A Comparative Analysis of Community Wind Power Development Options in Oregon
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
2015-17 Biennial Energy Plan
2015-17 2015-17 STATE OF OREGON BIENNIAL ENERGY PLAN Oregon Department of Energy 625 Marion Street N.E. Salem, Oregon 97301 Oregon.gov/energy Oregon Department of Energy 1-800-221-8035 625 Marion Street N.E. 503-378-4040 Salem, Oregon 97301 Oregon.gov/energy 1-800-221-8035 503-378-4040 State of Oregon Biennial Energy Plan 2015-17 State of O n Energy lan Oregon Department of Energy 625 Marion St. NE Salem, OR 97301 503-378-4040 or toll-free in Oregon 1-800-221-8035 www.oregon.gov/energy 2 State of Oregon Biennial Energy Plan 2015-17 TABLE OF CONTENTS INTRODUCTION ............................................................................................4 ENERGY MATTERS ........................................................................................6 ENERGY SUPPLY AND DEMAND .................................................................. 11 ENERGY TRENDS AND ISSUES ..................................................................... 29 REDUCING ENERGY COSTS .......................................................................... 40 Appendix A – Energy Glossary ................................................. 47 Appendix B – Energy Legislation .............................................. 54 Appendix C – Final BETC Awards by County ............................. 68 Appendix D – Success Stories ................................................... 75 Appendix E – Government-to-Government Report .................. 77 Appendix F – Oregon’s Electric Utilities ................................... 81 3 State of Oregon Biennial Energy -
Powering Renewable Energy in Canada and Abroad
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by bepress Legal Repository WINDWIND ENERGY AND ITS IMPACTIMPACT ONON FUTURE ENVIRONMENTALENVIRONMENTAL POLICY PLANNINGPLANNING:::: POWERINGPOWERING RENEWABLERENEWABLE ENERGY IN CANADA AND ABROAD byby KamaalKamaal R. Zaidi INTRODUCTION Given the tremendous pressure of using finite conventional sources of energy, many countries around the world are turning to renewable sources of energy to cushion against rising costs, while diversifying the means of delivering energy to their citizens. Wind energy is one such example of an innovative strategy to provide energy to citizens in a cleaner, abundant and reliable fashion. As society turns away from conventional sources like coal and natural gas (fossil fuels) due to the rising electricity costs and its deleterious impact on the environment, government-sponsored efforts and technological innovation are pushing wind energy to the forefront of creative environmental policy planning. More specifically, government legislation through financial incentives encourages public and private businesses to participate in pursuing renewable energy sources with more vigor. This paper examines the role of wind energy in Canada and abroad in terms of how its growing emergence is being recognized as one of the best methods of implementing sound environmental regimes that are replacing expensive conventional methods of energy extraction and utilization. Part I will examine the history and background of wind energy. Here, an overview of wind energy use in various cultures and time periods will be examined. Part II explains the role of wind energy in the context of the Kyoto Protocol. As part of this global initiative, wind energy is reviewed as to how it contributes to a “green” economy. -
ENERGY by the NUMBERS Been Analyzed Toprovide Insights
S Energy by the Numbers focuses on the metrics and data available to track how Oregon produces, purchases, and uses various types of energy. Like the 2018 report, this includes energy use data by resource and by sector with data on electricity, transportation energy, and direct fuel use. Where possible, data showing how Oregon’s energy system has changed over time has been included to provide context and history. New to this report is the energy flow diagram in Oregon, which is a visual summary of how energy is produced, imported, and used. This chart follows each resource through the energy flow. We also discuss energy production — where and what kind of energy Oregon produces, where and how we generate electricity, and what direct use and transportation fuels are produced in state. Oregon is a leading producer of renewable energy and this section explains why and how. Readers will find data on what Oregon spends on energy, how energy costs burden Oregonians differently across the state, and what the energy industry gives back to Oregon in terms of jobs. The section also demonstrates how energy efficiency continues to serve as an important resource for Oregon. It concludes with highlights on the four end use sectors: residential, commercial, industrial, and transportation, including energy use, expenditures, and GHG emissions – and how each sector uses energy to provide goods and services. ENERGY BY THE NUMBER BY ENERGY Trends and What’s New: • Oregon has vast energy efficiency potential, but in the last two years the region hasn’t been meeting the Northwest Power and Conservation Council’s Seventh Power Plan goals for savings in electricity. -
Presentation by Paul Gipe to Bundesverband Windenergie On
Disclaimer: The views expressed are those of Paul Gipe and are not necessarily those of the sponsor. Disclosure: Paul Gipe has worked with Aerovironment, ANZSES, APROMA, ASES, AusWEA, AWEA, BWEA, BWE, CanWEA, CAW, DGW, DSF, EECA, ES&T, GEO, GPI Atlantic, IREQ, KWEA, MADE, Microsoft, ManSEA, NRCan, NRG Systems, NASA, NREL, NZWEA, ORWWG, OSEA, PG&E, SeaWest, SEI, USDOE, WAWWG, WE Energies, the Folkecenter, the Izaak Walton League, the Minnesota Project, the Sierra Club, and Zond Systems, and written for magazines in the USA, Canada, France, Denmark, and Germany. Paul Gipe, wind-works.org Wind Rush of 2005-2007 The North American Market is Like a Bucking Bronco at a Texas Rodeo "Yee Ha! Ride Em Cowboys!" Paul Gipe, wind-works.org World Wind Generating Capacity 2006 Megawatts (Thousands) Europe 60 North America Asia 40 20 0 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 00 01 02 03 04 05 06 Year Paul Gipe, wind-works.org 2006 World Wind Capacity 12,000 MW 48,000 MW 12,000 MW Paul Gipe, wind-works.org World Wind Capacity 2006 ~70,000 MW South America 1% Europe Asia 66% 16% Africa 0% North America 17% Paul Gipe, wind-works.org World Major Wind Markets Germany Spain USA India 0 5 10 15 20 25 Total MW in 2006 Paul Gipe, wind-works.org World Wind 2,000 MW Club Denmark Italy China Britain 0 500 1000 1500 2000 2500 3000 3500 Megawatts in 2006 Paul Gipe, wind-works.org World Wind 1,000 MW Club Portugal Japan Netherlands Canada Austria France 0 500 1000 1500 2000 Megawatts in 2006 Paul Gipe, wind-works.org Major Wind Markets Growth Rate -
Assessment of Renewable Energy Technologies for the Sustainable Development of the Isle of Jura
ASSESSMENT OF RENEWABLE ENERGY TECHNOLOGIES FOR THE SUSTAINABLE DEVELOPMENT OF THE ISLE OF JURA International Class 2012 Energy and Environmental Management/SESAM University of Flensburg, Germany MARCH 2012 THIS REPORT IS COMPILED BY THE 2012 CLASS OF THE ENERGY & ENVIRONMENTAL MANAGEMENT PROGRAMME, UNIVERSITY OF FLENSBURG. TEAM MEMBERS Resha Piya Umer Jamil Dian Apriyani Pitoon Junthip Samuel Oguah Phuong Le Quyen Elizabeth Mosqueda Mir Tanweer Husain Alexandra Vasileskaia Alfa Haile-Mariam Abraha Alexander Komakech Akena Francisco Gonzalez Pasalagua SUPERVISORS Prof. Dr. August Schläpfer, Dipl.-Ing. Wulf Boie John Kuteesakwe Dorsi Germann COVER PHOTO: CRAIGHOUSE ON JURA AND STONE PIER scotlandinfo.eu/isle-of-jura.htm ACKNOWLEDGEMENTS With this note of acknowledgement, we wish to express our heartfelt gratitude to all individuals and organizations that have assisted us throughout this assessment study. This study could not have been successfully done without the support from the Jura Development Trust (JDT) and Community Energy Scotland (CES). Our special thanks go to these individual personalities for their relentless contribution towards this work; Mr. John Potts and Rob Tiger from the Jura Development Trust (JDT) for continuously supporting us during the research and Mr. Felix Wight of Community Energy Scotland (CES) for providing the vital pieces of information needed for this study. Our appreciation also goes to Mr. Andrew Fletcher (Ardlussa), Mr. Ally Miller (Forest Estates) and Willy Cochrane (Manager-Jura Distillery) for sharing their experience and information on hydro projects and distillery processes. We would also like to express our sincere appreciation to all residents of Jura for welcoming us into this beautiful town and their homes. -
Marine Renewable Energy and Environmental Impacts
Acknowledgements Thank you to all of the reviewers, editors, and graphic designers that made this report possible: Jennifer DeLeon Vicki Frey Melissa Foley Madalaine Jong Kelly Keen Cy Oggins Carrie Pomeroy Erin Prahler Sarah Sugar Cover Photo Storm Surf Courtesy of James Fortman Contents Tables ........................................................................................................................................................... iv Figures .......................................................................................................................................................... iv Use of Terms ................................................................................................................................................ vi Acronyms ..................................................................................................................................................... vii Summary Table........................................................................................................................................... viii 1 Introduction ......................................................................................................................................... 1-1 2 Matrix ................................................................................................................................................. 2-1 3 Offshore Energy Potential of California and Project Siting ............................................................... 3-1 3.1 Wave Energy -
10 University of Washington
University of Washington 10 Northwest Regional Clean Energy Innovation Partnership Workshop Seattle, Washington • August 15, 2016 Northwest Regional Clean Energy Innovation Partnership Workshop Report HOSTED BY THE UNIVERSITY OF WASHINGTON ON AUGUST 15, 2016 Northwest Region Workshop Planning Team: University of Washington, Pacific Northwest National Laboratory, Idaho National Laboratory, National Energy Technology Laboratory, Washington State University, Oregon State University, University of Oregon 10-2 Exploring Regional Opportunities in the U.S. for Clean Energy Technology Innovation • Volume 2 Table of Contents Executive Summary …………………………………………………………………… 2 Workshop Overview …………………………………………………………………… 6 The Northwest as a Clean Energy Leader …………………………………………………………………… 8 Panel 1: Emerging Opportunities to Accelerate Clean Energy …………………………………………………………………… 11 Panel 2: Policies and Activities to Accelerate Regional Leadership …………………………………………………………………… 14 Panel 3: Energy Innovation at Northwest Research Institutions …………………………………………………………………… 19 Panel 4: Industry for Regional-to- Global Impact …………………………………………………………………… 23 Panel 5: The Innovation Ecosystem - From Research to Startup …………………………………………………………………… 27 Leadership Speaker Series – The Future of Clean Energy …………………………………………………………………… 30 Workshop Summary …………………………………………………………………… 34 Appendix A: Workshop Agenda …………………………………………………………………… 35 Appendix B: Workshop Participants …………………………………………………………………… 39 Appendix C: Washington State Energy Profile …………………………………………………………………… 43 -
Policy Options for Clean Air and Sustainable Energy in Texas
Policy Options for Clean Air and Sustainable Energy in Texas January 2009 Prepared by: Daniel Cohan Birnur Buzcu-Guven Daniel Hodges-Copple Rice University Dan Bullock Ross Tomlin Houston Advanced Research Center Prepared for: Texas Business for Clean Air ii Acknowledgements The authors thankfully acknowledge the valuable contributions of Mr. Oviea Akpotaire. iii This page intentionally left blank. iv Table of Contents LIST OF TABLES ...................................................................................................................................................VII LIST OF FIGURES ............................................................................................................................................... VIII POLICY OPTIONS FOR CLEAN AIR AND SUSTAINABLE ENERGY IN TEXAS: ..................................X EXECUTIVE SUMMARY ........................................................................................................................................X CHAPTER 1 ................................................................................................................................................................1 THE AIR QUALITY CHALLENGE IN TEXAS ....................................................................................................1 1.1 OZONE ................................................................................................................................................................1 1.1.1 Ozone formation .........................................................................................................................................1 -
Gwec – Global Wind Report | Annual Market Update 2015
GLOBAL WIND REPORT ANNUAL MARKET UPDATE 2015 Opening up new markets for business “It’s expensive for emerging companies to enter new markets like China. The risk of failure is high leading to delays and high costs of sales. GWEC introduced us to the key people we needed to know, made the personal contacts on our behalf and laid the groundwork for us to come into the market. Their services were excellent and we are a terrific referenceable member and partner.” ED WARNER, CHIEF DIGITAL OFFICER, SENTIENT SCIENCE Join GWEC today! www.gwec.net Global Report 213x303 FP advert v2.indd 2 8/04/16 8:37 pm TABLE OF CONTENTS Foreword 4 Preface 6 Global Status of Wind Power in 2015 8 Market Forecast 2016-2020 20 Australia 26 Brazil 28 Canada 30 PR China 32 The European Union 36 Egypt 38 Finland 40 France 42 Germany 44 Offshore Wind 46 India 54 Japan 56 Mexico 58 Netherlands 60 Poland 62 South Africa 64 Turkey 66 Uruguay 68 United Kingdom 70 United States 72 About GWEC 74 GWEC – Global Wind 2015 Report 3 FOREWORD 015 was a stellar year for the wind industry and for Elsewhere in Asia, India is the main story, which has now the energy revolution, culminating with the landmark surpassed Spain to move into 4th place in the global 2Paris Agreement in December An all too rare triumph of cumulative installations ranking, and had the fifth largest multilateralism, 186 governments have finally agreed on market last year Pakistan, the Philippines, Viet Nam, where we need to get to in order to protect the climate Thailand, Mongolia and now Indonesia are all ripe -
Bend Community Energy Supply Background Report
BEND COMMUNITY ENERGY SUPPLY BACKGROUND REPORT City Manager’s Office Prepared by: Jon Simning, Volunteer Summer Intern Cassie Lacy, Sustainability Coordinator Gillian Ockner, Senior Policy Analyst October 2018 Energy Supply and Community GHG Emissions The types and sources of energy that we use in Bend have a large impact on the Community’s overall amount of greenhouse gas (GHG) emissions. The energy supply we use determines the amount of GHG emissions generated by our building stock, which is the largest source of Bend’s total greenhouse gas emissions. Residential, industrial, and commercial buildings make up 56% of the community’s total greenhouse gas footprint1. Figure 1. Summary of sector based greenhouse gas emissions from Bend's 2016 Community Greenhouse Gas Inventory These are considered stationary energy sources and GHG emissions are attributed to the combustion of fossil fuels to generate power for use in Bend. Electricity and natural gas use by the residential and commercial sectors are the largest segment of Community emissions as estimated using the Global Protocol for Community-Scale GHG Emissions (GPC). Bend residents’ homes have a larger impact than commercial businesses, and industrial building energy is small by comparison. By energy type, electricity had the largest impact (58% of total building energy); followed by natural gas (40%); and other fuels (2%) 2. Figure 2 shows stationary energy emissions broken down by sub-sector and energy type. 1City of Bend, 2016 Community Greenhouse Gas Inventory, Prepared by Good Company, August 2018. https://www.bendoregon.gov/Home/ShowDocument?id=38856 2 Ibid. 1 | Page Figure 2. Comparison of stationary energy use, by sub-sector and energy type. -
Wind Energy and Its Impact on Future Environmental Policy Planning: Powering Renewable Energy in Canada and Abroad
WIND ENERGY AND ITS IMPACT ON FUTURE ENVIRONMENTAL POLICY PLANNING: POWERING RENEWABLE ENERGY IN CANADA AND ABROAD by Kamaal R. Zaidi INTRODUCTION Given the tremendous pressure of using finite conventional sources of energy, many countries around the world are turning to renewable sources of energy to cushion against rising costs, while diversifying the means of delivering energy to their citizens. Wind energy is one such example of an innovative strategy to provide energy to citizens in a cleaner, abundant and reliable fashion. As society turns away from conventional sources like coal and natural gas (fossil fuels) due to the rising electricity costs and its deleterious impact on the environment, government-sponsored efforts and technological innovation are pushing wind energy to the forefront of creative environmental policy planning. More specifically, government legislation through financial incentives encourages public and private businesses to participate in pursuing renewable energy sources with more vigor. This paper examines the role of wind energy in Canada and abroad in terms of how its growing emergence is being recognized as one of the best methods of implementing sound environmental regimes that are replacing expensive conventional methods of energy extraction and utilization. Part I will examine the history and background of wind energy. Here, an overview of wind energy use in various cultures and time periods will be examined. Part II explains the role of wind energy in the context of the Kyoto Protocol. As part of this global initiative, wind energy is reviewed as to how it contributes to a “green” economy. Part III discusses the technology behind wind energy generation. -
Community-Scale Wind Energy for Aquidneck Island
CommunitCommunity-Scaley-Scale WindWind EnergyEnergy A Presentation to the communities of Aquidneck Island Sally Wright, PE Research Fellow, Renewable Energy Research Laboratory, University of Massachusetts Supported by the Renewable Energy ResearchSupported Laboratory, by the UMass Amherst The US www.ceere.org/rerlDepartment of Energy Community-Scale Wind Power: Agenda •• Why Why WindWind Power?Power? •• Community-scale Community-scale windwind –– Technology Technology –– Economics Economics –– Process Process // NextNext StepsSteps –– Impacts Impacts Point of view: Spirit Lake Schools, Iowa Point of view: Spirit Lake Schools, Iowa thethe communitycommunity -- needsneeds factualfactual supportsupport forfor importantimportant decisionsdecisions Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl Why Renewables? Impacts of Fossil Fuels •NOx,•NOx, SOSO22,, COCO22 •• Mercury, Mercury, Dioxin,Dioxin, Particulates,Particulates, COCO •• Oil Oil Spills,Spills, mountainmountain toptop removal,removal, ash,ash, sludge,sludge, …… Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl Why Renewables? Impacts of Fossil Fuels • Electricity: Largest industrial source of air pollution. – 2/3 SOx – 1/4 NOx – 2/5 CO2 – 1/3 Mercury Renewable Energy Research Laboratory, UMass Amherst www.ceere.org/rerl Impacts of Fossil Fuels: Sulphur Dioxide – SO2 –Acid Rain • Where it comes from: – 67 % of SO2 emissions in US from fossil-fuel power plants • Effects: – acid rain – smog • Health impacts: – smog triggers asthma attacks