A Review on Coordination Properties of Thiol-Containing Chelating Agents Towards Mercury, Cadmium, and Lead
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chemical Forms of Mercury in Human Hair Reveal Sources of Exposure
Chemical Forms of Mercury in Human Hair Reveal Sources of Exposure Alain Manceau, Mironel Enescu, Alexandre Simionovici, Martine Lanson, Maria Gonzalez-Rey, Mauro Rovezzi, Rémi Tucoulou, Pieter Glatzel, Kathryn Nagy, Jean-Paul Bourdineaud To cite this version: Alain Manceau, Mironel Enescu, Alexandre Simionovici, Martine Lanson, Maria Gonzalez-Rey, et al.. Chemical Forms of Mercury in Human Hair Reveal Sources of Exposure. Environmental Science and Technology, American Chemical Society, 2016, 50 (19), pp.10721-10729. 10.1021/acs.est.6b03468. hal-03176383 HAL Id: hal-03176383 https://hal.archives-ouvertes.fr/hal-03176383 Submitted on 22 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Chemical Forms of Mercury in Human Hair Reveal Sources of Exposure Alain Manceau,*,† Mironel Enescu,‡ Alexandre Simionovici,† Martine Lanson,† Maria Gonzalez-Rey,§ Mauro Rovezzi,∥ Rémi Tucoulou,∥ Pieter Glatzel,∥ Kathryn L. Nagy,*,⊥ Jean-Paul Bourdineaud*,# †ISTerre, Université Grenoble Alpes, CNRS, CS 40700, 38058 Grenoble, France. ‡Laboratoire Chrono Environnement, Université de Franche-Comté, CNRS, 25030 Besançon, France. §Laboratoire EPOC, Université de Bordeaux, CNRS, 33120 Arcachon, France. ∥European Synchrotron Radiation Facility (ESRF), 71 Rue des Martyrs, 38000 Grenoble, France. ⊥Department of Earth and Environmental Sciences, MC-186, 845 West Taylor Street, University of Illinois at Chicago, Chicago, Illinois 60607, United States. -
VOLUME 7 2 . No. 4 . AUGUST 2 0
VOLUME 72 . No.4 . AUGUST 2020 © 2020 EDIZIONI MINERVA MEDICA Minerva Pediatrica 2020 August;72(4):288-311 Online version at http://www.minervamedica.it DOI: 10.23736/S0026-4946.20.05861-2 REVIEW MANAGEMENT OF THE MAIN ENDOCRINE AND DIABETIC DISORDERS IN CHILDREN Current treatment for polycystic ovary syndrome: focus on adolescence Maria E. STREET 1 *, Francesca CIRILLO 1, Cecilia CATELLANI 1, 2, Marco DAURIZ 3, 4, Pietro LAZZERONI 1, Chiara SARTORI 1, Paolo MOGHETTI 4 1Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL – IRCCS di Reggio Emilia, Reggio Emilia, Italy; 2Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, Italy; 3Section of Endocrinology and Diabetes, Department of Internal Medicine, Bolzano General Hospital, Bolzano, Italy; 4Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, University and Hospital Trust of Verona, Verona, Italy *Corresponding author: Maria E. Street, Division of Pediatric Endocrinology and Diabetology, Department of Mother and Child, Azienda USL – IRCCS di Reggio Emilia, Viale Risorgimento 80, 42123 Reggio Emilia, Italy. E-mail: [email protected] ABSTRACT Polycystic ovary syndrome (PCOS) is the most frequent endocrine disorder in women and it is associated with an in- creased rate of infertility. Its etiology remains largely unknown, although both genetic and environmental factors play a role. PCOS is characterized by insulin resistance, metabolic disorders and low-grade chronic inflammation. To date, the treatment of PCOS is mainly symptomatic and aimed at reducing clinical signs of hyperandrogenism (hirsutism and acne), at improving menstrual cyclicity and at favoring ovulation. Since PCOS pathophysiology is still largely unknown, the therapeutic interventions currently in place are rarely cause-specific. -
Review of Succimer for Treatment of Lead Poisoning
Review of Succimer for treatment of lead poisoning Glyn N Volans MD, BSc, FRCP. Department of Clinical Pharmacology, School of Medicine at Guy's, King's College & St Thomas' Hospitals, St Thomas' Hospital, London, UK Lakshman Karalliedde MB BS, DA, FRCA Consultant Medical Toxicologist, CHaPD (London), Health Protection Agency UK, Visiting Senior Lecturer, Division of Public Health Sciences, King's College Medical School, King's College , London Senior Research Collaborator, South Asian Clinical Toxicology Research Collaboration, Faculty of Medicine, Peradeniya, Sri Lanka. Heather M Wiseman BSc MSc Medical Toxicology Information Services, Guy’s and St Thomas’ NHS Foundation Trust, London SE1 9RT, UK. Contact details: Heather Wiseman Medical Toxicology Information Services Guy’s & St Thomas’ NHS Foundation Trust Mary Sheridan House Guy’s Hospital Great Maze Pond London SE1 9RT Tel 020 7188 7188 extn 51699 or 020 7188 0600 (admin office) Date 10th March 2010 succimer V 29 Nov 10.doc last saved: 29-Nov-10 11:30 Page 1 of 50 CONTENTS 1 Summary 2. Name of the focal point in WHO submitting or supporting the application 3. Name of the organization(s) consulted and/or supporting the application 4. International Nonproprietary Name (INN, generic name) of the medicine 5. Formulation proposed for inclusion 6. International availability 7. Whether listing is requested as an individual medicine or as an example of a therapeutic group 8. Public health relevance 8.1 Epidemiological information on burden of disease due to lead poisoning 8.2 Assessment of current use 8.2.1 Treatment of children with lead poisoning 8.2.2 Other indications 9. -
An Open-Label Pilot Trial of Alpha-Lipoic Acid for Weight Loss in Patients with Schizophrenia Without Diabetes Joseph C
Case Reports An Open-Label Pilot Trial of Alpha-Lipoic Acid for Weight Loss in Patients with Schizophrenia without Diabetes Joseph C. Ratliff1 , Laura B. Palmese 1, Erin L. Reutenauer 1, Cenk Tek 1 Abstract A possible mechanism of antipsychotic-induced weight gain is activation of hypothalamic monophosphate-dependent kinase (AMPK) mediated by histamine 1 receptors. Alpha-lipoic acid (ALA), a potent antioxidant, counteracts this ef- fect and may be helpful in reducing weight for patients taking antipsychotics. The objective of this open-label study was to assess the efficacy of ALA (1,200 mg) on twelve non-diabetic schizophrenia patients over ten weeks. Participants lost significant weight during the intervention (-2.2 kg±2.5 kg). ALA was well tolerated and was particularly effective for individuals taking strongly antihistaminic antipsychotics (-2.9 kg±2.6 kg vs. -0.5 kg±1.0 kg). Clinical Trial Registra- tion: NCT01355952. Key Words: Schizophrenia, Obesity, Schizoaffective Disorder, Alpha-Lipoic Acid Introduction dependent protein kinase (AMPK) in the hypothalamus Antipsychotic medications appear to induce weight (4). In the periphery, AMPK increases energy utilization; gain, which results in increased rates of obesity in schizo- AMPK activity in the hypothalamus increases appetite. phrenia (1). Schizophrenia patients have significantly short- Several highly orexigenic (stimulates appetite) antipsy- er life expectancy than the general population (2); most of chotics such as clozapine, olanzapine, and quetiapine are this excess mortality is attributed to diabetes and cardiovas- shown to activate AMPK in the hypothalamus in animal cular disease (3); weight gain is a significant contributor to studies whereas other antipsychotic medications do not (4). -
Chelation Therapy
Medical Policy Chelation Therapy Table of Contents • Policy: Commercial • Coding Information • Information Pertaining to All Policies • Policy: Medicare • Description • References • Authorization Information • Policy History Policy Number: 122 BCBSA Reference Number: 8.01.02 NCD/LCD: N/A Related Policies None Policy Commercial Members: Managed Care (HMO and POS), PPO, and Indemnity Medicare HMO BlueSM and Medicare PPO BlueSM Members Chelation therapy in the treatment of the following conditions is MEDICALLY NECESSARY: • Extreme conditions of metal toxicity • Treatment of chronic iron overload due to blood transfusions (transfusional hemosiderosis) or due to nontransfusion-dependent thalassemia (NTDT) • Wilson's disease (hepatolenticular degeneration), or • Lead poisoning. Chelation therapy in the treatment of the following conditions is MEDICALLY NECESSARY if other modalities have failed: • Control of ventricular arrhythmias or heart block associated with digitalis toxicity • Emergency treatment of hypercalcemia. NaEDTA as chelation therapy is considered NOT MEDICALLY NECESSARY. Off-label applications of chelation therapy are considered INVESTIGATIONAL, including, but not limited to: • Alzheimer’s disease • Arthritis (includes rheumatoid arthritis) • Atherosclerosis, (e.g., coronary artery disease, secondary prevention in patients with myocardial infarction, or peripheral vascular disease) • Autism • Diabetes • Multiple sclerosis. 1 Prior Authorization Information Inpatient • For services described in this policy, precertification/preauthorization IS REQUIRED for all products if the procedure is performed inpatient. Outpatient • For services described in this policy, see below for products where prior authorization might be required if the procedure is performed outpatient. Outpatient Commercial Managed Care (HMO and POS) Prior authorization is not required. Commercial PPO and Indemnity Prior authorization is not required. Medicare HMO BlueSM Prior authorization is not required. -
WHO Model List of Essential Medicines
WHO Model List of Essential Medicines 15th list, March 2007 Status of this document This is a reprint of the text on the WHO Medicines web site http://www.who.int/medicines/publications/essentialmedicines/en/index.html 15th edition Essential Medicines WHO Model List (revised March 2007) Explanatory Notes The core list presents a list of minimum medicine needs for a basic health care system, listing the most efficacious, safe and cost‐effective medicines for priority conditions. Priority conditions are selected on the basis of current and estimated future public health relevance, and potential for safe and cost‐effective treatment. The complementary list presents essential medicines for priority diseases, for which specialized diagnostic or monitoring facilities, and/or specialist medical care, and/or specialist training are needed. In case of doubt medicines may also be listed as complementary on the basis of consistent higher costs or less attractive cost‐effectiveness in a variety of settings. The square box symbol () is primarily intended to indicate similar clinical performance within a pharmacological class. The listed medicine should be the example of the class for which there is the best evidence for effectiveness and safety. In some cases, this may be the first medicine that is licensed for marketing; in other instances, subsequently licensed compounds may be safer or more effective. Where there is no difference in terms of efficacy and safety data, the listed medicine should be the one that is generally available at the lowest price, based on international drug price information sources. Therapeutic equivalence is only indicated on the basis of reviews of efficacy and safety and when consistent with WHO clinical guidelines. -
(12) Patent Application Publication (10) Pub. No.: US 2011/0236506 A1 SCHWARTZ Et Al
US 2011 0236506A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2011/0236506 A1 SCHWARTZ et al. (43) Pub. Date: Sep. 29, 2011 (54) PHARMACEUTICAL ASSOCIATION Publication Classification CONTAINING LIPOCACID AND (51) Int. Cl. HYDROXYCTRIC ACIDAS ACTIVE A633/24 (2006.01) INGREDIENTS A63L/385 (2006.01) A63/685 (2006.01) (75) Inventors: Laurent SCHWARTZ, Paris (FR): A63/4985 (2006.01) Adeline GUAIS-VERGNE, A63L/7056 (2006.01) Draveil (FR) A6IP35/00 (2006.01) (73) Assignees: Laurent SCHWARTZ, Paris (FR): (52) U.S. Cl. ........... 424/649; 514/440; 514/77: 514/249; BIOREBUS, Paris (FR) 514/52 (21) Appl. No.: 13/099,897 (57) ABSTRACT Pharmaceutical combination containing lipoic acid and (22) Filed: May 3, 2011 hydroxycitric acid as active ingredients. The present inven tion relates to a novel pharmaceutical combination and to the Related U.S. Application Data use thereof for producing a medicament having an antitumor (63) Continuation of application No. PCT/FR2009/ activity. According to the invention, this combination com 052110, filed on Nov. 2, 2009. prises, as active ingredients: lipoic acid or one of the pharma ceutically acceptable salts thereof, and hydroxycitric acid or (30) Foreign Application Priority Data one of the pharmaceutically acceptable salts thereof. Said active ingredients being formulated together or separately for Nov. 3, 2008 (FR) ....................................... O8574.48 a conjugated, simultaneous or separate use. Patent Application Publication Sep. 29, 2011 Sheet 1 of 9 US 2011/023650.6 A1 lipoic acid alone -29 f2 f Niger of ces i{t} v s 6 g i w 4. 6 8 i 2 Concentrations tumoi.i. -
A Pilot Study in Detoxification of Heavy Metals
The Role of Heavy Metal Detoxification in Heart Disease and Cancers : A Pilot Study in Detoxification of Heavy Metals Daniel Dugi, M.D. Sir Arnold Takemoto Presented at the WESCON Biomedicine and Bioengineering Conference Anaheim Convention Center The Future of Medicine Afternoon Session September 24, 2002 Anaheim, California USA 1 ABSTRACT Heavy metal detoxification has been shown to decrease cancer mortality by 90% in a 18-year controlled clinical study by Blumer and Cranton. Frustachi et. al. has shown a very strong correlation between cardiomyopathy (heart disease) and heavy metals accumulation in the coronary arteries and heart muscle. The role of heavy metal detoxification in the prevention and/or treatment of cancers and heart disease is paramount for optimum healing or prevention. Heavy metal accumulation can cause suppression of the immune system, bind receptor sites, inhibit proper enzyme systems, and lead to undesirable free-radical and oxidative functions. A pilot study utilizing a unique oral detoxifying concentrate, DeTox Max, containing true disodium EDTA, microencapsulated in essential phospholipids microspheres was utilized as a provocation, detoxifying agent for a 16 patient pilot study. Significant quantities of heavy metals were excreted in a 48-hour collection versus each patient’s baseline 24 hour collection. The pilot study results confirmed substantial excretion of heavy metals. A surprising outcome of the study was the remarkable clinical healing and significant increase in brain acuity in patients that occurred within 2 weeks after only one vial was utilized, compared to previous pre - provocation. 2 Detox MAX Clinical Study Proposal ¾ To assess the heavy metal detoxifying ability of Detox MAX, an oral detoxification agent containing 22 grams of essential phospholipids (EPL’s); micro- encapsulating 1 gram of sodium endetate. -
WO 2014/195872 Al 11 December 2014 (11.12.2014) P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2014/195872 Al 11 December 2014 (11.12.2014) P O P C T (51) International Patent Classification: (74) Agents: CHOTIA, Meenakshi et al; K&S Partners | Intel A 25/12 (2006.01) A61K 8/11 (2006.01) lectual Property Attorneys, 4121/B, 6th Cross, 19A Main, A 25/34 (2006.01) A61K 8/49 (2006.01) HAL II Stage (Extension), Bangalore 560038 (IN). A01N 37/06 (2006.01) A61Q 5/00 (2006.01) (81) Designated States (unless otherwise indicated, for every A O 43/12 (2006.01) A61K 31/44 (2006.01) kind of national protection available): AE, AG, AL, AM, AO 43/40 (2006.01) A61Q 19/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A01N 57/12 (2006.01) A61K 9/00 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, AOm 59/16 (2006.01) A61K 31/496 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (21) International Application Number: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, PCT/IB20 14/06 1925 KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, (22) International Filing Date: OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, 3 June 2014 (03.06.2014) SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (25) Filing Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. -
Chelation Therapy
Corporate Medical Policy Chelation Therapy File Name: chelation_therapy Origination: 12/1995 Last CAP Review: 2/2021 Next CAP Review: 2/2022 Last Review: 2/2021 Description of Procedure or Service Chelation therapy is an established treatment for the removal of metal toxins by converting them to a chemically inert form that can be excreted in the urine. Chelation therapy comprises intravenous or oral administration of chelating agents that remove metal ions such as lead, aluminum, mercury, arsenic, zinc, iron, copper, and calcium from the body. Specific chelating agents are used for particular heavy metal toxicities. For example, desferroxamine (not Food and Drug Administration [FDA] approved) is used for patients with iron toxicity, and calcium-ethylenediaminetetraacetic acid (EDTA) is used for patients with lead poisoning. Note that disodium-EDTA is not recommended for acute lead poisoning due to the increased risk of death from hypocalcemia. Another class of chelating agents, called metal protein attenuating compounds (MPACs), is under investigation for the treatment of Alzheimer’s disease, which is associated with the disequilibrium of cerebral metals. Unlike traditional systemic chelators that bind and remove metals from tissues systemically, MPACs have subtle effects on metal homeostasis and abnormal metal interactions. In animal models of Alzheimer’s disease, they promote the solubilization and clearance of β-amyloid protein by binding to its metal-ion complex and also inhibit redox reactions that generate neurotoxic free radicals. MPACs therefore interrupt two putative pathogenic processes of Alzheimer’s disease. However, no MPACs have received FDA approval for treating Alzheimer’s disease. Chelation therapy has also been investigated as a treatment for other indications including atherosclerosis and autism spectrum disorder. -
Adverse Health Effects of Heavy Metals in Children
TRAINING FOR HEALTH CARE PROVIDERS [Date …Place …Event …Sponsor …Organizer] ADVERSE HEALTH EFFECTS OF HEAVY METALS IN CHILDREN Children's Health and the Environment WHO Training Package for the Health Sector World Health Organization www.who.int/ceh October 2011 1 <<NOTE TO USER: Please add details of the date, time, place and sponsorship of the meeting for which you are using this presentation in the space indicated.>> <<NOTE TO USER: This is a large set of slides from which the presenter should select the most relevant ones to use in a specific presentation. These slides cover many facets of the problem. Present only those slides that apply most directly to the local situation in the region. Please replace the examples, data, pictures and case studies with ones that are relevant to your situation.>> <<NOTE TO USER: This slide set discusses routes of exposure, adverse health effects and case studies from environmental exposure to heavy metals, other than lead and mercury, please go to the modules on lead and mercury for more information on those. Please refer to other modules (e.g. water, neurodevelopment, biomonitoring, environmental and developmental origins of disease) for complementary information>> Children and heavy metals LEARNING OBJECTIVES To define the spectrum of heavy metals (others than lead and mercury) with adverse effects on human health To describe the epidemiology of adverse effects of heavy metals (Arsenic, Cadmium, Copper and Thallium) in children To describe sources and routes of exposure of children to those heavy metals To understand the mechanism and illustrate the clinical effects of heavy metals’ toxicity To discuss the strategy of prevention of heavy metals’ adverse effects 2 The scope of this module is to provide an overview of the public health impact, adverse health effects, epidemiology, mechanism of action and prevention of heavy metals (other than lead and mercury) toxicity in children. -
The Toxicology of Mercury Current Research and Emerging Trends
Environmental Research 159 (2017) 545–554 Contents lists available at ScienceDirect Environmental Research journal homepage: www.elsevier.com/locate/envres The toxicology of mercury: Current research and emerging trends MARK ⁎ Geir Bjørklunda, , Maryam Dadarb, Joachim Mutterc, Jan Aasethd a Council for Nutritional and Environmental Medicine, Toften 24, 8610 Mo i Rana, Norway b Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran c Paracelsus Clinica al Ronc, Castaneda, Switzerland d Innlandet Hospital Trust and Inland Norway University of Applied Sciences, Elverum, Norway ARTICLE INFO ABSTRACT Keywords: Mercury (Hg) is a persistent bio-accumulative toxic metal with unique physicochemical properties of public Mercury health concern since their natural and anthropogenic diffusions still induce high risk to human and environ- Selenium mental health. The goal of this review was to analyze scientific literature evaluating the role of global concerns Thiols over Hg exposure due to human exposure to ingestion of contaminated seafood (methyl-Hg) as well as elemental Copper Hg levels of dental amalgam fillings (metallic Hg), vaccines (ethyl-Hg) and contaminated water and air (Hg Zinc chloride). Mercury has been recognized as a neurotoxicant as well as immunotoxic and designated by the World Toxicology Health Organization as one of the ten most dangerous chemicals to public health. It has been shown that the half- life of inorganic Hg in human brains is several years to several decades. Mercury occurs in the environment under different chemical forms as elemental Hg (metallic), inorganic and organic Hg. Despite the raising un- derstanding of the Hg toxicokinetics, there is still fully justified to further explore the emerging theories about its bioavailability and adverse effects in humans.