(NCCN Guidelines®) T-Cell Lymphomas

Total Page:16

File Type:pdf, Size:1020Kb

(NCCN Guidelines®) T-Cell Lymphomas NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) T-Cell Lymphomas Version 2.2019 — December 17, 2018 NCCN.org Continue Version 2.2019, 12/17/18 © 2018 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN. NCCN Guidelines Index NCCN Guidelines Version 2.2019 Table of Contents T-Cell Lymphomas Discussion *Steven M. Horwitz, MD/Chair † Þ Bradley M. Haverkos, MD, MPH, MS † Saurabh A. Rajguru, MD † ‡ Memorial Sloan Kettering Cancer Center University of Colorado Cancer Center University of Wisconsin Carbone Cancer Center *Stephen Ansell, MD, PhD/Vice-Chair ‡ Richard T. Hoppe, MD § Mayo Clinic Cancer Center Stanford Cancer Institute Satish Shanbhag, MBBS, MPH † ‡ ξ The Sidney Kimmel Comprehensive Weiyun Z. Ai, MD, PhD † ‡ Eric Jacobsen, MD † Cancer Center at Johns Hopkins UCSF Helen Diller Family Dana-Farber/Brigham and Women's Comprehensive Cancer Center Cancer Center Andrei Shustov, MD † Fred Hutchinson Cancer Research Center/ Jeffrey Barnes, MD, PhD † Deepa Jagadeesh, MD, MPH † ‡ Seattle Cancer Care Alliance Massachusetts General Hospital Case Comprehensive Cancer Center/ Cancer Center University Hospitals Seidman Cancer Center Lubomir Sokol, MD, PhD † ‡ Þ and Cleveland Clinic Taussig Cancer Institute Moffitt Cancer Center Stefan K. Barta, MD, MRCP, MS † ‡ Þ Fox Chase Cancer Center Youn H. Kim, MD ϖ † Pallawi Torka, MD † ‡ Stanford Cancer Institute Roswell Park Cancer Institute Mark W. Clemens, MD ʘ The University of Texas Matthew A. Lunning, DO † Þ ξ Carlos Torres-Cabala, MD ≠ MD Anderson Cancer Center Fred & Pamela Buffett Cancer Center The University of Texas MD Anderson Cancer Center Ahmet Dogan, MD, PhD ≠ Amitkumar Mehta, MD † ‡ Þ Memorial Sloan Kettering Cancer Center University of Alabama at Birmingham Ryan Wilcox, MD, PhD † Comprehensive Cancer Center University of Michigan Francine M. Foss, MD † ‡ ξ Rogel Cancer Center Yale Cancer Center/Smilow Cancer Hospital Neha Mehta-Shah, MD † ‡ Siteman Cancer Center at Barnes- Basem M. William, MD ‡ Aaron M. Goodman, MD ‡ ξ Jewish Hospital and Washington The Ohio State University Comprehensive UC San Diego Moores Cancer Center University School of Medicine Cancer Center - James Cancer Hospital and Solove Research Institute John P. Greer, MD ‡ ξ Elise A. Olsen, MD ϖ † Vanderbilt-Ingram Cancer Center Duke Cancer Institute Jasmine Zain, MD † City of Hope National Medical Center Joan Guitart, MD ≠ ϖ Barbara Pro, MD † Robert H. Lurie Comprehensive Cancer Robert H. Lurie Comprehensive Cancer NCCN Center of Northwestern University Center of Northwestern University Mary Dwyer, MS Hema Sundar, PhD Ahmad Halwani, MD ‡ Huntsman Cancer Institute † Medical oncology Þ Internal medicine at the University of Utah ‡ Hematology/Hematology ϖ Dermatology oncology ʘ Plastic surgery Continue § Radiotherapy/Radiation oncology ¥ Patient advocacy NCCN Guidelines Panel Disclosures ξ Bone marrow transplantation * Discussion Writing Committee ≠ Pathology Member Version 2.2019, 12/17/18 © 2018 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN. NCCN Guidelines Index NCCN Guidelines Version 2.2019 Table of Contents T-Cell Lymphomas Discussion NCCN T-Cell Lymphomas Panel Members Summary of the Guidelines Updates Clinical Trials: NCCN believes that the best management for any patient with cancer is in a clinical trial. • Peripheral T-Cell Lymphomas (TCEL-1) Participation in clinical trials is • Breast Implant-Associated ALCL (BIAA-1) especially encouraged. • T-Cell Large Granular Lymphocytic Leukemia (LGLL-1) To find clinical trials online at NCCN • Adult T-Cell Leukemia/Lymphoma (ATLL-1) Member Institutions, click here: • T-Cell Prolymphocytic Leukemia (TPLL-1) nccn.org/clinical_trials/physician.html. • Extranodal NK/T-Cell Lymphoma, nasal type (NKTL-1) NCCN Categories of Evidence and • Hepatosplenic Gamma-Delta T-Cell Lymphoma (HGTL-1) Consensus: All recommendations are category 2A unless otherwise • Principles of Molecular Analysis in T-Cell Lymphomas (LYMP-A) indicated. • Supportive Care (LYMP-B) See NCCN Categories of Evidence • Lugano Response Criteria for Non-Hodgkin’s Lymphoma (LYMP-C) and Consensus. • Principles of Radiation Therapy (LYMP-D) NCCN Categories of Preference: All recommendations are considered • See NCCN Guidelines for Primary Cutaneous Lymphomas appropriate. Primary Cutaneous B-Cell Lymphomas See NCCN Categories of Preference Mycosis Fungoides/Sézary Syndrome Primary Cutaneous CD30+ T-Cell Lymphoproliferative Disorders Classification and Staging (ST-1) Use of Immunophenotyping/Genetic Testing in Differential Diagnosis of Mature B-Cell and NK/T-Cell Neoplasms (See NCCN Guidelines for B-Cell Lymphomas - NHODG-A) The NCCN Guidelines® are a statement of evidence and consensus of the authors regarding their views of currently accepted approaches to treatment. Any clinician seeking to apply or consult the NCCN Guidelines is expected to use independent medical judgment in the context of individual clinical circumstances to determine any patient’s care or treatment. The National Comprehensive Cancer Network® (NCCN®) makes no representations or warranties of any kind regarding their content, use or application and disclaims any responsibility for their application or use in any way. The NCCN Guidelines are copyrighted by National Comprehensive Cancer Network®. All rights reserved. The NCCN Guidelines and the illustrations herein may not be reproduced in any form without the express written permission of NCCN. ©2018. Version 2.2019, 12/17/18 © 2018 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN. NCCN Guidelines Index NCCN Guidelines Version 2.2019 Table of Contents T-Cell Lymphomas Discussion Updates in Version 2.2019 of the NCCN Guidelines for T-Cell Lymphomas from Version 1.2019 include: Peripheral T-Cell Lymphomas TCEL-B 1 of 5 • First-line therapy for ALCL The qualifier "ALK+ histology" was removed. "Brentuximab vedotin + CHP (cyclophosphamide, doxorubicin, and prednisone)" was added as a prefrred refimen with a category 1 designation. • First-line therapy for other histologies (PTCL, NOS; AITL; EATL; MEITL; nodal PTCL, TFH; and FTCL) Brentuximab vedotin + CHP (cyclophosphamide, doxorubicin, and prednisone) for CD30+ histologies was added as a preferred regimen with a category 2A designation. Breast Implant-Associated ALCL BIAA-2 • Extended disease (stage II-IV) "Brentuximab vedotin + CHP (cyclophosphamide, doxorubicin, and prednisone)" was added as a systemic therapy option with a category 2A designation. Adult T-Cell Leukemia/Lymphoma ATLL-B 1 of 2 • Initial chemotherapy "Brentuximab vedotin + CHP (cyclophosphamide, doxorubicin, and prednisone) for CD30+ cases" was added as an option with a category 2A designation. Hepatosplenic T-Cell Lymphoma HGTL-4 • Primary treatment "Brentuximab vedotin + CHP (cyclophosphamide, doxorubicin, and prednisone) for CD30+ cases" was added with a category 2A designation. A corresponding footnote was added, "Patients with HGDTL were eligible for the ECHELON-2 study (Horwitz SM, Connor OA, Pro B, et al. The ECHELON-2 trial: results of a randomized, double-blind, active-controlled phase 3 study of brentuximab vedotin and CHP (A+CHP) versus CHOP in the frontline treatment of patients with CD30+ peripheral T-cell lymphomas [abstract]. Blood 2018;132:Abstract 997) but no patients were enrolled." Continued Version 2.2019, 12/17/18 © 2018 National Comprehensive Cancer Network® (NCCN®), All rights reserved. NCCN Guidelines® and this illustration may not be reproduced in any form without the express written permission of NCCN. UPDATES NCCN Guidelines Index NCCN Guidelines Version 2.2019 Table of Contents T-Cell Lymphomas Discussion Updates in Version 1.2019 of the NCCN Guidelines for T-Cell Lymphomas from Version 5.2018 include: New algorithm Peripheral T-Cell Lymphomas • Diagnosis, workup, and treatment recommendations for "Hepatosplenic TCEL-1 T-cell lymphoma (HSTCL)" were added to the Guidelines. (HGTL-1) • Diagnosis, Useful 3rd bullet was revised, "Additional immunohistochemical studies to Global changes characterize subsets of PTCL including markers of T-follicular helper • Suggested treatment regimen references were updated throughout the [TFH] cell origin): ßF1, CXCL13, ICOS, BCL6, TCRdelta, cytotoxic T-cell guidelines. markers (TIA-1, granzyme B, perforin)." • A footnote to the new "See Principles of Molecular Analysis in T-Cell Bullet was removed, "Karyotype to establish clonality." Lymphomas (LYMP-A)" was added to the Diagnosis heading for all subtypes. • A footnote was added to PET/CT scan as appropriate throughout the TCEL-2 guidelines: "Patients with T-cell lymphomas often have extranodal disease, • Workup, Useful which may be inadequately imaged by CT. PET scan may be preferred in "Hepatitis C testing" was added. these instances." • Diagnosis, Useful Under Certain Circumstances, the following bullet and TCEL-3 corresponding footnote were made consistent throughout: "Molecular • ALCL, ALK positive, Stage I, II analysis to detect clonal T-cell antigen receptor (TCR) gene rearrangements ISRT dosing was removed from the page and a footnote with a link to or other assessment of clonality (karyotype, array-CGH, or FISH analysis the
Recommended publications
  • Tanibirumab (CUI C3490677) Add to Cart
    5/17/2018 NCI Metathesaurus Contains Exact Match Begins With Name Code Property Relationship Source ALL Advanced Search NCIm Version: 201706 Version 2.8 (using LexEVS 6.5) Home | NCIt Hierarchy | Sources | Help Suggest changes to this concept Tanibirumab (CUI C3490677) Add to Cart Table of Contents Terms & Properties Synonym Details Relationships By Source Terms & Properties Concept Unique Identifier (CUI): C3490677 NCI Thesaurus Code: C102877 (see NCI Thesaurus info) Semantic Type: Immunologic Factor Semantic Type: Amino Acid, Peptide, or Protein Semantic Type: Pharmacologic Substance NCIt Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor tyrosine kinase expressed by endothelial cells, while VEGF is overexpressed in many tumors and is correlated to tumor progression. PDQ Definition: A fully human monoclonal antibody targeting the vascular endothelial growth factor receptor 2 (VEGFR2), with potential antiangiogenic activity. Upon administration, tanibirumab specifically binds to VEGFR2, thereby preventing the binding of its ligand VEGF. This may result in the inhibition of tumor angiogenesis and a decrease in tumor nutrient supply. VEGFR2 is a pro-angiogenic growth factor receptor
    [Show full text]
  • Oligodendroglial Tumor Chemotherapy Using “Decreased-Dose- Intensity”
    Oligodendroglial Abstract—The authors propose “decreased-dose-intensity” PCV (procarbazine, lomustine [CCNU], and vincristine) chemotherapy for Asian patients with oli- tumor chemotherapy godendroglial tumors. In this study, all seven patients with oligodendroglioma using “decreased-dose- (OD) and eight with anaplastic oligodendroglioma (AO) had objective responses or stable disease. Median progression-free survival was greater than 29 intensity” PCV: A months (OD) and 36.5 months or greater (AO); 86% of patients with OD and Singapore experience 63% with AO remain progression-free. Twenty-four Common Toxicity Criteria Grade 3/4 adverse events were noted. NEUROLOGY 2006;66:247–249 A.U. Ty, MD; S.J. See, MD; J.P. Rao, MD; J.B.K. Khoo, MD, FRCR; and M.C. Wong, FRCP Oligodendroglial tumors are among the most chemo- (CR), partial response (PR), stable disease, and progressive dis- 3 ϩ sensitive of human solid malignancies. In terms of ease (PD) were used. The proportion of [CR PR] constituted the objective response rate. Progression-free survival (PFS) was the cost and availability, PCV (procarbazine, lomustine period from initiation of chemotherapy to disease progression or [CCNU], and vincristine) chemotherapy is the most death. Grade 3/4 Common Toxicity Criteria (NCI-CTC version 2.0) viable chemotherapeutic option for patients with oli- adverse events (AEs) were noted. godendroglial tumors in Asia. PCV-associated toxic- ity, particularly cumulative myelosuppression, is Results. Treatment outcome and PFS data are summa- well described among white patients.1,2 There are no rized in table 1. No patient had development of PD while reports in the published literature describing Asian undergoing chemotherapy.
    [Show full text]
  • Ep 2569287 B1
    (19) TZZ _T (11) EP 2 569 287 B1 (12) EUROPEAN PATENT SPECIFICATION (45) Date of publication and mention (51) Int Cl.: of the grant of the patent: C07D 413/04 (2006.01) C07D 239/46 (2006.01) 09.07.2014 Bulletin 2014/28 (86) International application number: (21) Application number: 11731562.2 PCT/US2011/036245 (22) Date of filing: 12.05.2011 (87) International publication number: WO 2011/143425 (17.11.2011 Gazette 2011/46) (54) COMPOUNDS USEFUL AS INHIBITORS OF ATR KINASE VERBINDUNGEN ALS HEMMER DER ATR-KINASE COMPOSÉS UTILISABLES EN TANT QU’INHIBITEURS DE LA KINASE ATR (84) Designated Contracting States: • VIRANI, Aniza, Nizarali AL AT BE BG CH CY CZ DE DK EE ES FI FR GB Abingdon GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO Oxfordshire OX144RY (GB) PL PT RO RS SE SI SK SM TR • REAPER, Philip, Michael Abingdon (30) Priority: 12.05.2010 US 333869 P Oxfordshire OX144RY (GB) (43) Date of publication of application: (74) Representative: Coles, Andrea Birgit et al 20.03.2013 Bulletin 2013/12 Kilburn & Strode LLP 20 Red Lion Street (73) Proprietor: Vertex Pharmaceuticals Inc. London WC1R 4PJ (GB) Boston, MA 02210 (US) (56) References cited: (72) Inventors: WO-A1-2010/054398 WO-A1-2010/071837 • CHARRIER, Jean-Damien Abingdon • C. A. HALL-JACKSON: "ATR is a caffeine- Oxfordshire OX144RY (GB) sensitive, DNA-activated protein kinase with a • DURRANT, Steven, John substrate specificity distinct from DNA-PK", Abingdon ONCOGENE, vol. 18, 1999, pages 6707-6713, Oxfordshire OX144RY (GB) XP002665425, cited in the application • KNEGTEL, Ronald, Marcellus Alphonsus Abingdon Oxfordshire OX144RY (GB) Note: Within nine months of the publication of the mention of the grant of the European patent in the European Patent Bulletin, any person may give notice to the European Patent Office of opposition to that patent, in accordance with the Implementing Regulations.
    [Show full text]
  • (12) Patent Application Publication (10) Pub. No.: US 2017/0224667 A1 AZUMA Et Al
    US 20170224667A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2017/0224667 A1 AZUMA et al. (43) Pub. Date: Aug. 10, 2017 (54) CANCER CHEMOPREVENTIVE AGENT (30) Foreign Application Priority Data (71) Applicants: Arata AZUMA, Mitaka-shi, Tokyo Oct. 15, 2014 (JP) ................................. 2014-210690 (JP); KDL, Inc., Chiyoda-ku, Tokyo Publication Classification (JP) (51) Int. Cl. (72) Inventors: Arata AZUMA, Tokyo (JP); Yukiko A6II 3/448 (2006.01) MIURA, Tokyo (JP) A6II 45/06 (2006.01) (52) U.S. Cl. CPC .......... A61K 31/4418 (2013.01); A61K 45/06 (21) Appl. No.: 15/519,360 (2013.01) (22) PCT Filed: Apr. 21, 2015 (57) ABSTRACT (86) PCT No.: PCT/UP2015/062117 Provided is a medicine for cancer chemoprevention, the medicine being characterized by containing, as an active S 371 (c)(1), ingredient, pirfenidone or a pharmaceutically acceptable salt (2) Date: Apr. 14, 2017 thereof. Patent Application Publication Aug. 10, 2017 US 2017/0224667 A1 FG. 3 : E 838 C. ii-ECE 8A: i: 833 A883 :8. AER 8 ; ::::A; CARY 88C3S REAE i ! 3: R.EC8: 33 -x 8.8 : 88 38 3: & 2. US 2017/0224667 A1 Aug. 10, 2017 CANCER CHEMOPREVENTIVE AGENT lead to an increase in lung cancer risk (non-patent document 2-3). Although a certain number of new compounds have TECHNICAL FIELD been reported to show chemopreventive activities, none of 0001. This invention is in the field of cancer chemopre them has shown effects in human. (patent document 1-6). vention. More precisely, this invention is to provide the 0008 Pirfenidone, 5-methyl-1-phenyl-2-(1H)-pyridone, method of cancer chemoprevention using the drug contain is widely known as an effective drug for the prevention and ing pirfenidone as a pharmacological active ingredient.
    [Show full text]
  • Multistage Delivery of Active Agents
    111111111111111111111111111111111111111111111111111111111111111111111111111111 (12) United States Patent (io) Patent No.: US 10,143,658 B2 Ferrari et al. (45) Date of Patent: Dec. 4, 2018 (54) MULTISTAGE DELIVERY OF ACTIVE 6,355,270 B1 * 3/2002 Ferrari ................. A61K 9/0097 AGENTS 424/185.1 6,395,302 B1 * 5/2002 Hennink et al........ A61K 9/127 (71) Applicants:Board of Regents of the University of 264/4.1 2003/0059386 Al* 3/2003 Sumian ................ A61K 8/0241 Texas System, Austin, TX (US); The 424/70.1 Ohio State University Research 2003/0114366 Al* 6/2003 Martin ................. A61K 9/0097 Foundation, Columbus, OH (US) 424/489 2005/0178287 Al* 8/2005 Anderson ............ A61K 8/0241 (72) Inventors: Mauro Ferrari, Houston, TX (US); 106/31.03 Ennio Tasciotti, Houston, TX (US); 2008/0280140 Al 11/2008 Ferrari et al. Jason Sakamoto, Houston, TX (US) FOREIGN PATENT DOCUMENTS (73) Assignees: Board of Regents of the University of EP 855179 7/1998 Texas System, Austin, TX (US); The WO WO 2007/120248 10/2007 Ohio State University Research WO WO 2008/054874 5/2008 Foundation, Columbus, OH (US) WO WO 2008054874 A2 * 5/2008 ............... A61K 8/11 (*) Notice: Subject to any disclaimer, the term of this OTHER PUBLICATIONS patent is extended or adjusted under 35 U.S.C. 154(b) by 0 days. Akerman et al., "Nanocrystal targeting in vivo," Proc. Nad. Acad. Sci. USA, Oct. 1, 2002, 99(20):12617-12621. (21) Appl. No.: 14/725,570 Alley et al., "Feasibility of Drug Screening with Panels of Human tumor Cell Lines Using a Microculture Tetrazolium Assay," Cancer (22) Filed: May 29, 2015 Research, Feb.
    [Show full text]
  • WO 2017/074211 Al 4 May 20 17 (04.05.2017) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/074211 Al 4 May 20 17 (04.05.2017) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every A61K 38/47 (2006.01) A61P 35/00 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/RU20 15/000721 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 29 October 2015 (29.10.201 5) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (72) Inventors; and (71) Applicants : GENKIN, Dmitry Dmitrievich [RU/RU]; (84) Designated States (unless otherwise indicated, for every Konstantinovsky pr., 26, kv. l , St.Petersburg, 1971 10 (RU). kind of regional protection available): ARIPO (BW, GH, TETS, Georgy Viktorovich [RU/RU]; ul. Pushkinskaya, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, 13, kv.49, St.Petersburg, 191040 (RU).
    [Show full text]
  • Efficacy and Feasibility of Procarbazine, Ranimustine and Vincristine Chemotherapy, and the Role of Surgical Resection in Anaplastic Oligodendroglioma
    ANTICANCER RESEARCH 25: 3715-3724 (2005) Efficacy and Feasibility of Procarbazine, Ranimustine and Vincristine Chemotherapy, and the Role of Surgical Resection in Anaplastic Oligodendroglioma MASAAKI YAMAMOTO1, MITSUTOSHI IWAASA1, MASANI NONAKA1, HITOSHI TSUGU1, KAZUKI NABESHIMA2 and TAKEO FUKUSHIMA1 Departments of 1Neurosurgery and 2Pathology, Fukuoka University School of Medicine, Fukuoka 814-0180, Japan Abstract. The safety, tolerance and preliminary efficacy of a and the response rate was high. Thus, wide resection with a chemotherapy regimen consisting of procarbazine (PCB), risk of major neurological morbidity due to nearby functionally ranimustine (MCNU) and vincristine (VCR) were assessed for critical areas can be avoided. However, since the relapse rate patients with newly diagnosed supratentorial anaplastic was high, a second-line chemotherapy should be developed for oligodendroglioma. Materials and Methods: Between October anaplastic oligodendroglioma to improve the long-term control 1999 and September 2003, 5 patients were enrolled. The initial of the disease. regimens were prescribed as adjuvant therapy in conjunction with radiotherapy following standard surgical treatment. All Oligodendroglioma is a rare, although increasingly more patients received a chemotherapy comprising ranimustine (100 common, primary brain tumor (1), which represents 4 to mg/m2) intravenously on Day 1, procarbazine (60 mg/m2) on 15% of primary glial tumors (2-6). Significant attention has Days 8 to 21, and vincristine (1.4 mg/m2, maximum total 2 been focused on oligodendrogliomas because of their mg) on Days 8 and 29. The cycles were repeated every 8 weeks unique chemosensitivity compared with astrocytomas (7, 8). until tumor progression was evident, or for a total of 6 cycles Many patients with new or recurrent anaplastic over a 1-year period.
    [Show full text]
  • BMJ Open Is Committed to Open Peer Review. As Part of This Commitment We Make the Peer Review History of Every Article We Publish Publicly Available
    BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available. When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to. The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript. BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com). If you have any questions on BMJ Open’s open peer review process please email [email protected] BMJ Open Pediatric drug utilization in the Western Pacific region: Australia, Japan, South Korea, Hong Kong and Taiwan Journal: BMJ Open ManuscriptFor ID peerbmjopen-2019-032426 review only Article Type: Research Date Submitted by the 27-Jun-2019 Author: Complete List of Authors: Brauer, Ruth; University College London, Research Department of Practice and Policy, School of Pharmacy Wong, Ian; University College London, Research Department of Practice and Policy, School of Pharmacy; University of Hong Kong, Centre for Safe Medication Practice and Research, Department
    [Show full text]
  • 5-Aminolevulinic Acid-Mediated Photodynamic Therapy Can Target Aggressive Adult T Cell Leukemia/Lymphoma Resistant to Convention
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE www.nature.com/scientificreportsprovided by Okayama University Scientific Achievement Repository OPEN 5‑aminolevulinic acid‑mediated photodynamic therapy can target aggressive adult T cell leukemia/lymphoma resistant to conventional chemotherapy Yasuhisa Sando1, Ken‑ichi Matsuoka1*, Yuichi Sumii1, Takumi Kondo1, Shuntaro Ikegawa1, Hiroyuki Sugiura1, Makoto Nakamura1, Miki Iwamoto1, Yusuke Meguri1, Noboru Asada1, Daisuke Ennishi1, Hisakazu Nishimori1, Keiko Fujii1, Nobuharu Fujii1, Atae Utsunomiya2, Takashi Oka1* & Yoshinobu Maeda1 Photodynamic therapy (PDT) is an emerging treatment for various solid cancers. We recently reported that tumor cell lines and patient specimens from adult T cell leukemia/lymphoma (ATL) are susceptible to specifc cell death by visible light exposure after a short‑term culture with 5‑aminolevulinic acid, indicating that extracorporeal photopheresis could eradicate hematological tumor cells circulating in peripheral blood. As a bridge from basic research to clinical trial of PDT for hematological malignancies, we here examined the efcacy of ALA‑PDT on various lymphoid malignancies with circulating tumor cells in peripheral blood. We also examined the efects of ALA‑PDT on tumor cells before and after conventional chemotherapy. With 16 primary blood samples from 13 patients, we demonstrated that PDT efciently killed tumor cells without infuencing normal lymphocytes in aggressive diseases such as acute ATL. Importantly, PDT could eradicate acute ATL cells remaining after standard chemotherapy or anti‑CCR4 antibody, suggesting that PDT could work together with other conventional therapies in a complementary manner. The responses of PDT on indolent tumor cells were various but were clearly depending on accumulation of protoporphyrin IX, which indicates the possibility of biomarker‑guided application of PDT.
    [Show full text]
  • Proficient Human Colorectal Cancer Cells
    Differential cytotoxicity of anticahcer agents in hMutSα-deficient and -proficient human colorectal cancer cells lichiro UCHIDA and Xiaoling ZHONG1 1Department of Molecular Biology and 21st Department of Surgery , Toho University School of Medicine, Tokyo 143-8540, Japan Abstract: Mismatch repair (MMR)-deficient cells exhibit drug resistance to several anticancer agents in- cluding N-methyl-AP-nitro-N-nitrosoguanidine (MNNG), cisplatin, and adriamycin. Since these agents are potent mutagens, it is possible to select resistant clones of tumor cells during chemotherapy. Prior to determining whether drug cytotoxicity was altered by MMR-deficiency, mutation in the (A)8 repeat region of the hMSH3 gene of the MMR-deficient human colorectal cancer cell line HCT116 and the MMR-proficient human chromosome 3-transferred HCT116 (HCT116+ch3) was comfirmed. A screening method was then determined using MNNG cyto- toxicity in both cell lines and 20 additional anticancer agents were examined. Clonogenic cy- totoxic assay revealed in 8 anticancer agents (streptozotocin, 5-fluorouracil, tegafur, bleomycin, mitomycin C, vinblastine, vincristine, and nidoran) maintaining the desired level of cytotoxicity required a higher concentration in HCT116 than in HCT116+ch3. Cytosine0-13- arabinofuranoside, chlorambucil, and epirubicin were more cytotoxic to HCT116. Dacarbazine, nitrogen mustard, 31-azido-3'-deoxythymidine, aclarubicin, neocarzinostatin, actinomycin D, and peplomycin possessed similar cytotoxicity. These results suggest that drugs with higher or uncompromised sensitivity can circumvent drug resistance due to MMR-deficiency in tumor cells. Key words: mismatch repair deficiency, drug resistant, human colorectal cancer cells, circum- vention hMSH23'4),hMSH35), hMSH6 (GTBP or p160)", Introduction hA4LH18'9),hPMS2, and hPMS11°) have been defined by cytogenetic, biochemical, and molecu- The mismatch repair (MMR) system plays an lar biological studies.
    [Show full text]
  • Human Leukocyte Antigen Class II Expression Is a Good Prognostic Factor in Adult T-Cell Leukemia/Lymphoma
    Non-Hodgkin Lymphoma SUPPLEMENTARY APPENDIX Human leukocyte antigen class II expression is a good prognostic factor in adult T-cell leukemia/lymphoma Mai Takeuchi, 1 Hiroaki Miyoshi, 1 Naoko Asano, 2 Noriaki Yoshida, 1,3 Kyohei Yamada, 1 Eriko Yanagida, 1 Mayuko Moritsubo, 1 Michiko Nakata, 1 Takeshi Umeno, 1 Takaharu Suzuki, 1 Satoru Komaki, 1 Hiroko Muta, 1 Takuya Furuta, 1 Masao Seto 1 and Koichi Ohshima 1 1Department of Pathology, Kurume University School of Medicine, Kurume, Fukuoka; 2Department of Molecular Diagnostics, Nagano Prefectural Shinshu Medical Center, Suzaka, Nagano and 3Department of Clinical Studies, Radiation Effects Research Foundation, Hiroshima, Japan ©2019 Ferrata Storti Foundation. This is an open-access paper. doi:10.3324/haematol. 2018.205567 Received: August 28, 2018. Accepted: January 9, 2019. Pre-published: January 10, 2019. Correspondence: KOICHI OHSHIMA - [email protected] A B C D Supplemental figure 1. Expression patterns of PD-L1 and PD-1. A) Programmed death ligand 1 (PD-L1) expression on microenvironmental stromal cells (miPD-L1). miPD-L1s have irregular shaped cytoplasm with round small nuclei without atypia. B) PD-L1 expression on neoplastic cells (nPD-L1). PD-L1-positive tumor cells have large atypical nuclei with well-circumscribed cytoplasm. C) Programmed cell death 1 (PD-1) expression on tumor infiltrating lymphocytes (TILs). PD-1 positive TILs are small and scatter among tumor cells. D) PD-1 expression on tumor cells. PD-1 expressing tumor cells are large and have atypical nuclei. HLA class II miPD-L1 PD-1+ TIL HLA class II Positive Negative miPD-L1 Positive Negative PD-1+TILs PD-1+ TILs ≥ 10/hpf PD-1+ TILs < 10/hpf Supplemental figure 2.
    [Show full text]
  • E-Table 1. Drug Classification Category Name Generic Name
    BMJ Publishing Group Limited (BMJ) disclaims all liability and responsibility arising from any reliance Supplemental material placed on this supplemental material which has been supplied by the author(s) Thorax e-Table 1. Drug classification Category Name Generic Name Antiplatelets clopidogrel, cilostazol, ticlopidine2, beraprost, beraprost–long acting, complavin Anticoagulants 2,3 dabigatran Statins1,2,3 atorvastatin2, simvastatin, pitavastatin, fluvastatin, pravastatin, rosuvastatin, amlodipine/atorvastatin Sodium channel blockers4,5† mexiletine, aprindine, cibenzoline Beta blocker acebutolol2 Class III antiarrhythmic drugs amiodarone1–6 Calcium channel blockers bepridil1, amlodipine/atorvastatin, telmisartan/amlodipine, valsartan/amlodipine, valsartan/cilnidipine, candesartan/amlodipine Angiotensin/converting enzyme enalapril inhibitor2‡ Thiazides trichlormethiazide, hydrochlorothiazide3,5, benzylhydrochlorothiazide/reserpine/carbazochrome, mefruside, telmisartan/hydrochlorothiazide, valsartan/hydrochlorothiazide, candesartan/hydrochlorothiazide, candesartan/trichlormethiazide, losartan/hydrochlorothiazide NSAIDs diclofenac2, celecoxib, loxoprofen, etodolac, nabumetone, pranoprofen Anti-rheumatics actarit, iguratimod, tofacitinib, penicillamine2–5, leflunomide1,3, sodium aurothiomalate2–6#, bucillamine Leukotriene receptor antagonist2* pranlukast 5-ASA mesalazine, salazosulfapyridine5 Tricyclic antidepressant Imipramine5, cromipramine, maprotiline Antiepileptics valproate, phenytoin2,3,5, ethotoin, carbamazepine2–5, zonisamide Interferon1,2,3
    [Show full text]