The Yuba River: Among the Coldest Tributaries in the Central Valley Four Questions

Total Page:16

File Type:pdf, Size:1020Kb

The Yuba River: Among the Coldest Tributaries in the Central Valley Four Questions The Yuba River: Among the Coldest Tributaries in the Central Valley Four Questions • What are temperatures like on the Lower Yuba? • What are temperatures like in other CV tributaries? • What do these temperatures mean for anadromous salmonids in the Lower Yuba? • How is 2014 looking? Temperature Drivers for the Lower Yuba River Average Water Temperature Profile for New Bullards Bar Reservoir 0 50 100 Average Water Temperature Profile for Englebright Reservoir 150 0 200 10 250 20 August 30 300 May Depth Depth from Water Surface (feet) 40 350 50 40 45 50 55 60 65 70 75 80 60 Water Temperature (°F) 70 August 80 May Depth From (feet) From Depth Water Surface 90 New Bullards Bar 100 Reservoir 40 45 50 55 60 65 70 75 80 85 90 Water Temperature (°F) Release Temperatures Colgate Powerhouse Englebright 46 to 50 degrees F Reservoir Smartville Gage Summertime Average Daguerre Narrows II Point Dam Accord Conditions Powerhous Marysville 2007 through 2010 Gage +5 ° +4 ° +3° +12° Daguerre Point Dam Englebright Dam Near Marysville Average Mean Daily Values 2007 - 2013 Near Marysville Daguerre Point Dam Englebright Dam Average Min-Mean-Max Daily Values 2007 - 2013 Yuba and the Central Valley • What are daily mean temp values like in other CV rivers? • Gages chosen near beginning and end of anadromous access • Daily mean temperatures from 2007 - 2013 Select Tributaries of the Sacramento and San Joaquin Mill Creek Deer Creek Butte Creek Feather River Yuba River American River Stanislaus River Tuolumne River Merced River Near Marysville Range Between Mean Daily Temperatures Englebright Dam Select Tributaries of the Sacramento and San Joaquin Mill Creek Deer Creek Butte Creek Feather River Yuba River American River Stanislaus River Tuolumne River Merced River Select Tributaries of the Sacramento and San Joaquin Mill Creek Deer Creek Butte Creek Feather River Yuba River American River Stanislaus River Tuolumne River Merced River Yuba and the Central Valley Yuba River Temperatures and Anadromous Salmonid Biology Salmonids have complex life histories with many stages and pathways Life Cycle Different timing for each life history stage Different critical thermal limits for each life history stage traveldance.net dailyunadventuresincooking.com Spring-Run Chinook Salmon (Oncorhynchus tshawytscha) Critical Thermal Limit Adult and Smolt Migration Spring-Run Chinook Salmon (Oncorhynchus tshawytscha) Critical Thermal Limit Juvenile Rearing and Adult Holding Spring-Run Chinook Salmon (Oncorhynchus tshawytscha) Critical Thermal Limit Spawning and Egg Incubation 27 Yuba River Spring-Run Salmon Temperature cool enough for most life history stages throughout the river Spawning temperatures warm below DPD until October Steelhead (Oncorhynchus mykiss) Critical Thermal Limit Adult Migration and Juvenile Rearing Steelhead (Oncorhynchus mykiss) Critical Thermal Limit Adult Holding Steelhead (Oncorhynchus mykiss) Critical Thermal Limit Spawning and Egg Incubation Steelhead (Oncorhynchus mykiss) Critical Thermal Limit Critical Thermal Limit Smolt Emigration Yuba River Steelhead Temperature cool enough for most life history stages throughout the river PHOTO BY FISHBIO Temperatures in 2014 earthobservatory.nasa.gov January 2013/2014 Most of California experiencing extreme drought Far less snowmelt than normal Folsom Reservoir July 2011/ January 2014 How might Yuba temperatures be affected? kssunews.wordpress.com North Fork at Goodyears Bar North Fork Below Middle Fork Colgate Powerhouse at Wolf Creek South Fork at Poorman Creek The Yuba River is warmer than normal… but… temperatures are within the range of variation seen in Central Valley tributaries Questions? .
Recommended publications
  • Central Valley Project Integrated Resource Plan
    Summary Report Central Valley Project Integrated Resource Plan U.S. Department of the Interior Bureau of Reclamation Mid-Pacific Region TABLE OF CONTENTS TABLE OF CONTENTS BACKGROUND ..........................................................................................................................................................5 STUDY APPROACH ...................................................................................................................................................7 CLIMATE IMPACTS ON WATER SUPPLIES AND DEMANDS ...............................................................................11 COMPARISON OF PROJECTED WATER SUPPLIES AND DEMANDS .................................................................21 PERFORMANCE OF POTENTIAL FUTURE WATER MANAGEMENT ACTIONS .................................................27 PORTFOLIO TRADEOFFS .......................................................................................................................................37 CVP IRP STUDY LIMITATIONS ................................................................................................................................39 ACRONYMS AND ABBREVIATIONS USED IN FIGURES ......................................................................................41 Tables Table 1. Simulation Suites and Assumptions Inlcuded in Each Portfolio .............................................................27 Figures Figure 1a. Projected changes in Temperature in Ensemble-Informed Transient Climate Scenarios between 2012
    [Show full text]
  • Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis
    Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis water hetch hetchy water & power clean water October 2006 Upper Tuolumne River: Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Final Report Prepared by: RMC Water and Environment and McBain & Trush, Inc. October 2006 Upper Tuolumne River Section 1 Introduction Available Data Sources, Field Work Plan, and Initial Hydrology Analysis Table of Contents Section 1 Introduction .............................................................................................................. 1 Section 2 Hetch Hetchy Facilities in the Study Area ............................................................. 4 Section 3 Preliminary Analysis of the Effects of Hetch Hetchy Project Facilities and Operations on Flow in Study Reaches ..................................................................................... 7 3.1 Analysis Approach ..................................................................................................... 7 3.2 The Natural Hydrograph........................................................................................... 10 3.3 Effects of Flow Regulation on Annual Hydrograph Components ............................. 12 3.3.1 Cherry and Eleanor Creeks.................................................................................................... 14 3.3.2 Tuolumne River...................................................................................................................... 17 3.4 Effects
    [Show full text]
  • Riverine Nutrient Trends in the Sacramento and San Joaquin Basins, California
    Peer Reviewed Title: Riverine Nutrient Trends in the Sacramento and San Joaquin Basins, California: A Comparison to State and Regional Water Quality Policies Journal Issue: San Francisco Estuary and Watershed Science, 13(4) Author: Schlegel, Brandon, California State University, Sacramento Domagalski, Joseph L., U.S Geological Survey, California Water Science Center Publication Date: 2015 Permalink: http://escholarship.org/uc/item/4c37m6vz Keywords: Sacramento–San Joaquin River Delta, nutrients, nitrogen, phosphorus, nutrient transport, nutrient loads, agricultural drainage Local Identifier: jmie_sfews_29499 Abstract: doi: http://dx.doi.org/1015447/sfews.2015v13iss4art2 Non-point source (NPS) contaminant control strategies were initiated in California in the late 1980s under the authority of the State Porter–Cologne Act and eventually for the development of total maximum daily load (TMDL) plans, under the federal Clean Water Act. Most of the NPS TMDLs developed for California’s Central Valley (CV) region were related to pesticides, but not nutrients. Efforts to reduce pesticide loads and concentrations began in earnest around 1990. The NPS control strategies either encouraged or mandated the use of management practices (MPs). Although TMDLs were largely developed for pesticides, the resultant MPs might have affected the runoff of other potential contaminants (such as nutrients). This study evaluates the effect of agricultural NPS control strategies implemented in California’s CV before and between 1990 and 2013, on nutrients, by comparing trends in surface-water concentrations and loads. In general, use of MPs was encouraged during a “voluntary” period (1990 to 2004) and mandated during an “enforcement” period (2004 to 2013). Nutrient concentrations, loads, and trends were estimated by using a recently developed Weighted Regressions on Time, Discharge, and Season (WRTDS) model.
    [Show full text]
  • Sacramento and Feather Rivers and Their Tributaries, Sacramento Slough and Sutter Bypass
    Section 319 NONPOINT SOURCE PROGRAM SUCCESS STORY Stakeholders Cooperate to ReduceCalifornia Diazinon in Runoff from Dormant Season Spray Widespread use of the organophosphate (OP) pesticides diazinon Waterbodies Improved and chlorpyrifos in California’s Central Valley resulted in aquatic toxicity in the Sacramento and Feather rivers and their tributaries, Sacramento Slough and Sutter Bypass. As a result, in 1994 the Central Valley Regional Water Quality Control Board (CV-RWQCB) added a 16-mile segment of the Sacramento River, a 42-mile segment of the Feather River, the 1.7-mile-long Sacramento Slough, and the 19-mile-long Sutter Bypass to the CWA section 303(d) list of impaired waters. In 2001, the Sacramento River Watershed Program (SRWP) developed and implemented a water quality management strategy for the two rivers, which included installing on-site best management practices (BMPs). Diazinon concentrations decreased, prompting CV-RWQCB to remove Sacramento Slough and Sutter Bypass from the CWA section 303(d) list in 2006. The state has recommended the removal of the Sacramento River and Feather River segments (58 river miles total) from the 2010 CWA section 303(d) list for diazinon impairments. UV162 Figure 1. Problem Map showing The Sacramento River is California’s longest river, Orchards locations of flowing from Mt. Shasta to the confluence with the Sacramento San Joaquin River at the Sacramento-San Joaquin and Feather UV45 Delta. The Feather River is the primary tributary to h rivers g l o u C S and their the Sacramento River (Figure 1). The Sutter Bypass o Colusa k r l e tributaries, u c i v is a floodwater bypass that diverts excess water a R s J a b Sutter from the Sacramento River between two large a Sutter u Y S 30 u UV B S Co.
    [Show full text]
  • San Luis Unit Project History
    San Luis Unit West San Joaquin Division Central Valley Project Robert Autobee Bureau of Reclamation Table of Contents The San Luis Unit .............................................................2 Project Location.........................................................2 Historic Setting .........................................................4 Project Authorization.....................................................7 Construction History .....................................................9 Post Construction History ................................................19 Settlement of the Project .................................................24 Uses of Project Water ...................................................25 1992 Crop Production Report/Westlands ....................................27 Conclusion............................................................28 Suggested Readings ...........................................................28 Index ......................................................................29 1 The West San Joaquin Division The San Luis Unit Approximately 300 miles, and 30 years, separate Shasta Dam in northern California from the San Luis Dam on the west side of the San Joaquin Valley. The Central Valley Project, launched in the 1930s, ascended toward its zenith in the 1960s a few miles outside of the town of Los Banos. There, one of the world's largest dams rose across one of California's smallest creeks. The American mantra of "bigger is better" captured the spirit of the times when the San Luis Unit
    [Show full text]
  • Sacramento River Flood Control System
    A p pp pr ro x im a te ly 5 0 M il Sacramento River le es Shasta Dam and Lake ek s rre N Operating Agency: USBR C o rt rr reek th Dam Elevation: 1,077.5 ft llde Cre 70 I E eer GrossMoulton Pool Area: 29,500 Weir ac AB D Gross Pool Capacity: 4,552,000 ac-ft Flood Control System Medford !( OREGON IDAHOIDAHO l l a a n n a a C C !( Redding kk ee PLUMAS CO a e a s rr s u C u s l l Reno s o !( ome o 99 h C AB Th C NEVADA - - ^_ a a Sacramento m TEHAMA CO aa hh ee !( TT San Francisco !( Fresno Las Vegas !( kk ee e e !( rr Bakersfield 5 CC %&'( PACIFIC oo 5 ! Los Angeles cc !( S ii OCEAN a hh c CC r a S to m San Diego on gg !( ny ii en C BB re kk ee ee k t ee Black Butte o rr C Reservoir R i dd 70 v uu Paradise AB Oroville Dam - Lake Oroville Hamilton e M Operating Agency: CA Dept of Water Resources r Dam Elevation: 922 ft City Chico Gross Pool Area: 15,800 ac Gross Pool Capacity: 3,538,000 ac-ft M & T Overflow Area Black Butte Dam and Lake Operating Agency: USACE Dam Elevation: 515 ft Tisdale Weir Gross Pool Area: 4,378 ac 3 B's GrossMoulton Pool Capacity: 136,193Weir ac-ft Overflow Area BUTTE CO New Bullards Bar Dam and Lake Operating Agency: Yuba County Water Agency Dam Elevation: 1965 ft Gross Pool Area: 4,790 ac Goose Lake Gross Pool Capacity: 966,000 ac-ft Overflow Area Lake AB149 kk ee rree Oroville Tisdale Weir C GLENN CO ee tttt uu BB 5 ! Oroville New Bullards Bar Reservoir AB49 ll Moulton Weir aa nn Constructed: 1932 Butte aa CC Length: 500 feet Thermalito Design capacity of weir: 40,000 cfs Design capacity of river d/s of weir: 110,000 cfs Afterbay Moulton Weir e ke rro he 5 C ! Basin e kk Cre 5 ! tt 5 ! u Butte Basin and Butte Sink oncu H Flow from the 3 overflow areas upstream Colusa Weir of the project levees, from Moulton Weir, Constructed: 1933 and from Colusa Weir flows into the Length: 1,650 feet Butte Basin and Sink.
    [Show full text]
  • Chapter 1 Purpose and Need
    TESTIMONY OF STEPHEN GRINNELL, P.E., YUNG-HSIN SUN, Ph.D., AND STUART ROBERTSON, P.E. YUBA RIVER INDEX: WATER YEAR CLASSIFICATIONS FOR YUBA RIVER PREPARED FOR YUBA COUNTY WATER AGENCY PREPARED BY BOOKMAN-EDMONSTON ENGINEERING, INC. Unpublished Work © November 2000 TABLE OF CONTENTS INTRODUCTION...............................................................................................................................................1 SACRAMENTO VALLEY INDEX AND SAN JOAQUIN RIVER INDEX .................................................1 NEED FOR YUBA RIVER INDEX ..................................................................................................................2 DISTRIBUTION OF YUBA RIVER ANNUAL UNIMPAIRED FLOWS...........................................................................3 FUNCTIONS AND PURPOSES OF EXISTING FACILITIES..........................................................................................4 YUBA RIVER INDEX........................................................................................................................................6 INDEX DESIGN ...................................................................................................................................................6 INDEX DEFINITION .............................................................................................................................................7 WATER YEAR CLASSIFICATIONS OF YUBA RIVER ..............................................................................................8
    [Show full text]
  • The Mighty Yuba River
    The Mighty Yuba River The sounds of the Yuba River as it slowly winds its way down stream, are both peaceful and relaxing. But, upstream, the river sings quite a different song. The river begins as three separate forks, the north, south, and middle, high in the Sierra Nevada Mountains. The forks flow wildly through canyons and channels, over boulders and rock bars, and will occasionally rest in pools of clear green water. There are two stories as to how the river was named. One story, tells of a scoutinggp expedition finding wild g gpgrapes growing on the river’s banks. They called the river, Rio de las Uvas (the grapes). “Uvas” was later changed to Yuba. A second story, tells of an ancestral village named Yuba, belonging to the Maidu tribe, that was located where the Feather River joins the Yuba River. The river has changed a great deal over the years. It was mined extensively during the Gold Rush and once ran abundant with Chinook salmon and steelhead trout. Mining on the Yuba River is more recreational today and the Chinook salmon and steelhead still have a strong presence in the river. The Yuba River is also part of the Yuba Watershed. It’s truly an amazing river that has many more stories to tell. th ©University of California, 2009, Zoe E. Beaton. Yuba River Education Center 6 - Yuba River #1- YREC North Fork of the Yuba River Middle Fork of the Yuba River South Fork of the Yuba River ©University of California, 2009, Zoe E. Beaton. Yuba River Education Center 6th Yuba River #2- YREC .
    [Show full text]
  • Yuba River Scenic Byway Corridor Management Plan
    CHAPTER 7 – INTERPRETIVE PLAN Interpretation Interpretation is ‘value added’ to a byway experience. Effective interpretation forges a connection between the visitor and the byway. It provides a memorable moment for the visitor to take home – a thought, image or a concept that reminds them of their experience. It helps them to recognize the byway as a unique and special place and to see and appreciate attributes that may not be readily apparent. It encourages them to spend more time and to return or tell their friends about their experience. The sustainable recreation framework (2010) highlights interpretation as one of the most important agency tools to develop deeper engagement between Americans and their natural resources. Visitor Needs Visitor needs are typically arranged into a hierarchy: orientation, information and interpretation. Once a visitor is comfortable and oriented they are receptive to interpretive information. Orientation and general information will be addressed as part of this interpretive planning effort. Orientation The first priority for visitors is to understand where they are and where they can meet their basic needs – restrooms, food, lodging. This orientation information is typically placed at either end of a byway in the form of signage or at visitor information centers. It is a part of welcoming the visitor and assists them in planning their experience. Information After basic orientation, visitors typically seek general information about the area, including the locations of points of interest and other options for how they may choose to spend their time. These locations where the visitor is likely to stop, dictate where and in what form interpretation is appropriate.
    [Show full text]
  • The Great New Year's Flood of 1997 in Northern California
    The Great New Year's Flood of 1997 in Northern California by Maurice Roos' The New Year's flood of 1997 was probably the largest in the 90-year Northern California record which begins in 1906. It was notable in the intensity, volume of flood water, and the areal extent from the Oregon border down to the southern end of the Sierra. Many new flood records were set. This was a classic orographic event with warm moist winds from the southwest blowing over the Sierra Nevada and dumping amazing amounts of rain at the middle and high elevations, especially over a 3 day period centered on New Year's Day. The sheer volume of runoff exceeded the flood control capacity of Don Pedro Dam on the Tuolumne River and Millerton Reservoir on the upper San Joaquin River with large spills of excess water. Most of the other large dams in northern California were full or nearly full at the end of the storms. Amounts of rain at lower elevations were not unusual. For example, downtown Sacramento in the middle of the Central Valley had 3.7 inches during the week from December 26 through January 2. But Blue Canyon, at the one-mile elevation between Sacramento and Reno, had over 30 inches, an orographic ratio of over 8, far more than the usual 3 to 4 for most storms. Many Valley folks could not understand that there was a problem because they were not seeing a lot of rain. Meanwhile, the entire northern Sierra was observing 20 inches, some 40 percent of average annual precipitation.
    [Show full text]
  • Gazetteer of Surface Waters of California
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEORGE OTI8 SMITH, DIEECTOE WATER-SUPPLY PAPER 296 GAZETTEER OF SURFACE WATERS OF CALIFORNIA PART II. SAN JOAQUIN RIVER BASIN PREPARED UNDER THE DIRECTION OP JOHN C. HOYT BY B. D. WOOD In cooperation with the State Water Commission and the Conservation Commission of the State of California WASHINGTON GOVERNMENT PRINTING OFFICE 1912 NOTE. A complete list of the gaging stations maintained in the San Joaquin River basin from 1888 to July 1, 1912, is presented on pages 100-102. 2 GAZETTEER OF SURFACE WATERS IN SAN JOAQUIN RIYER BASIN, CALIFORNIA. By B. D. WOOD. INTRODUCTION. This gazetteer is the second of a series of reports on the* surf ace waters of California prepared by the United States Geological Survey under cooperative agreement with the State of California as repre­ sented by the State Conservation Commission, George C. Pardee, chairman; Francis Cuttle; and J. P. Baumgartner, and by the State Water Commission, Hiram W. Johnson, governor; Charles D. Marx, chairman; S. C. Graham; Harold T. Powers; and W. F. McClure. Louis R. Glavis is secretary of both commissions. The reports are to be published as Water-Supply Papers 295 to 300 and will bear the fol­ lowing titles: 295. Gazetteer of surface waters of California, Part I, Sacramento River basin. 296. Gazetteer of surface waters of California, Part II, San Joaquin River basin. 297. Gazetteer of surface waters of California, Part III, Great Basin and Pacific coast streams. 298. Water resources of California, Part I, Stream measurements in the Sacramento River basin.
    [Show full text]
  • The Late Cenozoic Evolution of the Tuolumne River, Central Sierra Nevada, California
    The late Cenozoic evolution of the Tuolumne River, central Sierra Nevada, California N. KING HUBER U.S. Geological Survey, 345 Middlefield Road, Menlo Park, California 94025 ABSTRACT Rancheria Mountain suggests that uplift had ancient prevolcanic channel of the Tuolumne been underway for some time before the vol- River. The volcanic rocks also help to date that Erosional remnants of volcanic rock depos- canic infilling. This timing is compatible with channel and make its reconstruction useful for ited in a lO-m.y.-old channel of the Tuolumne evidence from the upper San Joaquin River. estimating both Sierran tilt and the amount and River permit its partial reconstruction. Pro- Hetch Hetchy Valley on the Tuolumne is a rate of postvolcanic incision of the Tuolumne jection of the reconstructed channel west to much "fresher" glaciated valley than is River. Comparisons can then be made with sim- the Central Valley and east to the range crest, Yosemite Valley. Hetch Hetchy was filled to ilar estimates from the upper San Joaquin River. together with several assumptions about the the brim with glacial ice as recently as All data in this study were derived from topo- position of the hinge line and changes in 15,000-20,000 yr ago (Tioga glaciation), graphic maps at a scale of 1:62,500 with contour channel gradient, allows estimates of the whereas Yosemite Valley probably has not intervals of 80 or 100 ft, and all calculations amount of uplift at the range crest during the been filled for 750,000 yr or more (Sherwin therefore were made in United States customary past 10 m.y.
    [Show full text]