Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis water hetch hetchy water & power clean water October 2006 Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Final Report Prepared by: RMC Water and Environment and McBain & Trush, Inc. October 2006 Upper Tuolumne River Section 1 Introduction Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Table of Contents Section 1 Introduction .............................................................................................................. 1 Section 2 Hetch Hetchy Facilities in the Study Area ............................................................. 4 Section 3 Preliminary Analysis of the Effects of Hetch Hetchy Project Facilities and Operations on Flow in Study Reaches ..................................................................................... 7 3.1 Analysis Approach ..................................................................................................... 7 3.2 The Natural Hydrograph........................................................................................... 10 3.3 Effects of Flow Regulation on Annual Hydrograph Components ............................. 12 3.3.1 Cherry and Eleanor Creeks.................................................................................................... 14 3.3.2 Tuolumne River...................................................................................................................... 17 3.4 Effects of Flow Regulation on Annual Flood Magnitude and Timing........................ 21 3.4.1 Cherry and Eleanor Creeks.................................................................................................... 21 3.4.2 Tuolumne River...................................................................................................................... 25 3.4.3 Potential Effects of Flow Regulation and Diversion in the Study Reaches............................ 28 Section 4 Available Data and Reports................................................................................... 31 4.1 General Reports and Planning Documents.............................................................. 31 4.1.1 Streamflow Data..................................................................................................................... 32 4.1.2 Geomorphic Data ................................................................................................................... 37 4.1.3 Biologic Data .......................................................................................................................... 38 4.1.4 Vegetation Data...................................................................................................................... 42 4.1.5 Relevant Aerial and Ground Photographs ............................................................................. 43 Section 5 Information Gaps ................................................................................................... 45 5.1 2006 Work Plan........................................................................................................ 45 5.2 Potential Future Tasks ............................................................................................. 47 Section 6 References Cited.................................................................................................... 49 List of Tables Table 3-1: Unimpaired Annual Runoff for the Period of Record and Representative Water Years ....................................................................................................................................9 Table 3-2: Pre-project Streamflow Gages, Elevation, and Hydrograph Components ........11 Table 3-3: Tuolumne River Dams, Drainage Areas, and Reservoir Capacities...................12 Table 3-4: Effect of Cherry Valley Dam on Annual Peak Flood Magnitude .........................22 Table 3-5: Effect of Eleanor Dam on Annual Peak Flood Magnitude ...................................24 Table 3-6: Pre- and Post-dam Annual Flood Peaks in the Hetchy Reach............................27 Table 3-7: Hypotheses of Potential Project Effects on Geomorphic and Ecological Conditions in the Study Reaches ....................................................................................29 Table 4-1: Persons Contacted for Available Reports and Data ............................................31 Table 4-2: General Reports and Planning Documents ..........................................................31 Table 4-3: Streamflow Data and Computed Flow Estimates.................................................34 Table 4-4: Geomorphic Data and Reports ..............................................................................37 Table 4-5: Biologic Data and Reports .....................................................................................38 Table 4-6: Vegetation Data and Reports .................................................................................42 Table 4-7: Aerial Photographs .................................................................................................43 List of Figures Figure 1-1. Tuolumne River Study Reaches............................................................................3 Figure 2-1. Schematic Diagram Showing Reservoirs and Flow Diversions in the Tuolumne River Watershed (source: USGS 2004) ...........................................................5 October 2006 Upper Tuolumne River Section 1 Introduction Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Figure 3-1. Hydrograph Components for a Snowmelt-dominated and Combination Rainfall-snowmelt Flow Regimes similar to the Tuolumne River, Cherry Creek, and Eleanor Creek......................................................................................................................8 Figure 3-2. Tuolumne River Natural Hydrograph (WY1917).................................................11 Figure 3-3. Regulated Tuolumne River Hydrograph WY1999 ..............................................13 Figure 3-4. Unimpaired and Regulated Upper Cherry Reach Hydrograph WY1999 ..........14 Figure 3-5. Unimpaired and Regulated Eleanor Reach Hydrograph WY1999 ....................15 Figure 3-6. Unimpaired and Regulated Lower Cherry Reach Hydrograph WY1999 ..........16 Figure 3-7. Unimpaired and Regulated Holm Reach Hydrograph WY1999 ........................17 Figure 3-8. Unimpaired and Regulated Hetchy Reach Hydrograph WY1999 .....................18 Figures 3-9 a, b and c. Unimpaired and Regulated Hydrograph at Three Locations in the Lumsden Reach WY1999..................................................................................................20 Figure 3-10. Cherry Creek Flood History ...............................................................................21 Figure 3-11. Cherry Creek Flood Frequency .........................................................................22 Figure 3-12. Eleanor Creek Flood History .............................................................................23 Figure 3-13. Cherry Creek Flood Frequency Scaled to Eleanor Creek Drainage Area......24 Figures 3-14 a and b. Tuolumne River Hetchy Reach Flood History ..................................26 Figure 3-15. Tuolumne River Hetchy Reach Flood Frequency............................................27 Figure 4-1. Temperature and Streamflow Data Available for the Study Reaches...............33 Figure 4-2. Biological Data Available for the Study Reaches ...............................................41 Figure 4-3. Aerial Photos and Reach-Specific GIS Data Available for Study Reaches ......44 October 2006 Upper Tuolumne River Section 1 Introduction Available Data Sources, Field Work Plan, and Initial Hydrology Analysis List of Abbreviations ab above CCblDHPH Cherry Creek below Don Holm Powerhouse CCblVD Cherry Creek below Valley Dam CCEI Cherry Creek near Early Intake CDFG California Department of Fish and Game CDT Cherry Diversion Tunnel CDWR California Department of Water Resources cfs cubic feet per second DA drainage area EC Eleanor Creek near Hetch Hetchy ECDT Eleanor-Cherry Diversion Tunnel FERC Federal Energy Regulatory Commission ft feet mi2 square miles MRPB Merced River at Pohono Bridge near Yosemite NPS National Park Service nr near Qe estimated streamflow Qg gaged streamflow RM River Mile S.J. River San Joaquin River Sd reservoir storage SFPUC San Francisco Public Utilities Commission TID Turlock Irrigation District TRblEI Tuolumne River below Early Intake TRBM Tuolumne River near Buck Meadow TRCC Tuolumne River at Cherry Creek confluence TRHH Tuolumne River near Hetch Hetchy TRPT Tuolumne River Preservation Trust USDI U.S. Department of Interior USFS U.S. Forest Service USFS United States Forest Service October 2006 Upper Tuolumne River Section 1 Introduction Available Data Sources, Field Work Plan, and Initial Hydrology Analysis USFWS U.S. Fish and Wildlife Service USGS U.S. Geological Survey WY water year October 2006 Upper Tuolumne River Section 1 Introduction Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Section 1 Introduction The San Francisco Public Utilities Commission (SFPUC) owns and operates the Hetch Hetchy Water and Power system. This system, located in the upper Tuolumne River watershed, includes dams and flow diversions on the Tuolumne River, Cherry Creek (a tributary to the Tuolumne River), and Eleanor Creek (a tributary to Cherry Creek). As part
Recommended publications
  • THE YOSEMITE by John Muir CHAPTER I The
    THE YOSEMITE By John Muir CHAPTER I The Approach to the Valley When I set out on the long excursion that finally led to California I wandered afoot and alone, from Indiana to the Gulf of Mexico, with a plant-press on my back, holding a generally southward course, like the birds when they are going from summer to winter. From the west coast of Florida I crossed the gulf to Cuba, enjoyed the rich tropical flora there for a few months, intending to go thence to the north end of South America, make my way through the woods to the headwaters of the Amazon, and float down that grand river to the ocean. But I was unable to find a ship bound for South America--fortunately perhaps, for I had incredibly little money for so long a trip and had not yet fully recovered from a fever caught in the Florida swamps. Therefore I decided to visit California for a year or two to see its wonderful flora and the famous Yosemite Valley. All the world was before me and every day was a holiday, so it did not seem important to which one of the world's wildernesses I first should wander. Arriving by the Panama steamer, I stopped one day in San Francisco and then inquired for the nearest way out of town. "But where do you want to go?" asked the man to whom I had applied for this important information. "To any place that is wild," I said. This reply startled him. He seemed to fear I might be crazy and therefore the sooner I was out of town the better, so he directed me to the Oakland ferry.
    [Show full text]
  • Gazetteer of Surface Waters of California
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTI8 SMITH, DIEECTOE WATER-SUPPLY PAPER 296 GAZETTEER OF SURFACE WATERS OF CALIFORNIA PART II. SAN JOAQUIN RIVER BASIN PREPARED UNDER THE DIRECTION OP JOHN C. HOYT BY B. D. WOOD In cooperation with the State Water Commission and the Conservation Commission of the State of California WASHINGTON GOVERNMENT PRINTING OFFICE 1912 NOTE. A complete list of the gaging stations maintained in the San Joaquin River basin from 1888 to July 1, 1912, is presented on pages 100-102. 2 GAZETTEER OF SURFACE WATERS IN SAN JOAQUIN RIYER BASIN, CALIFORNIA. By B. D. WOOD. INTRODUCTION. This gazetteer is the second of a series of reports on the* surf ace waters of California prepared by the United States Geological Survey under cooperative agreement with the State of California as repre­ sented by the State Conservation Commission, George C. Pardee, chairman; Francis Cuttle; and J. P. Baumgartner, and by the State Water Commission, Hiram W. Johnson, governor; Charles D. Marx, chairman; S. C. Graham; Harold T. Powers; and W. F. McClure. Louis R. Glavis is secretary of both commissions. The reports are to be published as Water-Supply Papers 295 to 300 and will bear the fol­ lowing titles: 295. Gazetteer of surface waters of California, Part I, Sacramento River basin. 296. Gazetteer of surface waters of California, Part II, San Joaquin River basin. 297. Gazetteer of surface waters of California, Part III, Great Basin and Pacific coast streams. 298. Water resources of California, Part I, Stream measurements in the Sacramento River basin.
    [Show full text]
  • The Late Cenozoic Evolution of the Tuolumne River, Central Sierra Nevada, California
    The late Cenozoic evolution of the Tuolumne River, central Sierra Nevada, California N. KING HUBER U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 ABSTRACT Rancheria Mountain suggests that uplift had ancient prevolcanic channel of the Tuolumne been underway for some time before the vol- River. The volcanic rocks also help to date that Erosional remnants of volcanic rock depos- canic infilling. This timing is compatible with channel and make its reconstruction useful for ited in a lO-m.y.-old channel of the Tuolumne evidence from the upper San Joaquin River. estimating both Sierran tilt and the amount and River permit its partial reconstruction. Pro- Hetch Hetchy Valley on the Tuolumne is a rate of postvolcanic incision of the Tuolumne jection of the reconstructed channel west to much "fresher" glaciated valley than is River. Comparisons can then be made with sim- the Central Valley and east to the range crest, Yosemite Valley. Hetch Hetchy was filled to ilar estimates from the upper San Joaquin River. together with several assumptions about the the brim with glacial ice as recently as All data in this study were derived from topo- position of the hinge line and changes in 15,000-20,000 yr ago (Tioga glaciation), graphic maps at a scale of 1:62,500 with contour channel gradient, allows estimates of the whereas Yosemite Valley probably has not intervals of 80 or 100 ft, and all calculations amount of uplift at the range crest during the been filled for 750,000 yr or more (Sherwin therefore were made in United States customary past 10 m.y.
    [Show full text]
  • 2012 10 10 Williams Upper Yuba River Salmon Review Report
    Center for Independent Experts (CIE) Independent Peer Review of the Upper Yuba River Salmonid Habitat Assessment and Population Model Prepared for NMFS by Stillwater Sciences John G. Williams, Ph.D. Petrolia, CA October 2012 Williams review of the upper Yuba River salmonid assessment and population model Review of the Upper Yuba River Salmonid Habitat Assessment and Population Model Executive Summary The National Marine Fisheries Service (NMFS) desires an assessment of the potential benefits to spring Chinook salmon and steelhead from providing them access to the upper Yuba River, above Englebright Dam. Much of the area in question has been strongly affected by human activity, so historical information on Chinook and steelhead in the basin is of limited utility. NMFS contracted with Stillwater Sciences to modify and parameterize its new habitat assessment model, RIPPLE, to quantify the potential of the habitat for these species in the upper Yuba River under current conditions, and under two alternatives. The resulting report from Stillwater Sciences is the subject of this review. RIPPLE is a complex, spatially explicit simulation model that simulates habitat, carrying capacity, and equilibrium population, although only the freshwater habitat and carrying capacity were assessed for the upper Yuba River. RIPPLE was designed specifically for data sparse regions, and uses hydraulic geometry relationships and stream gradient to simulate habitat for salmonids, although other information that may be available can be used as well. Complex simulation models are essentially thought experiments, and as virtual systems can be valuable. However, their utility for assessing real ecological systems is dubious, and leading ecological modelers, including the Recovery Science Review Panel (RSRP), have warned strongly against using them for this purpose.
    [Show full text]
  • Lower Tuolumne River Channel and Floodplain Restoration
    LOWER TUOLUMNE RIVER CHANNEL AND FLOODPLAIN RESTORATION Leader: Patrick Koepele Tuolumne River Trust Modesto, CA 95354 [email protected] INTRODUCTION River restoration has become an important topic amongst conservationists, public policy makers, and water managers in recent years due to environmental problems that have resulted from over 150 years of water development, flood control, and hydroelectric generation in California. California relies on surface water to meet the demands of its growing population, flood control projects have been constructed to protect lives and property from flood damages, and hydroelectric generation has been an important sector of the state’s energy portfolio. Thus, hundreds of dams, diversions, levees, and other facilities have been constructed on California rivers and streams throughout the state to meet these demands. However, these projects have not come without environmental costs, including loss of native fish populations, loss of riparian and wetland habitat, and loss of wildlife species dependant on these river-related habitats. To address these issues, several important federal and state programs have been created over the past 15 years, including the Anadromous Fish Restoration Program of the federal Central Valley Project Improvement Act of 1992, and the CALFED Bay-Delta Program, a joint federal-state initiative aimed at improving ecosystem health while ensuring water supply reliability. These programs and others have funneled millions of dollars of public funds to projects designed to improve the environmental health of the Sacramento-San Joaquin Bay-Delta Watershed, which includes the entire Central Valley of California, the west slope of Sierra Nevada, and the east slope of the coastal ranges.
    [Show full text]
  • 4.11 Hydrology and Water Quality
    Environmental Impact Analysis Hydrology and Water Quality 4.11 Hydrology and Water Quality This section describes generalized water quality, groundwater supply, drainage, runoff, flooding, and dam inundation impacts of development facilitated by the 2018 RTP/SCS. 4.11.1 Setting San Joaquin County (County) encompasses approximately 1,440 square miles in central California, and includes rivers, streams, sloughs, marshes, wetlands, channels, harbors, and underground aquifers. The extensive Delta Basin waterway system is one of the County’s most valuable water resources. Over 700,000 acres of agricultural land and 700 miles of interlacing waterways form the Sacramento-San Joaquin Delta. The San Joaquin River Hydrologic Region encompasses San Joaquin County and other parts of the San Joaquin Valley. The San Joaquin Valley comprises the southernmost portion of the Great Valley Geomorphic Province of California. The Great Valley is a broad structural trough bounded by the tilted block of the Sierra Nevada on the east and the complexly folded and faulted Coast Ranges on the west. a. Surface Water The major rivers in this hydrologic region are the San Joaquin, Cosumnes, Mokelumne, Calaveras, Stanislaus, Tuolumne, Merced, Chowchilla, and Fresno. The Calaveras, Mokelumne, and Stanislaus Rivers flow through or border San Joaquin County and discharge directly into the Delta or into the San Joaquin River which in turn flows to the Delta. The west and southwestern portion of the County is part of the Delta (Eastern San Joaquin IRWMP 2014). San Joaquin River The San Joaquin River is approximately 330 miles long and originates on the western slopes of the Sierra Nevada Mountains.
    [Show full text]
  • Tuolumne River Regional Park Master Plan
    Master Plan Tuolumne River Regional Park December 2001 Tuolumne River Regional Park Master Plan Master Plan Tuolumne River Regional Park Prepared for the Joint Powers Authority: City of Modesto, City of Ceres, Stanislaus County Prepared by: EDAW, Inc. 753 Davis Street San Francisco, CA 94111 (415) 433-1484 With assistance from: McBain and Trush, Stillwater Sciences, and HDR Engineering, Inc. December 2001 Tuolumne River Regional Park Master Plan Table of Contents Chapter 1: Introduction 1 Chapter 2: Issues and Opportunities 9 Chapter 3: Conservation and Open Space 19 Legion Park Chapter 4: Land Use and Recreation 29 Chapter 5: Access and Circulation 53 Chapter 6: Implementation 57 Bibliography 67 Appendices 71 Tuolumne River Regional Park Master Plan List of Figures and Tables Figures Pages Figures Pages Figure 1: Tuolumne River Regional Park - Location 2 Figure 18: Gateway Parcel - Cross Section 43 Figure 2: Tuolumne River Regional Park Figure 19: Golf Course Area - Illustrative Plan 45 Illustrative Plan 3 Figure 20: Carpenter Road Area - Illustrative Plan 47 Figure 3: Tuolumne River Regional Park Planning Jurisdictions 11 Figure 21: Carpenter Road Area - Illustrative Cross Section A 48 Figure 4: Tuolumne River Watershed 12 Library Project, Gerald and Buff Corsi Digital UC Berkeley, Figure 22: Carpenter Road Area - Illustrative Figure 5: Tuolumne River Regional Park Cross Section B 48 Flooding and Hydrology 13 Figure 23: Carpenter Road Area - Sketch of the Park 49 Figure 6: Riparian Floodplain Terraces 20 and Sports Complex Figure 7:
    [Show full text]
  • Supplement S1 Data
    Supplement S1 Data Table S1: Full-natural flow gauges Basin Gauge name CDEC gauge code Shasta Sacramento River above Bend Bridge SBB Feather Feather River at Oroville FTO Yuba Yuba River near Smartville YRS American American River at Folsom AMF Cosumnes Cosumnes River at Michigan Bar CSN Mokelumne Mokelumne - Mokelumne Hill MKM Stanislaus Stanislaus River - Goodwin SNS Tuolumne Tuolumne River - La Grange Dam TLG Merced Merced River near Merced Falls MRC San Joaquin San Joaquin River below Friant SJF Kings Kings River - Pine Flat Dam KGF Kaweah Kaweah River - Terminus Dam KWT Kern Kern River - below Isabella KRI Tule Success Dam SCC S2 abcd model results The abcd model (Thomas, 1981) can be understood under a generalized proportionality hypothesis framework (Wang and Tang, 2014). The primary equation assumes PET or \evaporation opportunity", Y , for each time step as a function of available water and two parameters, a and b. The former ranges from zero to one and can be understood physically as the tendency for runoff to occur in the basin before the soil is saturated. The latter is the maximum evaporation opportunity, measured in depth. Soil storage in the model is calculated under the assumption that actual ET from the soil occurs in proportion to PET, Y . The model goes on to separate direct runoff from groundwater recharge based on parameters c and d, allowing total streamflow and baseflow to be calculated as well. However, as the primary goal of using the abcd model here was calculating change in soil storage, we did not use parameters c or d.
    [Show full text]
  • Lower Mokelumne River Salmonid Redd Survey Report: October 2011 Through February 2012
    Lower Mokelumne River Salmonid Redd Survey Report: October 2011 through February 2012 June 2013 Robyn Bilski and Ed Rible East Bay Municipal Utility District, 1 Winemasters Way, Lodi, CA 95240 Key words: lower Mokelumne River, salmonid, fall-run Chinook salmon, Oncorhynchus mykiss, redd survey, spawning, superimposition, gravel enhancement ___________________________________________________________________________ Abstract Weekly fall-run Chinook salmon (Oncorhynchus tshawytscha) and winter-run steelhead/rainbow trout (O. mykiss) spawning surveys were conducted on the lower Mokelumne River from 19 October 2011 through 28 February 2012. Estimated total escapement during the 2011/2012 season was 18,596 Chinook salmon. The estimated number of in-river spawners was 2,674 Chinook salmon. The first salmon redd was detected on 19 October 2011. During the surveys, a total of 564 salmon redds were identified. Forty-three (7.6%) Chinook salmon redds were superimposed by other Chinook salmon redds and 336 (59.6%) redds were located within gravel enhancement areas. The reach from Camanche Dam to Mackville Road (reach 6) contained 512 (90.2%) salmon redds and the reach from Mackville Road to Elliott Road (reach 5) contained 52 (9.8%) salmon redds. The highest number of Chinook salmon redd detections (161) took place on 22 November 2011. The first O. mykiss redd was found on 22 November 2011. Sixty-eight O. mykiss redds were identified. Nine O. mykiss redds were superimposed on Chinook salmon redds and one O. mykiss redd was superimposed on another O. mykiss redd. Thirty-one (45.6%) O. mykiss redds were located within gravel enhancement areas. Reach 6 contained 51 (75%) redds and reach 5 contained 17 (25%) redds.
    [Show full text]
  • A Roadmap to Achieving the Voluntary Agreements October 2020
    A Roadmap To Achieving the Voluntary Agreements October 2020 URGENT CALL TO ACTION State Must Re-Engage on the Voluntary Agreements Public water agencies across California call on Governor Newsom and his administration to re-engage in negotiations with the federal administration and stakeholders to successfully complete the Voluntary Agreements (VAs). To implement this modern water management approach, we ask the state to take the following actions: ACTION ACTION ACTION 1 2 3 Resolve the litigation Convene all parties Support and assist between the state, to complete the water agencies that federal government, VAs and the related have proposed early public water agencies efforts to advance implementation and NGOs regarding the implementation projects to accelerate the Incidental Take of the Water Quality improvements for Permit and the Control Plan through fish and wildlife, Biological Opinion. the Voluntary including with funding Agreements. and streamlined permitting processes. voluntaryagreements.org www.acwa.com 1 A Watershed-Wide Approach Shasta The VAs would encompass Redding the Sacramento-San San Francisco Bay / Sacramento- Joaquin Delta and each of San Joaquin Delta Estuary the following tributaries to improve reliability for Sacramento the 35 million people and River Feather River nearly 8 million acres of farmland dependent on Yuba River the Delta watershed and its water supply. Lake Yuba City Tahoe • American River American River • Feather River Mokelumne River Sacramento • Mokelumne River Faireld • Putah Creek Stockton Tuolumne River • Sacramento River San Francisco • San Joaquin River Turlock Settlement Upstream of the Merced River (Friant Diversion) Deliveries to Central Friant/San Joaquin • Tuolumne River Coast, San Joaquin Valley River and Southern California • Yuba River Background blueprint to meet the water needs of California’s communities, economy, and the environment The Voluntary Agreements (VAs) represent a through the 21st century.
    [Show full text]
  • The Battle for the Tuolumne
    Modesto Irrigation District The Power To Grow Greening of Paradise Valley - The First 100 Years of the Modesto Irrigation District Chapter 11 The Battle for the Tuolumne One of the most divisive and fascinating chapters in the history of the Modesto Irrigation District was precipitated by the determination of the City and County of San Francisco to tap the Tuolumne River for its domestic water supply. Although in later years the three entities – the Modesto and Turlock Irrigation Districts and the City of San Francisco – were to work together developing the Tuolumne’s resources, both districts at first were “unalterably opposed” to San Francisco being on the river. The bitter early fights were to generate recall elections in the MID, split the Modesto and Turlock districts in a manner that for some time threatened further cooperation in the development of the original Don Pedro Reservoir, and generated intense emotions among the people. Long before the great 1906 San Francisco earthquake and fire proved that city’s water supply to be tragically inadequate, San Francisco was looking to the Sierra for water. In 1882 the San Francisco and Tuolumne Water Company of Sonora had proposed carrying Tuolumne River water to San Francisco from Jacksonville, a community flooded nearly a century later by the construction of New Don Pedro Reservoir. In 1888 two years before Yosemite National Park was created, George M. Harris stressed the value of the Hetch Hetchy Valley as a reservoir site and offered all his rights on the Tuolumne River, including title to his lands in Hetch Hetchy Valley, for $200,000.
    [Show full text]
  • San Francisco Public Utilities Commission Hydrological Conditions Report for August 2015
    San Francisco Public Utilities Commission Hydrological Conditions Report For August 2015 J. Chester, C. Graham, A. Mazurkiewicz, & M. Tsang, September 7, 2015 Lake Eleanor has been drained for valve maintenance and coffer dam construction. Drainage was primarily through the Cherry / Eleanor Diversion Tunnel, retaining water in Cherry Lake for meeting downstream water obligations, power generation and for backup water supply. A small pool is retained in Lake Eleanor at the dam face to maintain minimum stream releases during maintenance and construction. 1 Current Tuolumne System and Local Bay Area storage conditions are summarized in Table 1. Table 1 Current Storage As of September 1, 2015 Current Storage Maximum Storage Available Capacity Percentage Reservoir Acre- Millions of Millions of Millions of of Maximum Acre-Feet Acre-Feet Feet Gallons Gallons Gallons Storage Tuolumne System Hetch Hetchy1 298,655 360,360 61,705 82.9% 2 Cherry 140,214 273,340 133,126 51.3% 3 Lake Eleanor 996 27,100 26,104 3.7% Water Bank 131,971 570,000 438,028 23.2% Tuolumne Storage 571,863 1,230,800 658,964 46.5% Local Bay Area Storage Calaveras4 22,216 7,239 96,824 31,550 74,608 24,311 22.9% San Antonio 44,893 14,629 50,496 16,454 5,603 1,826 88.9% Crystal Springs 50,846 16,568 58,377 19,022 7,531 2,454 87.1% San Andreas 18,486 6,024 18,996 6,190 510 166 97.3% Pilarcitos 2,135 696 2,995 976 860 280 71.3% Total Local Storage 138,576 45,155 227,688 74,192 89,112 29,037 60.9% Total System 710,412 1,458,488 748,076 48.7% 1 Maximum Hetch Hetchy Reservoir storage with drum gates activated.
    [Show full text]