Water and the Future of the San Joaquin Valley 3

Total Page:16

File Type:pdf, Size:1020Kb

Water and the Future of the San Joaquin Valley 3 FEBRUARY 2019 Ellen Hanak, Water and the Future of Alvar Escriva-Bou, Brian Gray, the San Joaquin Valley Sarge Green, Thomas Harter, Jelena Jezdimirovic, Jay Lund, Josué Medellín-Azuara, Peter Moyle, Nathaniel Seavy Supported with funding from the S. D. Bechtel, Jr. Foundation, the TomKat Foundation, the US Department of Agriculture, the US Environmental Protection Agency, and the Water Foundation © 2019 Public Policy Institute of California PPIC is a public charity. It does not take or support positions on any ballot measures or on any local, state, or federal legislation, nor does it endorse, support, or oppose any political parties or candidates for public office. Short sections of text, not to exceed three paragraphs, may be quoted without written permission provided that full attribution is given to the source. Research publications reflect the views of the authors and do not necessarily reflect the views of our funders or of the staff, officers, advisory councils, or board of directors of the Public Policy Institute of California. SUMMARY CONTENTS The San Joaquin Valley—California’s largest agricultural region and an important contributor to the nation’s food supply—is in a time of great change. Acronyms 5 The valley is ground zero for many of California’s most difficult water Chapter 1. Introduction 6 management problems—including groundwater overdraft, drinking water contamination, and declines in habitat and native species. Chapter 2. Balancing Water Supplies Local water supplies are limited, particularly in the southern half of the region. and Demands 14 To irrigate their crops, many farmers use water imported from the Sacramento– Chapter 3. San Joaquin Delta. But in many places farmers have also relied on groundwater Addressing Groundwater Quality Challenges 38 overdraft—pumping groundwater in excess of the rate at which it is replenished. Chapter 4. Worsening droughts, increasing regulations to protect endangered native Fostering Water and fishes, and growing demand by Southern California for Delta imports have Land Use Transitions compounded surface water scarcity. to Benefit People and Nature 57 The state’s Sustainable Groundwater Management Act (SGMA) requires local Chapter 5. water users to bring groundwater use to sustainable levels by the early 2040s. Roadmap to a Better This will have a broad impact on valley agriculture and the regional economy Future 82 in coming years—likely including some permanent idling of farmland. References 89 About the Authors 97 This report explores three key challenges facing the San Joaquin Valley and reviews the most promising approaches to address them: Acknowledgments 98 . Balancing water supplies and demands. To close the groundwater deficit, groundwater sustainability agencies in the valley’s overdrafted basins will have to augment supplies, reduce demands, or use some Technical appendices to combination of these two approaches. A range of options are under this report are available on the PPIC website. consideration but they are not equally effective or practical. Addressing groundwater quality challenges. Poor groundwater quality impairs drinking water supplies in disadvantaged rural communities, reduces long-term agricultural prosperity, and degrades ecosystems. Providing safe drinking water is an urgent priority. Over the longer term, parties will also need to manage water quantity and quality together, to take advantage of synergies and avoid unintended consequences. The necessary coordination will be challenging because the various programs addressing valley water quality issues are carried out by numerous local and regional entities, whose lines of responsibility and geographic boundaries do not neatly align. Fostering beneficial water and land use transitions. Effectively addressing water scarcity and the resulting land use changes in the San Joaquin Valley offers opportunities to put lands coming out of production to good use—and gain “more pop per drop” from limited water resources. Multiple-benefit approaches to water and land PPIC.ORG/WATER Water and the Future of the San Joaquin Valley 3 management can enhance groundwater recharge and improve air and water quality. They can also promote healthier soils, new recreational opportunities, additional flood protection, improved habitat, and new revenue streams for private landowners engaging in conservation-oriented management. Addressing these complex and intertwined issues requires significant changes in water and land management and a major ramp-up in cooperation and coordination among a wide circle of stakeholders. Pursuing solutions that deliver multiple benefits will boost the chances of success overall. The entire region—and California as a whole—will benefit if solutions to these challenges are cost-effective and support the valley’s economy while improving public health and the natural environment. An overview of this report is available here. PPIC.ORG/WATER Water and the Future of the San Joaquin Valley 4 ACRONYMS af acre-foot (acre-feet) CEQA California Environmental Quality Act CREP Conservation Reserve Enhancement Program C2VSim California Central Valley Groundwater-Surface Water Simulation model CVHM Central Valley Hydrologic Model CVP Central Valley Project CV-SALTS Central Valley Salinity Alternatives for Long-Term Sustainability initiative DWR Department of Water Resources ECHO Enforcement and Compliance History Online data portal (US Environmental Protection Agency) EQIP Environmental Quality Incentives Program Flood-MAR Flood Managed Aquifer Recharge FSA Farm Service Agency GDP gross domestic product GSA groundwater sustainability agency GSP groundwater sustainability plan HCP Habitat Conservation Plan HRTW Human Right to Water data portal (State Water Board) ILRP Irrigated Lands Regulatory Program IMPLAN Impact Analysis for Planning model maf million acre-feet MCL Maximum Contaminant Level mg/l milligrams per liter NCCP Natural Community Conservation Plan NMFS National Marine Fisheries Service NPDES National Pollutant Discharge Elimination System NRCS Natural Resources Conservation Service PEIR programmatic environmental impact report RCD resource conservation district SDWA Safe Drinking Water Act SGMA Sustainable Groundwater Management Act SNCP Salt and Nitrate Control Program SWP State Water Project taf thousand acre-feet TCP trichloropropane USDA US Department of Agriculture WDR Waste Discharge Requirements program (Regional Water Board) PPIC.ORG/WATER Water and the Future of the San Joaquin Valley 5 Chapter 1. Introduction The San Joaquin Valley produces more than half of California’s agricultural output. Its diverse crops and animal products are an important part of the nation’s—and the world’s—food supply. To produce such bounty, the valley depends upon having reliable water supplies. Yet this reliability is decreasing, particularly in times of drought. Today, local and imported water resources support more than 5 million acres of irrigated farmland, a population of more than 4 million, and an economy that generates an average of nearly $160 billion in gross domestic product (GDP).1 Farming is the region’s main economic driver—providing roughly one-fifth of regional GDP and employment—and its predominant water user. Like many agriculturally dependent regions, the valley faces significant socioeconomic challenges, including a high rate of unemployment and pockets of extreme rural poverty. These challenges increase when the farm economy suffers. Stress on the valley’s water system is growing. Local supplies are limited, particularly in the southern half of the region. To irrigate their crops, many farmers use water imported from Northern California through the Sacramento–San Joaquin Delta. But in many places they have also relied on groundwater overdraft—pumping groundwater in excess of the rate at which it is replenished. The 2014 Sustainable Groundwater Management Act (SGMA) requires local water users to bring use to sustainable levels by the early 2040s (Box 1.1). SGMA will have a broad impact on valley agriculture in coming years. It will spur investments in new water supplies—but also likely entail idling of more than half a million acres of farmland. With the largest groundwater deficit in the state, the valley is ground zero for implementing this law. In addition to water shortages, the valley must also respond to a variety of water quality issues. The region is a hot spot for unsafe drinking water, a problem that is most acute for small, poor, rural communities. Increased groundwater pumping has also caused many of the shallow wells these communities rely on to go dry. Lasting remedies are urgently needed to provide safe drinking water to all valley residents. Another concern is the buildup of nitrogen and salts in groundwater and soils. Nitrogen loading from fertilizers, and especially manure from dairies, is contributing to drinking water contamination. Salt buildup is threatening long-term agricultural productivity. Under new regulatory requirements, valley farmers must address these issues in conjunction with ending groundwater overdraft—and the solutions are costly. In these changing times, land and water management present other complex challenges for the region. The San Joaquin Valley is the most altered non-urban environment in California—with one of the highest concentrations of endangered species in the country. Much of the valley floor is now managed for intensive crop production, and many native species are in decline. The valley’s remaining riverine, wetland, and
Recommended publications
  • Riparian Ecosystems and Their Management: Reconciling
    This file was created by scanning the printed publication. Errors identified by the software have been corrected; however, some errors may remain. Dividing the Water: Basic Precepts of Colorado River Water Law 1 2 David L. Hegner The extent of riparian vegetation development along the rivers and streams which comprise the Colorado River System is a function of a myriad of legal and operational factors. The utilization of Colorado River water can be identified with several key issues, federal acts, and treaties. This paper ~vill outline the major arguements and perceptions which define the present day levels of water and hence the extent of riparian vegetation along the river corridors of the Colorado River System. INTRODUCTION Thff main objective of this paper is to outline the legal and operational decisions and constraints The "Law of the River" as applied to the Colorado whith define the flow levels that have shaped and River, has evolved out of a combination of both continue to regulate the extent of the riparian Fedeual and State statutes, inter-state compacts, community. court decisions, contracts, an international treaty, operating criteria, and administrative decisions. Prior to exploring the law of the Colorado River, The cummulative effect of all these apportionments it is necessary to understand the underlying logic have defined the development and extent of the which defines ~·Jestern r1ater law. Specifically, the riparian vegetation along the river corridors of "appropriated right'" to water and the percieved the Colorado River System. neces-sity to hold the right to water use have defined the entire development of water in the The Colorado River begins its journey in the moun­ \Vest.
    [Show full text]
  • The Land Use Element Within the Comprehensive Planning Process 2
    Chapter The Land Use Element within the Comprehensive Planning Process 2 Included in this chapter: The Land Use Element: Framework and Requirements Using the Land Use Element to Integrate Elements Developing Consistency Between Plan Elements Designing a Public Participation Plan Introduction The land use element is often lengthy as it serves as a centerpiece of the comprehensive The land use element is one of nine required plan and ties together many other elements. elements within Wisconsin’s comprehensive This chapter includes a discussion of the planning law. The major goal in completing statutory requirements, a section on how to this element is to create a useful tool for use the land use element to integrate other decision makers (elected officials and plan elements, and public participation plan commissioners) to guide growth and essential to the development of the plan. development in their communities, for developers as they seek planned areas to advance projects, and for residents and others to make known their desire for growth and change in the future. Chapter 2 – The Land Use Element within the Comprehensive Planning Process Land Use Element (§66.1001(2)(h)) - Statutory language A compilation of objectives, policies, goals, maps and programs to guide the future development and redevelopment of public and private property. The element shall contain a listing of the amount, type, intensity, and net density of existing uses of land in the local governmental unit, such as agricultural, residential, commercial, industrial, and other public and private uses. The element shall analyze trends in the supply, demand and price of land, opportunities for redevelopment and existing and potential land-use conflicts.
    [Show full text]
  • Enhancing Environmental Flows of Putah Creek for Chinook Salmon Reproductive Requirements
    Enhancing environmental flows of Putah Creek for Chinook salmon reproductive requirements Written by: Chan, Brian; Jasper, Chris Reynolds; Stott, Haley Kathryn UC Davis, California ESM 122, Water Science and Management, Section: A02 Abstract: Putah creek, like many of California’s rivers and streams, is highly altered by anthropogenic actions and historically supported large populations of resident and anadromous native fish species. Now its ecosystem dynamics have changed drastically with the Monticello dam, the Solano diversion canal and the leveeing of its banks. Over time the creek has found a balance of habitats for native and non-native fish species that is mainly dictated by species-preferred temperature tolerances (Keirman et. al. 2012). Cooler temperatures and faster flows upstream from Davis prove to be ideal habitats for native species, in particular, the federally endangered Chinook salmon, which is the most widely distributed and most numerous run occurring in the Sacramento and San Joaquin rivers and their tributaries. As water moves downstream, it becomes shallower and warmer, resulting in ideal conditions for non-native species (Winters, 2005). This report analyzes the environmental flows released into putah creek and how much salmon preferred breeding habitat is available from this flow regime based on temperature. Introduction: Figure 1: Teale GIS Solutions Group (1999), US Census Bureau (2002), USGS (1993) [within Winters, 2005] The Putah Creek watershed is an important aspect in the natural, social, and economic livelihoods of the people of Yolo and Solano counties. The Putah Creek watershed begins at the highest point in Lake County, Cobb Mountain, and flows down to the Central Valley where it empties into the Yolo Bypass at near sea level.
    [Show full text]
  • Urbanistica N. 146 April-June 2011
    Urbanistica n. 146 April-June 2011 Distribution by www.planum.net Index and english translation of the articles Paolo Avarello The plan is dead, long live the plan edited by Gianfranco Gorelli Urban regeneration: fundamental strategy of the new structural Plan of Prato Paolo Maria Vannucchi The ‘factory town’: a problematic reality Michela Brachi, Pamela Bracciotti, Massimo Fabbri The project (pre)view Riccardo Pecorario The path from structure Plan to urban design edited by Carla Ferrari A structural plan for a ‘City of the wine’: the Ps of the Municipality of Bomporto Projects and implementation Raffaella Radoccia Co-planning Pto in the Val Pescara Mariangela Virno Temporal policies in the Abruzzo Region Stefano Stabilini, Roberto Zedda Chronographic analysis of the Urban systems. The case of Pescara edited by Simone Ombuen The geographical digital information in the planning ‘knowledge frameworks’ Simone Ombuen The european implementation of the Inspire directive and the Plan4all project Flavio Camerata, Simone Ombuen, Interoperability and spatial planners: a proposal for a land use Franco Vico ‘data model’ Flavio Camerata, Simone Ombuen What is a land use data model? Giuseppe De Marco Interoperability and metadata catalogues Stefano Magaudda Relationships among regional planning laws, ‘knowledge fra- meworks’ and Territorial information systems in Italy Gaia Caramellino Towards a national Plan. Shaping cuban planning during the fifties Profiles and practices Rosario Pavia Waterfrontstory Carlos Smaniotto Costa, Monica Bocci Brasilia, the city of the future is 50 years old. The urban design and the challenges of the Brazilian national capital Michele Talia To research of one impossible balance Antonella Radicchi On the sonic image of the city Marco Barbieri Urban grapes.
    [Show full text]
  • Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis
    Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis water hetch hetchy water & power clean water October 2006 Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Final Report Prepared by: RMC Water and Environment and McBain & Trush, Inc. October 2006 Upper Tuolumne River Section 1 Introduction Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Table of Contents Section 1 Introduction .............................................................................................................. 1 Section 2 Hetch Hetchy Facilities in the Study Area ............................................................. 4 Section 3 Preliminary Analysis of the Effects of Hetch Hetchy Project Facilities and Operations on Flow in Study Reaches ..................................................................................... 7 3.1 Analysis Approach ..................................................................................................... 7 3.2 The Natural Hydrograph........................................................................................... 10 3.3 Effects of Flow Regulation on Annual Hydrograph Components ............................. 12 3.3.1 Cherry and Eleanor Creeks.................................................................................................... 14 3.3.2 Tuolumne River...................................................................................................................... 17 3.4 Effects
    [Show full text]
  • HYDROLOGY and WATER QUALITY 3.8 Hydrology and Water Quality
    3.8 HYDROLOGY AND WATER QUALITY 3.8 Hydrology and Water Quality This section of the Draft EIR addresses the potential for the Merced General Plan to affect or modify the existing hydrology and water quality of the Planning Area. Two comment letters were received on the NOP from the Merced Irrigation District (MID) in which they said that they would “Upon development of new and existing land covered within the scope of the 2030 General Plan, MID will provide a detailed response in regards to the proposed projects and their impacts upon MID facilities.” The second letter received was in response to the NOP regarding hydrology and water quality. The commenter wants the City to prepare a Water Element and “perform an environmental review of the potentially positive environmental effects that could be based upon such additional elements.” 3.8.1 SETTING Environmental Setting CLIMATE The climate of the City of Merced is hot and dry in the summer and cool and humid in the winter. The average daily temperature ranges from 47 to 76 degrees Fahrenheit. Extreme low and high temperatures of 15°F and 111°F are also known to occur. Historical average precipitation is approximately 12” per year, with the rainy season commencing in October and running through April. On average, approximately 80% of the annual precipitation occurs between November and March. The hot and dry weather of the summer months usually results in high water demands for landscape irrigation during those months. REGIONAL TOPOGRAPHY The project area is located in and immediately adjacent to the City of Merced.
    [Show full text]
  • Geologic Features and Ground-Water Storage Capacity of the Sacramento Valley California
    Geologic Features and Ground-Water Storage Capacity of the Sacramento Valley California By F. H. OLMSTED and G. H. DAVIS GEOLOGICAL SURVEY WATER-SUPPLY PAPER 1497 Prepared in cooperation with the California Department of ff^ater Resources UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1961 UNITED STATES DEPARTMENT OF THE INTERIOR FRED A. SEATON, Secretary GEOLOGICAL SURVEY Thomas B. Nolan, Director Tlie TT.S. Geological Survey Library catalog card for this publication appears after page 241. For sale by the Superintendent of Documents, U.S. Government Printing Office Washington 25, D.C. CONTENTS Page Abstract___________________________________________________ -_ 1 Introduction.-.--- .___-___________-___._--.______-----_ 5 Purpose and scope of the investigation.__________________ ______ 5 Location of area__-__-________-____________-_-___-_-__--____-_- 6 Development of ground water___________________-___-__ ___ __ 7 Acknowledgments....-------- ____________ _________________ 8 Well-numbering system..________________________________ _ 9 Geology--__--_--_--__----_--_-----____----_ --_ ___-__-- 10 Geomorphology_____________________________________________ 10 General features _______________________________________ 10 Mountainous region east of the Sacramento Valley...__________ 11 Sierra Nevada_______________________________________ 11 Cascade Range.._____________________-__--_-__-_---- 13 Plains and foothill region on the east side of the Sacramento Valley..__-_________-_.-____.___________ 14 Dissected alluvial uplands west of the Sierra
    [Show full text]
  • Awwa Ca/Nv Section Water Conservation Training and Certification Program “Need to Know” Criteria for Level 1
    AWWA CA/NV SECTION WATER CONSERVATION TRAINING AND CERTIFICATION PROGRAM “NEED TO KNOW” CRITERIA FOR LEVEL 1 The “Need to Know” criteria” presented below is based upon the general knowledge requirements expected for level 1 AWWA CA/NV water conservation certification and focuses on water end uses and conservation measures and on regional water issues and resources. Terms and definitions associated with the subjects discussed below. Units of measurement and formulas. Basic units (English) of measurement used in the water industry and formulas for landscape water use and budgets. Examples are Cubic Foot and Acre Foot, Arithmetic such as Multiplication Division and percentages, volume, pressure (psi). U.S. Water Resource Facts; Federal, Nevada and California Water Providers and Regulators; Regional water issues; Professional associations. Different types of water providers in U.S. and primary source of water for average U.S. water providers. Knowledge of water supply from groundwater and surface water in California and Nevada. Agricultural and urban demand in California and Nevada. Sources of water in California. Sources of water for Nevada Colorado River water rights; Type of water agencies in California. Roles of Federal Nevada and California water agencies and regulators. Agricultural and urban MOU and Best Management Practices; Urban Water Management Plans; California water issues including CALFED and Bay-Delta; and professional associations (including California Urban Water Council, ANSI and ASME). Utility water demand characteristics and water conservation measures. Important utility water use data and customer demand characteristics; long-term versus short-term conservation programs; utility conservation measures; type and accuracy of water meters; quantity-based rate structures; unaccounted-for water; water system audits and leak detection; system water pressure: and recycled water.
    [Show full text]
  • Sacramento River Flood Control System
    A p pp pr ro x im a te ly 5 0 M il Sacramento River le es Shasta Dam and Lake ek s rre N Operating Agency: USBR C o rt rr reek th Dam Elevation: 1,077.5 ft llde Cre 70 I E eer GrossMoulton Pool Area: 29,500 Weir ac AB D Gross Pool Capacity: 4,552,000 ac-ft Flood Control System Medford !( OREGON IDAHOIDAHO l l a a n n a a C C !( Redding kk ee PLUMAS CO a e a s rr s u C u s l l Reno s o !( ome o 99 h C AB Th C NEVADA - - ^_ a a Sacramento m TEHAMA CO aa hh ee !( TT San Francisco !( Fresno Las Vegas !( kk ee e e !( rr Bakersfield 5 CC %&'( PACIFIC oo 5 ! Los Angeles cc !( S ii OCEAN a hh c CC r a S to m San Diego on gg !( ny ii en C BB re kk ee ee k t ee Black Butte o rr C Reservoir R i dd 70 v uu Paradise AB Oroville Dam - Lake Oroville Hamilton e M Operating Agency: CA Dept of Water Resources r Dam Elevation: 922 ft City Chico Gross Pool Area: 15,800 ac Gross Pool Capacity: 3,538,000 ac-ft M & T Overflow Area Black Butte Dam and Lake Operating Agency: USACE Dam Elevation: 515 ft Tisdale Weir Gross Pool Area: 4,378 ac 3 B's GrossMoulton Pool Capacity: 136,193Weir ac-ft Overflow Area BUTTE CO New Bullards Bar Dam and Lake Operating Agency: Yuba County Water Agency Dam Elevation: 1965 ft Gross Pool Area: 4,790 ac Goose Lake Gross Pool Capacity: 966,000 ac-ft Overflow Area Lake AB149 kk ee rree Oroville Tisdale Weir C GLENN CO ee tttt uu BB 5 ! Oroville New Bullards Bar Reservoir AB49 ll Moulton Weir aa nn Constructed: 1932 Butte aa CC Length: 500 feet Thermalito Design capacity of weir: 40,000 cfs Design capacity of river d/s of weir: 110,000 cfs Afterbay Moulton Weir e ke rro he 5 C ! Basin e kk Cre 5 ! tt 5 ! u Butte Basin and Butte Sink oncu H Flow from the 3 overflow areas upstream Colusa Weir of the project levees, from Moulton Weir, Constructed: 1933 and from Colusa Weir flows into the Length: 1,650 feet Butte Basin and Sink.
    [Show full text]
  • 1 Comprehensive Land Use Plan 2010 Update City Of
    COMPREHENSIVE LAND USE PLAN 2010 UPDATE CITY OF SPRINGDALE, ARKANSAS The COMPREHENSIVE LAND USE PLAN is the City’s official guide for future development of the City. It translates values into a scheme that describes, how, why, when and where to build, rebuild or preserve the community. The COMPREHENSIVE LAND USE PLAN covers a period greater than one year but does not have a definite time limit. In the past the Land Use Plan was considered to be a snapshot or frozen image of what the City would look like twenty, thirty or forty years later, but there was little guidance as to how to get there. This Comprehensive Land Use Plan expresses current goals and policies that will shape the future, rather than show a rigid image of the future itself. The COMPREHENSIVE LAND USE PLAN covers the entire city and its established planning area. Arkansas Statues §14-56-413 allows the City to designate the area within the territorial jurisdiction for which it will prepare plans, ordinances and regulations. The COMPREHENSIVE LAND USE PLAN is a statement of policy that covers such community desires as quality of life, character, and rate of grow and indicates how these desires are to be achieved. The COMPREHENSIVE LAND USE PLAN is not a zoning ordinance, subdivision regulation, official map, budget or capital improvement program. It is a guide to the preparation and the carrying out of the components of the planning process. The COMPREHENSIVE LAND USE PLAN is a guide to decision making by the Planning Commission, the City Council and the Mayor.
    [Show full text]
  • Chapter 1 Purpose and Need
    TESTIMONY OF STEPHEN GRINNELL, P.E., YUNG-HSIN SUN, Ph.D., AND STUART ROBERTSON, P.E. YUBA RIVER INDEX: WATER YEAR CLASSIFICATIONS FOR YUBA RIVER PREPARED FOR YUBA COUNTY WATER AGENCY PREPARED BY BOOKMAN-EDMONSTON ENGINEERING, INC. Unpublished Work © November 2000 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................1 SACRAMENTO VALLEY INDEX AND SAN JOAQUIN RIVER INDEX .................................................1 NEED FOR YUBA RIVER INDEX ..................................................................................................................2 DISTRIBUTION OF YUBA RIVER ANNUAL UNIMPAIRED FLOWS...........................................................................3 FUNCTIONS AND PURPOSES OF EXISTING FACILITIES..........................................................................................4 YUBA RIVER INDEX........................................................................................................................................6 INDEX DESIGN ...................................................................................................................................................6 INDEX DEFINITION .............................................................................................................................................7 WATER YEAR CLASSIFICATIONS OF YUBA RIVER ..............................................................................................8
    [Show full text]
  • California's San Joaquin Valley: a Region and Its Children Under Stress
    CALIFORNIA’S SAN JOAQUIN VALLEY: A REGION AND ITS CHILDREN UNDER STRESS January 2017 Commissioned by Study Conducted by California’s San Joaquin Valley: A Region and Its Children Under Stress January 2017 Dear Colleagues, We are pleased to share with you California’s San Joaquin Valley: A Region and its Children Under Stress, commissioned by the San Joaquin Valley Health Fund, with funding from the W.K. Kellogg Foundation and Sierra Health Foundation, and prepared by the UC Davis Center for Regional Change. In preparing this report, researchers met with residents and those working with and on behalf of Valley communities to learn what their priorities are for policy and systems change. As detailed in the report, their quest for a more equitable region is focused on several priorities that include early education, healthy food, healthy living environments and equitable land use planning as the primary issues of concern. While the report documents the many racial, health and other inequities, and the particular effects they have on the lives and life chances of families raising children in the region, it also presents the vision of local leaders and community residents. We know the challenges that lie ahead will be difficult to address. While the San Joaquin Valley includes the top agricultural producing counties in California, almost 400,000 of the region’s children live in poverty and seven of the 10 counties with the highest child poverty rates in the state are in the Valley. One out of every four Valley children experiences food insecurity and they are much more likely to be exposed to pesticides while in school and to go to schools with unsafe drinking water.
    [Show full text]