An ASAB Science Resource for Years 2 and 3 Anne Woodfield, Michael
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Brassica Rapa Domestication: Untangling Wild and Feral Forms and Convergence of Crop Morphotypes Alex C
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.05.438488; this version posted April 6, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Brassica rapa domestication: untangling wild and feral forms and convergence of crop morphotypes Alex C. McAlvay, Aaron P. Ragsdale, Makenzie E. Mabry, Xinshuai Qi, Kevin A. Bird, Pablo Velasco, Hong An, J. Chris Pires, Eve Emshwiller Abstract The study of domestication contributes to our knowledge of evolution and crop genetic resources. Human selection has shaped wild Brassica rapa into diverse turnip, leafy, and oilseed crops. Despite its worldwide economic importance and potential as a model for understanding diversification under domestication, insights into the number of domestication events and initial crop(s) domesticated in B. rapa have been limited due to a lack of clarity about the wild or feral status of conspecific non-crop relatives. To address this gap and reconstruct the domestication history of B. rapa, we analyzed 68,468 genotyping-by-sequencing-derived SNPs for 416 samples in the largest diversity panel of domesticated and weedy B. rapa to date. To further understand the center of origin, we modeled the potential range of wild B. rapa during the mid-Holocene. Our analyses of genetic diversity across B. rapa morphotypes suggest that non-crop samples from the Caucasus, Siberia, and Italy may be truly wild, while those occurring in the Americas and much of Europe are feral. -
Catalogue2013 Web.Pdf
bwfp British Wild Flower Plants www.wildflowers.co.uk Plants for Trade Plants for Home Specialist Species Wildflower Seed Green Roof Plants Over 350 species Scan here to of British native buy online plants 25th Anniversary Year Finding Us British Wild Flower Plants Burlingham Gardens 31 Main Road North Burlingham Norfolk NR13 4TA Phone / Fax: (01603) 716615 Email: [email protected] Website: http://www.wildflowers.co.uk Twitter: @WildflowersUK Nursery Opening Times Monday to Thursday: 10.00am - 4.00pm Friday: 10.00am - 2.30pm Please note that we are no longer open at weekends or Bank Holidays. Catalogue Contents Contact & Contents Page 02 About Us Page 03 Mixed Trays Pages 04-05 Reed Beds Page 06 Green Roofs Page 07 Wildflower Seeds Page 08 Planting Guide Pages 09-10 Attracting Wildlife Page 11 Rabbit-Proof Plants Page 12 List of Plants Pages 13-50 Scientific Name Look Up Pages 51-58 Terms & Conditions Page 59 www.wildflowers.co.uk 2 Tel/Fax:(01603)716615 About Us Welcome.... About Our Plants We are a family-run nursery, situated in Norfolk on a Our species are available most of the year in: six acre site. We currently stock over 350 species of 3 native plants and supply to all sectors of the industry Plugs: Young plants in 55cm cells with good rootstock. on a trade and retail basis. We are the largest grower of native plants in the UK and possibly Europe. Provenance Our species are drawn from either our own seed collections or from known provenance native sources. We comply with the Flora Locale Code of Practice. -
Pollination of Rapeseed (Brassica Napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates
Anais da Academia Brasileira de Ciências (2014) 86(4): 2087-2100 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201420140134 www.scielo.br/aabc Pollination of Rapeseed (Brassica napus) by Africanized Honeybees (Hymenoptera: Apidae) on Two Sowing Dates EMERSON D. CHAMBÓ1, NEWTON T.E. DE OLIVEIRA1, REGINA C. GARCIA1, JOSÉ B. DUARTE-JÚNIOR1, MARIA CLAUDIA C. RUVOLO-TAKASUSUKI2 and VAGNER A. TOLEDO3 1Universidade Estadual do Oeste do Paraná, Campus Universitário de Marechal Cândido Rondon, Centro de Ciências Agrárias, Rua Pernambuco, 1777, 85960-000 Marechal Cândido Rondon, PR, Brasil 2Universidade Estadual de Maringá, Centro de Ciências Biológicas, Departamento de Biotecnologia, Genética e Biologia Celular, Av. Colombo, 5790, Jardim Universitário, 87020-900 Maringá, PR, Brasil 3Programa de Pós-Graduação em Zootecnia, Universidade Estadual de Maringá, Centro de Ciências Agrárias, Av. Colombo, 5790, Bloco J45, Campus Universitário 87020-900 Maringá, PR, Brasil Manuscript received on January 21, 2014; accepted for publication on June 23, 2014 ABSTRACT In this study, performed in the western part of the state of Paraná, Brazil, two self-fertile hybrid commercial rapeseed genotypes were evaluated for yield components and physiological quality using three pollination tests and spanning two sowing dates. The treatments consisted of combinations of two rapeseed genotypes (Hyola 61 and Hyola 433), three pollination tests (uncovered area, covered area without insects and covered area containing a single colony of Africanized Apis mellifera honeybees) and two sowing dates (May 25th, 2011 and June 25th, 2011). The presence of Africanized honeybees during flowering time increased the productivity of the rapeseed. -
Analysis of Yield and Plant Traits of Oilseed Rape (Brassica Napus
Acta Agrobotanica DOI: 10.5586/aa.1696 REVIEW Publication history Received: 2016-05-20 Accepted: 2016-10-30 Analysis of yield and plant traits of oilseed Published: 2016-12-15 rape (Brassica napus L.) cultivated in Handling editor Alina Syp, Institute of Soil Science and Plant Cultivation, temperate region in light of the possibilities State Research Institute, Poland of sowing in arid areas Authors’ contributions TZ, AKK: study idea and design; TZ, AKK AO, ALK: publication 1 1 1 search; TZ, AKK, AO: analysis Tadeusz Zając , Agnieszka Klimek-Kopyra , Andrzej Oleksy *, and interpretation of results; Anna Lorenc-Kozik1, Karolina Ratajczak2 TZ, AKK, KR: comments on the 1 manuscript; ALK, KR, AO: writing Department of Crop Production, Institute of Plant Production, Faculty of Agriculture and the manuscript; AKK, AO: Economics, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Krakow, Poland 2 revision prior to submission Department of Agronomy, Faculty of Agronomy and Bioengineering, Poznań University of Life Sciences, Dojazd 1, 60-632 Poznań, Poland Funding * Corresponding author. Email: [email protected] Research supported by the Ministry of Science and Higher Education of Poland as part of the statutory activities of the Abstract Institute of Plant Production, This work is a review of selected literature on the species of Brassica with the University of Agriculture in Krakow. greatest economic significance. Oilseed rape Brassica( napus ssp. oleifera) cur- rently ranks third worldwide among oilseed crops used for oil production and is Competing interests the most important in the temperate zone. The manifold uses of rape include not No competing interests have been declared. -
Centre International De Myriapodologie
N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Mus6umNationald'HistoireNaturelle,Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-75231 ParisCedex05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISIES REPE&TORIEES PANS LA BASE PASCAL DE L' INIST 1995 N° 28, 1994 BULLETIN DU ISSN 1161-2398 CENTRE INTERNATIONAL DE MYRIAPODOLOGIE [Museum National d'Histoire N aturelle, Laboratoire de Zoologie-Arthropodes, 61 rue de Buffon, F-7 5231 Paris Cedex 05] LISTE DES TRAVAUX PARUS ET SOUS-PRESSE LIST OF WORKS PUBLISHED OR IN PRESS MYRIAPODA & ONYCHOPHORA ANNUAIRE MONDIAL DES MYRIAPODOLOGISTES WORLD DIRECTORY OF THE MYRIAPODOLOGISTS PUBLICATION ET LISTES REPERTORIEES DANS LA BASE PASCAL DE L' INIST 1995 SOMMAIRE CONTENTS ZUSAMMENFASSUNG Pages Seite lOth INTERNATIONAL CONGRESS OF MYRIAPODOLOGY .................................. 1 9th CONGRES INTERNATIONAL DE MYRIAPODOLOGIE.................................................... 1 Contacter le Secretariat permanent par E-M AIL & FA X............................................................ 1 The Proceedings of the 9th International Congress of Myriapodology...................... 2 MILLEPATTIA, sommaire .du prochain bulletin....................................................................... 2 Obituary: Colin Peter FAIRHURST (1942-1994) ............................................................. 3 BULLETIN of the -
Garden Moth Scheme Report 2016
Garden Moth Scheme Report 2016 Heather Young – April 2017 1 GMS Report 2016 CONTENTS PAGE Introduction 2 Top 30 species 2016 3 Population trends (?) of our commonest garden moths 5 Autumn Moths 12 Winter GMS 2016-17 14 Antler Moth infestations 16 GMS Annual Conference 2017 19 GMS Sponsors 20 Links & Acknowledgements 21 Cover photograph: Fan-foot (R. Young) Introduction The Garden Moth Scheme (GMS) welcomes participants from all parts of the United Kingdom and Ireland, and in 2016 received 341 completed recording forms, slightly fewer than last year (355). The scheme is divided into 12 regions, monitoring 233 species of moth in every part of the UK and Ireland (the ‘Core Species’), along with a variable number of ‘Regional Species’. For each of the last seven years, we have had records from over 300 sites across the UK and Ireland, and later in the report there are a series of charts representing the population trends (or fluctuations) of our most abundant species over this period. The database has records dating back to 2003 when the scheme began in the West Midlands, and now contains over 1 ¼ million records, providing a very valuable resource to researchers. Scientists and statisticians from Birmingham and Manchester Universities are amongst those interested in using our data, as well as the ongoing research being undertaken by the GMS’s own John Wilson. There is an interesting follow-up article by Evan Lynn on the Quarter 4 GMS newsletter piece by Duncan Brown on Antler Moth infestations, and a report on the very successful 2017 Annual Conference in Apperley Village Hall, near Tewkesbury. -
Concentrates Against Stored Product Pests G Ready-To-Use Insecticides
BÁBOLNA BIO Phone: +361 43-20-461, Fax: +361 43-20-401, e-mail: [email protected] CONTENTSCONTENTS INTRODUCTION RODENTICIDES G READY-TO-USE BAITS, PELLETS, WAX BLOCKS BAITING STATIONS FOR RODENT CONTROL INSECTICIDES G CONCENTRATES FOR CRAWLING INSECT CONTROL G IGR BASED CONCENTRATES ❍ FOR COCKROACH AND STORED PRODUCT PEST CONTROL ❍ FOR FLEA, STORED PRODUCT PEST AND MOSQUITO CONTROL ❍ FOR ECTOPARASITE CONTROL G CONCENTRATES AGAINST STORED PRODUCT PESTS G READY-TO-USE INSECTICIDES PESTICIDE SMOKE PRODUCTS TRAPS PHEROMONE TRAPS FOR AGRICULTURAL USE PHEROMONES FOR MONITORING FOR AGRICULTURAL USE BIRD CONTROL DEVICES SPRAYERS EQUIPMENT FOR MOSQUITO CONTROL PRODUCTS UNDER DEVELOPMENT BÁBOLNA BIO Phone: +361 43-20-461, Fax: +361 43-20-401, e-mail: [email protected] INTRODUCTIONINTRODUCTION The activities of Bábolna Bioenvironmental Centre look back to a past of more than 30 years. During this period of time the company has gained a leading role in the field of large scale pest control as well as in the production and sales of public health and household pest control products. The most outstanding success in the life of the company was the total deratization project of the city of Budapest and the maintenance of the rat-free state for 30 years now. The successful cockroach control carried out in 145,000 flats in housing estates can be considered as another outstanding result. To develop and manufacture up-to-date and efficient pest control products, BÁBOLNA BIO has established its own research and development laboratories, insecticide and rodenticide production and packaging plant. Besides the traditional formulations, the company gives high priority to the production of insecticide-free and pheromone insect traps. -
Ornamental Cabbage and Kale, Brassica Oleracea in the Fall, Chyrsanthemums and Pansies Are the Predominant Plants Offered for Seasonal Color
A Horticulture Information article from the Wisconsin Master Gardener website, posted 3 Sept 2007 Ornamental Cabbage and Kale, Brassica oleracea In the fall, chyrsanthemums and pansies are the predominant plants offered for seasonal color. But another group of cold-tolerant plants without fl owers can help brighten the fall garden when almost ev- erything else is looking tired and ready for winter. Ornamental cabbage and kale are the same species as edible cabbages, broccoli, and caulifl ower (Bras- sica oleracea) but have much fancier and more col- orful foliage than their cousins from the vegetable garden. While these plants are sometimes offered as “fl owering” cabbage and kale, they are grown for their large rosettes of colorful leaves, not the fl owers. These plants are very showy and come in a variety of colors, ranging from white to pinks, purples or reds. Even though they are technically all kales (kale does not produce a head; instead, it produces leaves in a tight rosette), by convention those types with deeply- cut, curly, frilly or ruffl ed leaves are called ornamen- Ornamental kale makes a dramatic massed planting. tal kale, while the ones with broad, fl at leaves often edged in a contrasting color are called ornamental cabbage. The plants grow about a foot wide and 15” tall. Ornamental cabbages and kales do not tolerate summer heat, and plants set out in spring will likely have bolted or declined in appearance, so it is necessary to either start from seed in mid-summer or purchase trans- plants for a good fall show. -
Page 1 of 7 Moth Species List Froyle Records
Moth species list Froyle Records extracted 9th December 2012 from the moth databases held by the Hampshire & Isle of Wight Branch of Butterfly Conservation. Contains Lepidoptera records in the Froyle Parish, Hampshire. Taxon Vernacular Abrostola tripartita Spectacle Acasis viretata Yellow-barred Brindle Acleris forsskaleana Acleris variegana Garden Rose Tortrix Adaina microdactyla Adela rufimitrella Agapeta hamana Agonopterix arenella Agonopterix heracliana Agriopis leucophaearia Spring Usher Agriopis marginaria Dotted Border Agriphila straminella Agrochola lota Red-line Quaker Agrochola macilenta Yellow-line Quaker Agrotis exclamationis Heart and Dart Agrotis puta Shuttle-shaped Dart Alcis repandata Mottled Beauty Allophyes oxyacanthae Green-brindled Crescent Alucita hexadactyla Twenty-plume Moth Amblyptilia acanthadactyla Amphipyra pyramidea Copper Underwing Amphipyra pyramidea agg. Copper Underwing agg. Anthophila fabriciana Anticlea badiata Shoulder Stripe Anticlea derivata Streamer Apamea crenata Clouded-bordered Brindle Apamea epomidion Clouded Brindle Apamea monoglypha Dark Arches Apamea sordens Rustic Shoulder-knot Apeira syringaria Lilac Beauty Aphomia sociella Bee Moth Aplocera efformata Lesser Treble-bar Archips podana Large Fruit-tree Tortrix Asteroscopus sphinx Sprawler Autographa gamma Silver Y Autographa pulchrina Beautiful Golden Y Axylia putris Flame Batia unitella Biston betularia Peppered Moth Biston strataria Oak Beauty Blastobasis adustella Page 1 of 7 Blastobasis lacticolella Cabera exanthemata Common Wave Cabera -
How to Grow Cabbage (Brassica Oleracea) Cabbage Varieties Come in a Spectrum of Colors, from Light Green to Dark Purple
How to Grow Cabbage (Brassica oleracea) Cabbage varieties come in a spectrum of colors, from light green to dark purple. The scientific name of cabbage is Brassica oleracea, a species that also includes broccoli, cauliflower, kale, and Brussels sprouts. Time of Planting: Sow cabbage seeds indoors 4-6 weeks before transplanting seedlings outdoors. Transplant cabbage seedlings outdoors just before the last frost. Spacing Requirements: Sow seeds ¼ inch deep. Space cabbages at least 24-36 inches apart in even spacing or 12-14 inches apart in rows spaced 36-44 inches apart. Time to Germination: 7-12 days. Special Considerations: When growing for seed, increase spacing to 18-24 inches apart in rows that are at least 36 inches apart. Staking is recommended. Common Pests and Diseases (and how to manage): Cabbage can suffer from a number of pests and diseases including flea beetles, cabbage moths, aphids, leaf miner bugs, slugs, and black rot. Early season insect pests, such as flea beetles, can be deterred by growing transplants underneath row cover. Harvest (when and how): Cut the head at the base of the plant with a harvesting knife or pruning shears as soon as the cabbage head feels solid. Trim off the loose outer leaves and store heads in a cool place. Eating: Raw cabbage can be used in fresh salads like coleslaw. It can also be enjoyed roasted, braised, stewed, and stir fried. Cabbage is often fermented to make sauerkraut and kimchi. Storing: Cabbage will keep for about four months at a temperature between 32-40 degrees F and a relative humidity of 80-90%. -
Report on the Bmig Field Meeting at Haltwhistle 2014
Bulletin of the British Myriapod & Isopod Group Volume 30 (2018) REPORT ON THE BMIG FIELD MEETING AT HALTWHISTLE 2014 Paul Lee1, A.D. Barber2 and Steve J. Gregory3 1 Little Orchard, Bentley, Ipswich, Suffolk, IP9 2DW, UK. E-mail: [email protected] 2 7 Greenfield Drive, Ivybridge, Devon, PL21 0UG. E-mail: [email protected] 3 4 Mount Pleasant Cottages, Church Street, East Hendred, Oxfordshire, OX12 8LA, UK. E-mail: [email protected] INTRODUCTION The 2014 BMIG field weekend, held from 24th to 27th April, was based at Saughy Rigg, half a mile north of Hadrian’s Wall, near Haltwhistle in Northumberland but very close to the border with Cumbria to the west and Scotland to the north. The main aim of the meeting was to record in central areas of northern England (VC 66, 67 and 70) where few records existed previously but many attendees were drawn also to sites on the east coast of England (VC 66) and to the Scottish coast on the Solway Firth (VC 73). All these vice counties had been visited by BMG/BISG or BMIG in the previous twenty years but large parts of them remained under-recorded. The annual joint field meeting of BMG and BISG in 1995 was held at Rowrah Hall near Whitehaven (VC 70). Gregory (1995) reports 24 millipede species found during the weekend including Choneiulus palmatus new to VC 70. A list of the centipede appears not to have been published. Bilton (1995) reports 14 woodlouse species including Eluma caelata found at Maryport, its most northerly global location, and Armadillidium pictum in the Borrowdale oakwoods. -
Microhabitat Heterogeneity Enhances Soil Macrofauna and Plant Species Diversity in an Ash – Field Maple Woodland
Title Microhabitat heterogeneity enhances soil macrofauna and plant species diversity in an Ash – Field Maple woodland Authors Burton, VJ; Eggleton, P Description publisher: Elsevier articletitle: Microhabitat heterogeneity enhances soil macrofauna and plant species diversity in an Ash – Field Maple woodland journaltitle: European Journal of Soil Biology articlelink: http://dx.doi.org/10.1016/j.ejsobi.2016.04.012 content_type: article copyright: © 2016 Elsevier Masson SAS. All rights reserved. Date Submitted 2016-07-15 1 Microhabitat heterogeneity enhances soil macrofauna and plant species diversity in an Ash - Field 2 Maple woodland 3 4 Victoria J. Burtonab*, Paul Eggletona 5 aSoil Biodiversity Group, Life Sciences Department, The Natural History Museum, Cromwell Road, 6 London SW7 5BD, UK 7 bImperial College London, South Kensington Campus, London SW7 2AZ, UK 8 *corresponding author email [email protected] 9 10 Abstract 11 The high biodiversity of soil ecosystems is often attributed to their spatial heterogeneity at multiple 12 scales, but studies on the small-scale spatial distribution of soil macrofauna are rare. This case study 13 of an Ash-Field Maple woodland partially converted to conifer plantation investigates differences 14 between species assemblages of soil and litter invertebrates, and plants, using multivariate 15 ordination and indicator species analysis for eleven microhabitats. 16 Microhabitats representing the main body of uniform litter were compared with more localised 17 microhabitats including dead wood and areas of wet soil. Species accumulation curves suggest that 18 for this site it is more efficient to sample from varied microhabitats of limited spatial scale rather 19 than the broad habitat areas when generating a species inventory.