Application and Characterization of Self-Assembled Monolayers in Hybrid Electronic Systems" (2013)
Total Page:16
File Type:pdf, Size:1020Kb
University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School January 2013 Application and Characterization of Self- Assembled Monolayers In Hybrid Electronic Systems Michael Enoch Celesin University of South Florida, [email protected] Follow this and additional works at: http://scholarcommons.usf.edu/etd Part of the Chemical Engineering Commons, Nanoscience and Nanotechnology Commons, and the Oil, Gas, and Energy Commons Scholar Commons Citation Celesin, Michael Enoch, "Application and Characterization of Self-Assembled Monolayers In Hybrid Electronic Systems" (2013). Graduate Theses and Dissertations. http://scholarcommons.usf.edu/etd/4875 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. Application and Characterization of Self-Assembled Monolayers In Hybrid Electronic Systems by Michael E. Celestin A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Chemical Engineering Department of Chemical and Biomedical Engineering College of Engineering University of South Florida Co-Major Professor: D. Yogi Goswami, Ph.D. Co-Major Professor: Lee Stefanakos, Ph.D. Shekhar Bhansali, Ph.D. Babu Joseph, Ph.D. Norma Alcantar, Ph.D. Date of Approval: November 26, 2013 Keywords: SAM, rectenna, energy harvesting, tunnel diode, printable electronics Copyright © 2013, Michael E. Celestin DEDICATION I would like to dedicate this dissertation to my wife, Carolina, and parents, Gabriel and Raisa, who have supported me in immeasurable ways. The emotional, physical, and financial needs of undertaking such a task practically mandate an excellent support group—and I have nothing to complain about. I really cannot imagine how I could have achieved this without your love and care. I would attempt to list all the individual contributions and kind acts however the thought of writing an additional hundred pages to this document seems unattractive at this time. Thank you. ACKNOWLEDGMENTS I would also like to take a moment to thank a number of special groups and individuals who had a most memorable impact on my progress including (but not limited to): All the staff at the Nanotechnology Research and Education Center (NREC)—especially Rob Tufts, Dr. Yusef Emirov, Jay Bieber, and Richard Everly. I wanted to take a moment to thank my PhD committee, countless influential professors, and amazing support staff including: Michael Konrad, Tom Gage, Chuck Garretson, Barbara Graham, Ginny Cosmides, Sebnem Thiel, Dr. Scott Campbell, Dr. Richard Gilbert, and the late Dr. John Wolan. I would like to express warm thanks to the students and postdocs of the USF BioMEMS research group, especially Dr. “Subbu” Subramanian Krishnan, Dr. “Super” Supriya Ketkar, and Dr. “Shank” Shankar Koiry (sorry your name was never spelled correctly while in the US). You have been through all the nomadic laboratory moves, dark conference meetings, presentations, travels, and frustrating lab moments by my side. From my time at Sandia National Labs, all the amazing support staff—especially Dr. Regan Stinnett, Dr. Steven Wix, and Dr. Phil Campbell. Next door at the Center for Integrated Nanotechnology (CINT), I could not have gotten very far without the help of John Nogan, Denise Webb, and Catherine Mombourquette. I must also make mention of my family and friends who acted as role models to help me become who I am, especially: Vladislav Slep, Veronika Slep, and Alex Slep; Samuel Sanker, Aditya Joshi, Nat Kaplan, Daniel Miller, Bret Galbraith, Katie Satterlee, and Gopal Patel. TABLE OF CONTENTS LIST OF TABLES ...........................................................................................................................v LIST OF FIGURES ....................................................................................................................... vi ABSTRACT ................................................................................................................................. xiii CHAPTER 1: INTRODUCTION ...................................................................................................1 1.1 Brief Background Overview .........................................................................................1 1.2 Research Objectives ......................................................................................................3 1.3 Dissertation Structure ....................................................................................................4 CHAPTER 2: MOTIVATION ........................................................................................................6 2.1 Current Trends in Energy Harvesting ...........................................................................7 2.2 Radiation and Thermal Harvesters................................................................................8 2.3 The Rectenna ..............................................................................................................12 2.3.1 Incident Radiation and Concentrators ..........................................................14 2.3.2 Antenna Design ............................................................................................15 2.3.3 The Diode.....................................................................................................17 2.3.4 Topographies................................................................................................21 2.3.5 Efficiency .....................................................................................................23 2.4 Motion Harvesters .......................................................................................................25 CHAPTER 3: TUNNEL DIODE PHYSICS ................................................................................28 3.1 Quantum Mechanics ...................................................................................................28 3.2 Barriers and Thickness ................................................................................................30 3.3 Descriptive Models .....................................................................................................33 3.3.1 Schrödinger’s Equation ................................................................................33 3.3.2 Wentzel-Kramers-Brillouin (WKB) Approximation ...................................34 3.3.3 Simmons Model ...........................................................................................35 3.3.4 Brinkman Dynes Rowel (BDR) Model........................................................36 3.3.5 Other Considerations and Expansion ...........................................................37 3.4 Model to Experimental Fitting ....................................................................................38 CHAPTER 4: FORMATION OF ORGANIC MONOLAYERS .................................................41 4.1 Assembly Electrode ....................................................................................................42 4.1.1 Metal Deposition Methods ...........................................................................42 4.1.2 Metal Selection ............................................................................................43 4.2 Roughness and Film Quality .......................................................................................44 4.3 Surface Chemisorption................................................................................................47 4.4 Surface Physisorption .................................................................................................51 i 4.5 Solvents and Kinetics ..................................................................................................53 4.6 Environmental Factors ................................................................................................55 4.7 Molecule Termination and Functionalization .............................................................57 4.8 Defects ........................................................................................................................58 CHAPTER 5: MODIFICATION OF THE ORGANIC LAYER .................................................61 5.1 Photolithographic Modification and Limitations ........................................................61 5.2 Particle Beam Lithography .........................................................................................62 5.3 Assembly Fluid Transfer.............................................................................................63 5.3.1 Microcontact Printing ..................................................................................63 5.3.2 InkJet Localized Assembly ..........................................................................64 5.4 Dip-Pen Nanolithography ...........................................................................................65 5.5 Removal and Damage .................................................................................................66 5.5.1 Photooxidation .............................................................................................67 5.5.2 Desorption ....................................................................................................67 5.5.3 Oxidation......................................................................................................68