus Reviews), IAU Circulars, physical Year 1957. (2) Both the Letters section of MNRAS and, of course, Publications of the Astronomical Society of the and the newsletter of the European Space Agency went e-only Pacific. Journals read less systematically and cited irregularly during the year (January and July 2005, respectively) and so include Observatory, Journal of the American Association of are no longer accessible to the least electronic author. (3) SLAC, Variable Star Observers, ESO Messenger, Astronomy and Geo- like Brookhaven and Los Alamos before it, was shut down by physics, Mercury, New Scientist, Science News, American Sci- an accident on 1 October (Science 306, 809). (4) The percentage entist, Scientometrics, Sky & Telescope, Monthly Notes of the of women in computer sciences has actually declined over the Astronomical Society of South Africa,andJournal of the Royal past 20 years (Science 306, 809), while that in physical sciences Astronomical Society of Canada. Additional journals provided and engineering has crept slowly up. (5) NASA’s KC-135 jet, material for §§ 2 and 7 and are mentioned there. the “vomit comet,” used to produce brief experiences of weight- lessness, free-fell for the last time on 29 October. (6) Kodak produced its last carousel projector in November 2004 but will 1 Astrophysics in 1991 to 2004 appeared in volumes 104–117 of PASP. support existing ones (light bulbs and things) until 2007. They are cited here as Ap91, etc. (7) The Yerkes Observatory (where the modern sequence of 947 948 TRIMBLE, ASCHWANDEN, & HANSEN spectral types was established by Morgan and Keenan) is to 465). (11) The US is once again planning to develop a major be turned into, but turned into what is not entirely clear (Sky underground laboratory facility for high energy physics and & Telescope 108, No. 3, p. 19). (8) The Mohorovicˇic´ discon- other purposes, perhaps back at Homestake (Ray Davis’s old tinuity was not reached again at 1.4 km, where the mid-Atlantic site) or at Henderson, an active molybdenum mine (Science ridge was expected to be only 0.7 km thick (Science 307, 1707); 309, 682). (12) France has removed an assortment of popular of course every child who attempted to dig to China with a topical antibiotics from over-the-counter sale (Science 309, tablespoon (from California, or to California from China with 872). Not astronomy perhaps, but anything that slows down chopsticks) can claim a similar result (Scientific American 293, the development of resistant organisms has to be good for us 94). (9) Ball Aerospace provided (at least) its second out-of- all! (13) SALT, the South African Large Telescope (near relative focus telescope, this one on Deep Impact (Nature 434, 685). of the Hobby-Eberly Telescope) has collected some photons (10) Another try at Cosmos-1, a solar sail vehicle, was lost on and a dedication (Nature 437, 182). (14) The Pierre Auger launch 21 June, probably due to a pump failure. (11) Gravity facility, which looks for very high energy things, released its Probe B gathered its last data on 1 October, with, up to mid first data on 6 July. (15) The Atacama Pathfinder Experiment, January, no results announced and no triumphant renaming of APEX, at Chajnator (a 12-meter telescope for millimeter radio the craft as, for instance, Lens-Thirring to indicate success. astronomy and submillimeter submillimeter astronomy in the Atacama desert) carried out its first scientific observations in 1.2. Inceptions July 2005. (16) The Las Cumbres Observatory has acquired its first 2-meter telescopes (in Hawaii and Australia) and its Most of these beginnings are, we think, good news or at first GRB afterglow (in a galaxy long ago and far away, least progress toward good news. (1) Smart-1 on its way to 051111). Six telescopes and observations of many more af- the Moon was probably the most fuel-efficient vehicle in his- terglows and other transient phenomena are planned. tory, achieving the equivalent of2 # 10 6 km per liter of gas- oline (ESA Space Science News No. 7, p. 2); the only com- petition would seem to be something that simply rides along 1.3. More Complicated Stories with tectonic plate spreading. It arrived on 15 November after Astro-E, a Japanese X-ray satellite, was successfully an October 2003 launch, and was so also only marginally faster launched on 10 July 2005 and named Suzaku (red bird of the than tectonic plates. (2) Some of the antennas for LOFAR are south). But its coolant was lost some time before 8 August in place (10 near the beginning of the reference year; Sky & and, although its CCD X-ray detectors will still work, the spec- Telescope December 2005, p. 24). (3) The Spitzer Space Tele- trometer that was one of its main goals will not. This was, scope released its first large package of papers on the cusp of sadly, the second try at Astro-E.Thefirst, also unsuccessful, the year (September 2004 issue of Astrophysical Journal Sup- attempt was roughly contemporaneous with the launches of the plement Series). (4) Swift caught its first gamma ray burst on Chandra and XMM-Newton X-ray satellites, and the projects 17 December, after a 20 November launch. (5) In January 2005 were meant to be complementary. the first hole was dug for Ice Cube, an advanced muon and Muses-C, which became Hayabusa afterlaunchon9May neutrino detector in Antarctica (and a confusing notebook entry, 2003, was supposed to examine asteroid Itokawa, break off a because we generally use upward pointing arrows for good bit, and bring it back in the summer of 2007. The bad news/ news items, while the hole probably went down). (6) The Ar- good news items have been coming out more or less monthly iane heavy lifter had its first successful launch from French on beyond the end of the reference year. It got to the asteroid. Guiana on 12–13 February. It will be needed for the James Two gyros failed. It managed to touch down, or not? It picked Webb Space Telescope, unless very considerable additional de- up some stuff, or not? And it may or may not be able to turn scoping occurs. (7) A million dollar Kavli astrophysics prize around and come home. will be given starting in 2008 (Nature 435, 37) along with ones The American Physical Society, worried about folks saying, in neuroscience and nano-technology.
Recommended publications
  • NSF Current Newsletter Highlights Research and Education Efforts Supported by the National Science Foundation

    NSF Current Newsletter Highlights Research and Education Efforts Supported by the National Science Foundation

    March 2012 Each month, the NSF Current newsletter highlights research and education efforts supported by the National Science Foundation. If you would like to automatically receive notifications by e-mail or RSS when future editions of NSF Current are available, please use the links below: Subscribe to NSF Current by e-mail | What is RSS? | Print this page | Return to NSF Current Archive Robotic Surgery Systems Shipped to Medical Research Centers A set of seven identical advanced robotic-surgery systems produced with NSF support were shipped last month to major U.S. medical research laboratories, creating a network of systems using a common platform. The network is designed to make it easy for researchers to share software, replicate experiments and collaborate in other ways. Robotic surgery has the potential to enable new surgical procedures that are less invasive than existing techniques. The developers of the Raven II system made the decision to share it as the best way to move the field forward--though it meant giving competing laboratories tools that had taken them years to develop. "We decided to follow an open-source model, because if all of these labs have a common research platform for doing robotic surgery, the whole field will be able to advance more quickly," said Jacob Rosen, Students with components associate professor of computer engineering at the University of of the Raven II surgical California-Santa Cruz. Rosen and Blake Hannaford, director of the robotics systems. Credit: University of Washington Biorobotics Laboratory, led the team that Carolyn Lagattuta built the Raven system, initially with a U.S.
  • Effect of the Solar Wind Density on the Evolution of Normal and Inverse Coronal Mass Ejections S

    Effect of the Solar Wind Density on the Evolution of Normal and Inverse Coronal Mass Ejections S

    A&A 632, A89 (2019) Astronomy https://doi.org/10.1051/0004-6361/201935894 & c ESO 2019 Astrophysics Effect of the solar wind density on the evolution of normal and inverse coronal mass ejections S. Hosteaux, E. Chané, and S. Poedts Centre for mathematical Plasma-Astrophysics (CmPA), Celestijnenlaan 200B, KU Leuven, 3001 Leuven, Belgium e-mail: [email protected] Received 15 May 2019 / Accepted 11 September 2019 ABSTRACT Context. The evolution of magnetised coronal mass ejections (CMEs) and their interaction with the background solar wind leading to deflection, deformation, and erosion is still largely unclear as there is very little observational data available. Even so, this evolution is very important for the geo-effectiveness of CMEs. Aims. We investigate the evolution of both normal and inverse CMEs ejected at different initial velocities, and observe the effect of the background wind density and their magnetic polarity on their evolution up to 1 AU. Methods. We performed 2.5D (axisymmetric) simulations by solving the magnetohydrodynamic equations on a radially stretched grid, employing a block-based adaptive mesh refinement scheme based on a density threshold to achieve high resolution following the evolution of the magnetic clouds and the leading bow shocks. All the simulations discussed in the present paper were performed using the same initial grid and numerical methods. Results. The polarity of the internal magnetic field of the CME has a substantial effect on its propagation velocity and on its defor- mation and erosion during its evolution towards Earth. We quantified the effects of the polarity of the internal magnetic field of the CMEs and of the density of the background solar wind on the arrival times of the shock front and the magnetic cloud.
  • Predicting the Magnetic Vectors Within Coronal Mass Ejections Arriving at Earth: 2

    Predicting the Magnetic Vectors Within Coronal Mass Ejections Arriving at Earth: 2

    Space Weather RESEARCH ARTICLE Predicting the magnetic vectors within coronal mass ejections 10.1002/2015SW001171 arriving at Earth: 1. Initial architecture Key Points: N. P.Savani1,2, A. Vourlidas1, A. Szabo2,M.L.Mays2,3, I. G. Richardson2,4, B. J. Thompson2, • First architectural design to predict A. Pulkkinen2,R.Evans5, and T. Nieves-Chinchilla2,3 a CME’s magnetic vectors (with eight events) 1 2 • Modified Bothmer-Schwenn CME Goddard Planetary Heliophysics Institute (GPHI), University of Maryland, Baltimore County, Maryland, USA, NASA 3 initiation rule to improve reliability Goddard Space Flight Center, Greenbelt, Maryland, USA, Institute for Astrophysics and Computational Sciences (IACS), of chirality Catholic University of America, Washington, District of Columbia, USA, 4Department of Astronomy, University of • CME evolution seen by remote Maryland, College Park, Maryland, USA, 5College of Science, George Mason University, Fairfax, Vancouver, USA sensing triangulation is important for forecasting Abstract The process by which the Sun affects the terrestrial environment on short timescales is Correspondence to: predominately driven by the amount of magnetic reconnection between the solar wind and Earth’s N. P. Savani, magnetosphere. Reconnection occurs most efficiently when the solar wind magnetic field has a southward [email protected] component. The most severe impacts are during the arrival of a coronal mass ejection (CME) when the magnetosphere is both compressed and magnetically connected to the heliospheric environment. Citation: Unfortunately, forecasting magnetic vectors within coronal mass ejections remain elusive. Here we report Savani, N. P., A. Vourlidas, A. Szabo, M.L.Mays,I.G.Richardson,B.J. how, by combining a statistically robust helicity rule for a CME’s solar origin with a simplified flux rope Thompson, A.
  • Predictability of the Variable Solar-Terrestrial Coupling Ioannis A

    Predictability of the Variable Solar-Terrestrial Coupling Ioannis A

    https://doi.org/10.5194/angeo-2020-94 Preprint. Discussion started: 26 January 2021 c Author(s) 2021. CC BY 4.0 License. Predictability of the variable solar-terrestrial coupling Ioannis A. Daglis1,15, Loren C. Chang2, Sergio Dasso3, Nat Gopalswamy4, Olga V. Khabarova5, Emilia Kilpua6, Ramon Lopez7, Daniel Marsh8,16, Katja Matthes9,17, Dibyendu Nandi10, Annika Seppälä11, Kazuo Shiokawa12, Rémi Thiéblemont13 and Qiugang Zong14 5 1Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece 2Department of Space Science and Engineering, Center for Astronautical Physics and Engineering, National Central University, Taiwan 3Department of Physics, Universidad de Buenos Aires, Buenos Aires, Argentina 10 4Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 5Solar-Terrestrial Department, Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation of RAS (IZMIRAN), Moscow, 108840, Russia 6Department of Physics, University of Helsinki, Helsinki, Finland 7Department of Physics, University of Texas at Arlington, Arlington, TX 76019, USA 15 8National Center for Atmospheric Research, Boulder, CO 80305, USA 9GEOMAR Helmholtz Centre for Ocean Research, Kiel, Germany 10IISER, Kolkata, India 11Department of Physics, University of Otago, Dunedin, New Zealand 12Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Japan 20 13LATMOS, Universite Pierre et Marie Curie, Paris, France 14School of Earth and Space Sciences, Peking University, Beijing, China 15Hellenic Space Center, Athens, Greece 16Faculty of Engineering and Physical Sciences, University of Leeds, Leeds, UK 17Christian-Albrechts Universität, Kiel, Germany 25 Correspondence to: Ioannis A. Daglis ([email protected]) Abstract. In October 2017, the Scientific Committee on Solar-Terrestrial Physics (SCOSTEP) Bureau established a 30 committee for the design of SCOSTEP’s Next Scientific Program (NSP).
  • Identification of Interplanetary Coronal Mass Ejection with Magnetic Cloud in Year 2005 at 1 AU

    Identification of Interplanetary Coronal Mass Ejection with Magnetic Cloud in Year 2005 at 1 AU

    INTERNATIONAL JOURNAL OF SCIENTIFIC & TECHNOLOGY RESEARCH VOLUME 3, ISSUE 6, JUNE 2014 ISSN 2277-8616 Identification Of Interplanetary Coronal Mass Ejection With Magnetic Cloud In Year 2005 At 1 AU D.S.Burud, R .S. Vhatkar, M. B. Mohite Abstract: Coronal mass ejection (CMEs) propagate in to the interplanetary medium are called as Interplanetary Coronal Mass Ejection (ICME). A set of signatures in plasma and magnetic field is used to identify the ICMEs. Magnetic Cloud (MC) is a special kind of ICMEs in which internal magnetic field configuration is similar like flux rope. We have used the data obtained from ACE Advance Composition Explorer (ACE) based in-situ measurements of Magnetic Field Experiment (MAG) and Solar Wind Electron, Proton and Alpha Monitor (SWEPAM) experiment for the data of magnetic field and plasma parameters respectively. The magnetic field data and plasma parameters of ICMEs used to distinguish them as magnetic cloud, non magnetic cloud. We analyzed eighteen ICMEs observed during January 2005 to December 2005, which is the beginning of declining phase of solar cycle 23. The analysis of magnetic field in the frames of the flux ropes like structure using a Minimum Variance Analysis (MVA) method, and have identified 30% ICMEs in the year 2005, which shows magnetic field rotation in a plane and confirmed as ICMEs with MCs. Keywords: magnetic cloud (MC), interplanetary coronal mass ejection (ICME), minimum variance analysis (MVA). ———————————————————— Introduction:- Table No: 1 Signatures used to identify ICMEs in the Coronal mass ejections (CMEs) are an energetic Heliosphere phenomenon originated in the Sun‘s corona, CMEs are eruptions of plasma and magnetic fields that drive space Sr.no.
  • Arxiv:2101.07771V4 [Stat.AP] 9 Jun 2021

    Arxiv:2101.07771V4 [Stat.AP] 9 Jun 2021

    Received Jan-19-2021; Revised Jun-02-2021; Accepted XX-XX-XXX DOI: xxx/xxxx SURVEY Critical Risk Indicators (CRIs) for the electric power grid: A survey and discussion of interconnected effects Che-Castaldo, Judy P.*1 | Cousin, Rémi2 | Daryanto, Stefani3 | Deng, Grace4 | Feng, Mei-Ling E.1 | Gupta, Rajesh K.5 | Hong, Dezhi5 | McGranaghan, Ryan M.6 | Owolabi, Olukunle O.7 | Qu, Tianyi8 | Ren, Wei3 | Schafer, Toryn L. J.4 | Sharma, Ashutosh9,10 | Shen, Chaopeng9 | Sherman, Mila Getmansky8 | Sunter, Deborah A.7 | Tao, Bo3 | Wang, Lan11 | Matteson, David S.4 1Conservation & Science Department, Lincoln Park Zoo, Illinois, USA Abstract 2International Research Institute for Climate The electric power grid is a critical societal resource connecting multiple infrastruc- and Society, Earth Institute / Columbia University, New York, USA tural domains such as agriculture, transportation, and manufacturing. The electrical 3Department of Plant and Soil Sciences, grid as an infrastructure is shaped by human activity and public policy in terms of College of Agriculture, Food and Environment / University of Kentucky, demand and supply requirements. Further, the grid is subject to changes and stresses Kentucky, USA due to diverse factors including solar weather, climate, hydrology, and ecology. The 4 Department of Statistics and Data Science, emerging interconnected and complex network dependencies make such interactions Cornell University, New York, USA 5Halicioglu Data Science Institute and increasingly dynamic, posing novel risks, and presenting new challenges to manage Department of Computer Science & the coupled human-natural system. This paper provides a survey of models and meth- Engineering, University of California, San ods that seek to explore the significant interconnected impact of the electric power Diego, California, USA 6Atmosphere Space Technology Research grid and interdependent domains.
  • Cmes, Solar Wind and Sun-Earth Connections: Unresolved Issues

    Cmes, Solar Wind and Sun-Earth Connections: Unresolved Issues

    CMEs, solar wind and Sun-Earth connections: unresolved issues Rainer Schwenn Max-Planck-Institut für Sonnensystemforschung, Katlenburg-Lindau, Germany [email protected] In recent years, an unprecedented amount of high-quality data from various spaceprobes (Yohkoh, WIND, SOHO, ACE, TRACE, Ulysses) has been piled up that exhibit the enormous variety of CME properties and their effects on the whole heliosphere. Journals and books abound with new findings on this most exciting subject. However, major problems could still not be solved. In this Reporter Talk I will try to describe these unresolved issues in context with our present knowledge. My very personal Catalog of ignorance, Updated version (see SW8) IAGA Scientific Assembly in Toulouse, 18-29 July 2005 MPRS seminar on January 18, 2006 The definition of a CME "We define a coronal mass ejection (CME) to be an observable change in coronal structure that occurs on a time scale of a few minutes and several hours and involves the appearance (and outward motion, RS) of a new, discrete, bright, white-light feature in the coronagraph field of view." (Hundhausen et al., 1984, similar to the definition of "mass ejection events" by Munro et al., 1979). CME: coronal -------- mass ejection, not: coronal mass -------- ejection! In particular, a CME is NOT an Ejección de Masa Coronal (EMC), Ejectie de Maså Coronalå, Eiezione di Massa Coronale Éjection de Masse Coronale The community has chosen to keep the name “CME”, although the more precise term “solar mass ejection” appears to be more appropriate. An ICME is the interplanetry counterpart of a CME 1 1.
  • Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E

    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E

    Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, E. Yordanova, S. Good, M. M. H. Kalliokoski, E. Lumme, A. Osmane, et al. To cite this version: E. K. J. Kilpua, D. Fontaine, C. Moissard, M. Ala-lahti, E. Palmerio, et al.. Solar Wind Properties and Geospace Impact of Coronal Mass Ejection-Driven Sheath Regions: Variation and Driver Dependence. Space Weather: The International Journal of Research and Applications, American Geophysical Union (AGU), 2019, 17 (8), pp.1257-1280. 10.1029/2019SW002217. hal-03087107 HAL Id: hal-03087107 https://hal.archives-ouvertes.fr/hal-03087107 Submitted on 23 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. RESEARCH ARTICLE Solar Wind Properties and Geospace Impact of Coronal 10.1029/2019SW002217 Mass Ejection-Driven Sheath Regions: Variation and Key Points: Driver Dependence • Variation of interplanetary properties and geoeffectiveness of CME-driven sheaths and their dependence on the E. K. J. Kilpua1 , D. Fontaine2 , C. Moissard2 , M. Ala-Lahti1 , E. Palmerio1 , ejecta properties are determined E.
  • Ten Years of PAMELA in Space

    Ten Years of PAMELA in Space

    Ten Years of PAMELA in Space The PAMELA collaboration O. Adriani(1)(2), G. C. Barbarino(3)(4), G. A. Bazilevskaya(5), R. Bellotti(6)(7), M. Boezio(8), E. A. Bogomolov(9), M. Bongi(1)(2), V. Bonvicini(8), S. Bottai(2), A. Bruno(6)(7), F. Cafagna(7), D. Campana(4), P. Carlson(10), M. Casolino(11)(12), G. Castellini(13), C. De Santis(11), V. Di Felice(11)(14), A. M. Galper(15), A. V. Karelin(15), S. V. Koldashov(15), S. Koldobskiy(15), S. Y. Krutkov(9), A. N. Kvashnin(5), A. Leonov(15), V. Malakhov(15), L. Marcelli(11), M. Martucci(11)(16), A. G. Mayorov(15), W. Menn(17), M. Mergè(11)(16), V. V. Mikhailov(15), E. Mocchiutti(8), A. Monaco(6)(7), R. Munini(8), N. Mori(2), G. Osteria(4), B. Panico(4), P. Papini(2), M. Pearce(10), P. Picozza(11)(16), M. Ricci(18), S. B. Ricciarini(2)(13), M. Simon(17), R. Sparvoli(11)(16), P. Spillantini(1)(2), Y. I. Stozhkov(5), A. Vacchi(8)(19), E. Vannuccini(1), G. Vasilyev(9), S. A. Voronov(15), Y. T. Yurkin(15), G. Zampa(8) and N. Zampa(8) (1) University of Florence, Department of Physics, I-50019 Sesto Fiorentino, Florence, Italy (2) INFN, Sezione di Florence, I-50019 Sesto Fiorentino, Florence, Italy (3) University of Naples “Federico II”, Department of Physics, I-80126 Naples, Italy (4) INFN, Sezione di Naples, I-80126 Naples, Italy (5) Lebedev Physical Institute, RU-119991 Moscow, Russia (6) University of Bari, I-70126 Bari, Italy (7) INFN, Sezione di Bari, I-70126 Bari, Italy (8) INFN, Sezione di Trieste, I-34149 Trieste, Italy (9) Ioffe Physical Technical Institute, RU-194021 St.
  • Diapositiva 1

    Diapositiva 1

    PAMELAPAMELA SpaceSpace MissionMission FirstFirst ResultsResults inin CosmicCosmic RaysRays Piergiorgio Picozza INFN & University of Rome “ Tor Vergata” , Italy Virtual Institute of Astroparticle Physics June 20, 2008 Robert L. Golden ANTIMATTERANTIMATTER Antimatter Lumps Trapped in our Galaxy antiparticles Antimatter and Dark Matter Research Wizard Collaboration -- BESS (93, 95, 97, 98, 2000) - MASS – 1,2 (89,91) - - Heat (94, 95, 2000) --TrampSI (93) - IMAX (96) -CAPRICE (94, 97, 98) - BESS LDF (2004, 2007) - ATIC (2001, 2003, 2005) - AMS-01 (98) AntimatterAntimatter “We must regard it rather an accident that the Earth and presumably the whole Solar System contains a preponderance of negative electrons and positive protons. It is quite possible that for some of the stars it is the other way about” P. Dirac, Nobel lecture (1933) 4% 23% 73% Signal (supersymmetry)… … and background )(GLAST AMS-02 pCR p+ → ISM p + p+ + p p + + + +pCR pISM →π → μ e → →π0 → γγ e+ → e − Another possible scenario: KK Dark Matter Lightest Kaluza-Klein Particle (LKP): B(1) Bosonic Dark Matter: fermionic final states no longer helicity suppressed. e+e- final states directly produced. As in the neutralino case there are 1-loop processes that produces monoenergetic γγin the final state. P Secondary production (upper and lower limits) Simon et al. ApJ 499 (1998) 250. from χχ Secondary annihilation production (Primary Bergström et production al. ApJ 526 m(c) = 964 (1999) 215 GeV) Ullio : astro- ph/9904086 AntiprotonAntiproton--ProtonProton RatioRatio Potgieter at
  • Properties and Geoeffectiveness of Magnetic Clouds During Solar Cycles 23 and 24 N. Gopalswamy1, S. Yashiro1,2, H. Xie1,2, S. Akiyama1,2, and P

    Properties and Geoeffectiveness of Magnetic Clouds During Solar Cycles 23 and 24 N. Gopalswamy1, S. Yashiro1,2, H. Xie1,2, S. Akiyama1,2, and P

    Properties and Geoeffectiveness of Magnetic Clouds during Solar Cycles 23 and 24 N. Gopalswamy1, S. Yashiro1,2, H. Xie1,2, S. Akiyama1,2, and P. Mäkelä1,2 1Solar Physics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771 2The Catholic University of America, Washington DC 20064 Corresponding author email: [email protected] Key points • Properties of magnetic clouds in cycle 23 and 24 are significantly different • Anomalous expansion of CMEs cause the magnetic dilution in clouds • Reduced magnetic content and speed of clouds lead to low geoeffectiveness • Accepted for publication in J. Geophys. Res. October 2, 2015 1 Abstract We report on a study that compares the properties of magnetic clouds (MCs) during the first 73 months of solar cycles 23 and 24 in order to understand the weak geomagnetic activity in cycle 24. We find that the number of MCs did not decline in cycle 24, although the average sunspot number is known to have declined by ~40%. Despite the large number of MCs, their geoeffectiveness in cycle 24 was very low. The average Dst index in the sheath and cloud portions in cycle 24 was -33 nT and -23 nT, compared to -66 nT and -55 nT, respectively in cycle 23. One of the key outcomes of this investigation is that the reduction in the strength of geomagnetic storms as measured by the Dst index is a direct consequence of the reduction in the factor VBz (the product of the MC speed and the out-of-the-ecliptic component of the MC magnetic field). The reduction in MC-to-ambient total pressure in cycle 24 is compensated for by the reduction in the mean MC speed, resulting in the constancy of the dimensionless expansion rate at 1 AU.
  • Examining Emerging Risks

    Examining Emerging Risks

    CAS Professional Education IN FOCUS: TAMING CATS‐MANAGING NATURAL AND MAN‐MADE CATASTROPHE RISKS BALTIMORE, MD EXAMINING EMERGING RISKS Alan D. Roth, Ph.D. Chief Risk Officer, Advanced Fusion Systems, LLC TOPICS TO BE COVERED • CLIMATE CHANGE • WATER SCARCITY • FOOD SCARCITY • FUEL SCARCITY • SOLAR STORMS • EMP • PANDEMICS • CYBER WARFARE CLIMATE CHANGE Is it real? This is from NASA Where? –is also important! We need to consider: • Pacific Decadal Oscillation • North Atlantic Oscillation • Southern Oscillation: El Niño and La Niña • Arctic Oscillation • Trade winds • Meridional Overturning Circulation (aka Conveyor Belt) Temperature from 1884 to 2011 Ocean currents are varied http://www.jpl.nasa.gov/news/news.cfm?release=2012‐099 El Niño/Southern Oscillation (ENSO) NOAA: North Atlantic Oscillation NOAA: North Atlantic Oscillation Arctic Oscillation The state of atmospheric circulation over the Arctic. Red is low pressure, blue is high pressure. Influences weather patterns at lower latitudes. Effect of changes in temperature distribution on extremes ”MANAGING THE RISKS OF EXTREME EVENTS AND DISASTERS TO ADVANCE CLIMATE CHANGE ADAPTATION: SUMMARY FOR POLICYMAKERS” Special Report of the IPCC 2012 page 6 The. Different changes in temperature distributions between present and future climate and their effects on extreme values of the distributions: (a) effects of a simple shift of the entire distribution toward a warmer climate; (b) effects of an increase in temperature variability with no shift in the mean; (c) effects of an altered shape of the distribution, in this example a change in asymmetry toward the hotter part of the distribution. (courtesy IPCC) Arctic Sea Ice Extent thru Sept. ‘12 Ice Decreasing at an Increasing Rate 2007 vs 2012 Abrupt Climate Change 23 Times! Courtesy Rihichar d B.