Formalizing Foundations of Mathematics

Total Page:16

File Type:pdf, Size:1020Kb

Formalizing Foundations of Mathematics Formalizing Foundations of Mathematics Mihnea Iancu and Florian Rabe Computer Science, Jacobs University Bremen, Bremen, Germany Abstract Over the recent decades there has been a trend towards formalized mathematics, and a number of sophisticated systems have been developed to support the formal- ization process and mechanically verify its result. However, each tool is based on a specic foundation of mathematics, and formalizations in dierent systems are not necessarily compatible. Therefore, the integration of these foundations has re- ceived growing interest. We contribute to this goal by using LF as a foundational framework in which the mathematical foundations themselves can be formalized and therefore also the relations between them. We represent three of the most important foundations Isabelle/HOL, Mizar, and ZFC set theory as well as relations between them. The relations are formalized in such a way that the frame- work permits the extraction of translation functions, which are guaranteed to be well-dened and sound. Our work provides the starting point of a systematic study of formalized foundations in order to compare, relate, and integrate them. 1 Introduction The 20th century saw signicant advances in the eld of foundations of mathematics stimulated by the discovery of paradoxes in naive set theory, e.g., Russell's paradox of unlimited set comprehension. Several seminal works have redeveloped and advanced large parts of mathematics based on one coherent choice of foundation, most notably the Principia (Whitehead & Russell 1913) and the works by Bourbaki (Bourbaki 1964). Today various avors of axiomatic set theory and type theory provide a number of well- understood foundations. Given a development of mathematics in one xed foundation, it is possible to give a fully formal language in which every mathematical expression valid in that foundation can be written down. Then mathematics can in principle be reduced to the manipulation of these expression, an approach called formalism and most prominently expressed in Hilbert's program. Recently this approach has gained more and more momentum due to the advent of computer technology: With machine support, the formidable eort of formalizing mathematics becomes feasible, and the trust in the soundness of an argument can be reduced to the trust in the implementation of the foundation. However, compared to traditional mathematics, this approach has the drawback that it heavily relies on the choice of one specic foundation. Traditional mathematics, on 1 the other hand, frequently and often crucially abstracts from and moves freely between foundations to the extent that many mathematical papers do not mention the exact foundation used. This level of abstraction is very dicult to capture if every statement is rigorously reduced to a xed foundation. Moreover, in formalized mathematics, dier- ent systems implementing dierent (or even the same or similar) foundations are often incompatible, and no reuse across systems is possible. But the high cost of formalizing mathematics makes it desirable to join forces and integrate foundational systems. Currently, due to the lack of integration, signicant overlap and redundancies exist between libraries of formalized mathematics, which slows down the progress of large projects such as the formal proofs of the Kepler conjecture (Hales 2003). Our contribution can be summarized as follows. Firstly, we introduce a new method- ology for the formal integration of foundations: Using a logical framework, we formalize not only mathematical theories but also the foundations themselves. This permits for- mally stating and proving relations between foundations. Secondly, we demonstrate our approach by formalizing three of the most widely-used important foundations as well as translations between them. Our work provides the starting point of a formal library of foundational systems that complements the existing foundation-specic libraries and provides the basis for the systematic and formally veried integration of systems for formalized mathematics. We begin by describing our approach and reviewing related work in Sect. 2. Then, in Sect. 3, we give an overview of the logical framework we use in the remainder of the paper. We give a new formalization of traditional mathematics based on ZFC set theory in Sect. 4. Then we formalize two foundations with particularly large formalized libraries: Isabelle/HOL (Nipkow, Paulson & Wenzel 2002) in Sect. 5 and Mizar (Trybulec & Blair 1985) in Sect. 6. We also give a translation from Isabelle/HOL into ZFC and sketch a partial translation from Mizar (which is stronger than ZFC) to ZFC. We discuss our work and conclude in Sect. 7. Our formalizations span several thousand lines of declarations, and their descriptions are correspondingly simplied. The full sources are available at (Iancu & Rabe 2010). 2 Problem Statement and Related Work Automath (de Bruijn 1970) and the formalization of Landau's analysis (Landau 1930, van Benthem Jutting 1977) were the rst major success of formalized mathematics. Since then a number of computer systems have been put forward and have been adopted to varying degrees to formalize mathematics such as LCF (Gordon, Milner & Wadsworth 1979), HOL (Gordon 1988), HOL Light (Harrison 1996), Isabelle/HOL (Nipkow et al. 2002), IMPS (Farmer, Guttman & Thayer 1993), Nuprl (Constable, Allen, Bromley, Cleaveland, Cremer, Harper, Howe, Knoblock, Mendler, Panangaden, Sasaki & Smith 1986), Coq (Coquand & Huet 1988), Mizar (Trybulec & Blair 1985), Isabelle/ZF (Paulson & Coen 1993), and the body of peer-reviewed formalized mathematics is growing (T. Hales and G. Gonthier and J. Harrison and F. Wiedijk 2008, Matuszewski 1990, Klein, 2 Nipkow & (eds.) 2004). A comparison of some formalizations of foundations in Automath, including ZFC and Isabelle/HOL, is given in (Wiedijk 2006). The problem of interoperability and integration between these systems has received growing attention recently, and a number of connections between them have been estab- lished. (Obua & Skalberg 2006) and (McLaughlin 2006) translate between Isabelle/HOL and HOL Light; (Keller & Werner 2010) from HOL Light to Coq; and (Krauss & Schropp 2010) from Isabelle/HOL to Isabelle/ZF. The OpenTheory format (Hurd 2009) was designed as an interchange format for dierent implementations of higher order logic. We call these translations dynamically veried because they have in common that they translate theorems in such a way that the target system reproves every translated theorem. One can think of the source system's proof as an oracle for the target system's proof search. This approach requires no reasoning about or trust in the translation so that users of the target system can reuse translated theorems without making the source system or the translation part of their trusted code base. Therefore, such translations can be implemented and put to use relatively quickly. It is no surprise that such translations are advanced by researchers working with the respective target system. Still, dynamically veried translations can be unsatisfactory. The proofs of the source theorems may not be available because they only exist transiently when the source system processes a proof script. The source system might not be able to export the proofs, or they may be too large to translate. In that case, it is desirable to translate only the theorems and appeal to a general result that guarantees the soundness of the theorem translation. However, the statement of soundness naturally lives outside either of the two involved foundations. Therefore, stating, let alone proving, the soundness of a translation re- quires a third formal system in which source and target system and the translation are represented. We call the third system a foundational framework, and if the soundness of a translation is proved in a foundational framework, we speak of a statically veried translation. Statically veried translations are theoretically more appealing because the soundness is proved once and for all. Of course, this requires the additional assumptions that the foundational framework is consistent and that the representations in the framework are adequate. If this is a concern, the soundness proof should be constructive, i.e., produce for every proof in the source system a translated proof in the target system. Then users of the target system have the option to recheck the translated proof. The most comprehensive example of a statically veried translation from HOL to Nuprl (Naumov, Stehr & Meseguer 2001) was given in (Schürmann & Stehr 2004). HOL and Nuprl proof terms are represented as terms in the framework Twelf (Harper, Honsell & Plotkin 1993, Pfenning & Schürmann 1999) using the judgments-as-types methodology. The translation and a constructive soundness proof are formalized as type-preserving logic programs in Twelf. The soundness is veried by the Twelf type checker, and the well-denedness i.e., the totality and termination of the involved logic programs is proved using Twelf. In this work, we demonstrate a general methodology for statically veried translations. We formalize foundations as signatures in the logical framework Twelf, and we use the 3 LF module system's (Rabe & Schürmann 2009) translations-as-morphisms methodology to formalize translations between them as signature morphisms. This yields translations that are well-dened and sound by design and which are veried by the Twelf type checker. Moreover, they are constructive, and the extraction of translation
Recommended publications
  • COMPSCI 501: Formal Language Theory Insights on Computability Turing Machines Are a Model of Computation Two (No Longer) Surpris
    Insights on Computability Turing machines are a model of computation COMPSCI 501: Formal Language Theory Lecture 11: Turing Machines Two (no longer) surprising facts: Marius Minea Although simple, can describe everything [email protected] a (real) computer can do. University of Massachusetts Amherst Although computers are powerful, not everything is computable! Plus: “play” / program with Turing machines! 13 February 2019 Why should we formally define computation? Must indeed an algorithm exist? Back to 1900: David Hilbert’s 23 open problems Increasingly a realization that sometimes this may not be the case. Tenth problem: “Occasionally it happens that we seek the solution under insufficient Given a Diophantine equation with any number of un- hypotheses or in an incorrect sense, and for this reason do not succeed. known quantities and with rational integral numerical The problem then arises: to show the impossibility of the solution under coefficients: To devise a process according to which the given hypotheses or in the sense contemplated.” it can be determined in a finite number of operations Hilbert, 1900 whether the equation is solvable in rational integers. This asks, in effect, for an algorithm. Hilbert’s Entscheidungsproblem (1928): Is there an algorithm that And “to devise” suggests there should be one. decides whether a statement in first-order logic is valid? Church and Turing A Turing machine, informally Church and Turing both showed in 1936 that a solution to the Entscheidungsproblem is impossible for the theory of arithmetic. control To make and prove such a statement, one needs to define computability. In a recent paper Alonzo Church has introduced an idea of “effective calculability”, read/write head which is equivalent to my “computability”, but is very differently defined.
    [Show full text]
  • Use Formal and Informal Language in Persuasive Text
    Author’S Craft Use Formal and Informal Language in Persuasive Text 1. Focus Objectives Explain Using Formal and Informal Language In this mini-lesson, students will: Say: When I write a persuasive letter, I want people to see things my way. I use • Learn to use both formal and different kinds of language to gain support. To connect with my readers, I use informal language in persuasive informal language. Informal language is conversational; it sounds a lot like the text. way we speak to one another. Then, to make sure that people believe me, I also use formal language. When I use formal language, I don’t use slang words, and • Practice using formal and informal I am more objective—I focus on facts over opinions. Today I’m going to show language in persuasive text. you ways to use both types of language in persuasive letters. • Discuss how they can apply this strategy to their independent writing. Model How Writers Use Formal and Informal Language Preparation Display the modeling text on chart paper or using the interactive whiteboard resources. Materials Needed • Chart paper and markers 1. As the parent of a seventh grader, let me assure you this town needs a new • Interactive whiteboard resources middle school more than it needs Old Oak. If selling the land gets us a new school, I’m all for it. Advanced Preparation 2. Last month, my daughter opened her locker and found a mouse. She was traumatized by this experience. She has not used her locker since. If you will not be using the interactive whiteboard resources, copy the Modeling Text modeling text and practice text onto chart paper prior to the mini-lesson.
    [Show full text]
  • Chapter 6 Formal Language Theory
    Chapter 6 Formal Language Theory In this chapter, we introduce formal language theory, the computational theories of languages and grammars. The models are actually inspired by formal logic, enriched with insights from the theory of computation. We begin with the definition of a language and then proceed to a rough characterization of the basic Chomsky hierarchy. We then turn to a more de- tailed consideration of the types of languages in the hierarchy and automata theory. 6.1 Languages What is a language? Formally, a language L is defined as as set (possibly infinite) of strings over some finite alphabet. Definition 7 (Language) A language L is a possibly infinite set of strings over a finite alphabet Σ. We define Σ∗ as the set of all possible strings over some alphabet Σ. Thus L ⊆ Σ∗. The set of all possible languages over some alphabet Σ is the set of ∗ all possible subsets of Σ∗, i.e. 2Σ or ℘(Σ∗). This may seem rather simple, but is actually perfectly adequate for our purposes. 6.2 Grammars A grammar is a way to characterize a language L, a way to list out which strings of Σ∗ are in L and which are not. If L is finite, we could simply list 94 CHAPTER 6. FORMAL LANGUAGE THEORY 95 the strings, but languages by definition need not be finite. In fact, all of the languages we are interested in are infinite. This is, as we showed in chapter 2, also true of human language. Relating the material of this chapter to that of the preceding two, we can view a grammar as a logical system by which we can prove things.
    [Show full text]
  • Axiomatic Set Teory P.D.Welch
    Axiomatic Set Teory P.D.Welch. August 16, 2020 Contents Page 1 Axioms and Formal Systems 1 1.1 Introduction 1 1.2 Preliminaries: axioms and formal systems. 3 1.2.1 The formal language of ZF set theory; terms 4 1.2.2 The Zermelo-Fraenkel Axioms 7 1.3 Transfinite Recursion 9 1.4 Relativisation of terms and formulae 11 2 Initial segments of the Universe 17 2.1 Singular ordinals: cofinality 17 2.1.1 Cofinality 17 2.1.2 Normal Functions and closed and unbounded classes 19 2.1.3 Stationary Sets 22 2.2 Some further cardinal arithmetic 24 2.3 Transitive Models 25 2.4 The H sets 27 2.4.1 H - the hereditarily finite sets 28 2.4.2 H - the hereditarily countable sets 29 2.5 The Montague-Levy Reflection theorem 30 2.5.1 Absoluteness 30 2.5.2 Reflection Theorems 32 2.6 Inaccessible Cardinals 34 2.6.1 Inaccessible cardinals 35 2.6.2 A menagerie of other large cardinals 36 3 Formalising semantics within ZF 39 3.1 Definite terms and formulae 39 3.1.1 The non-finite axiomatisability of ZF 44 3.2 Formalising syntax 45 3.3 Formalising the satisfaction relation 46 3.4 Formalising definability: the function Def. 47 3.5 More on correctness and consistency 48 ii iii 3.5.1 Incompleteness and Consistency Arguments 50 4 The Constructible Hierarchy 53 4.1 The L -hierarchy 53 4.2 The Axiom of Choice in L 56 4.3 The Axiom of Constructibility 57 4.4 The Generalised Continuum Hypothesis in L.
    [Show full text]
  • Classical First-Order Logic Software Formal Verification
    Classical First-Order Logic Software Formal Verification Maria Jo~aoFrade Departmento de Inform´atica Universidade do Minho 2008/2009 Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 1 / 31 Introduction First-order logic (FOL) is a richer language than propositional logic. Its lexicon contains not only the symbols ^, _, :, and ! (and parentheses) from propositional logic, but also the symbols 9 and 8 for \there exists" and \for all", along with various symbols to represent variables, constants, functions, and relations. There are two sorts of things involved in a first-order logic formula: terms, which denote the objects that we are talking about; formulas, which denote truth values. Examples: \Not all birds can fly." \Every child is younger than its mother." \Andy and Paul have the same maternal grandmother." Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 2 / 31 Syntax Variables: x; y; z; : : : 2 X (represent arbitrary elements of an underlying set) Constants: a; b; c; : : : 2 C (represent specific elements of an underlying set) Functions: f; g; h; : : : 2 F (every function f as a fixed arity, ar(f)) Predicates: P; Q; R; : : : 2 P (every predicate P as a fixed arity, ar(P )) Fixed logical symbols: >, ?, ^, _, :, 8, 9 Fixed predicate symbol: = for \equals" (“first-order logic with equality") Maria Jo~aoFrade (DI-UM) First-Order Logic (Classical) MFES 2008/09 3 / 31 Syntax Terms The set T , of terms of FOL, is given by the abstract syntax T 3 t ::= x j c j f(t1; : : : ; tar(f)) Formulas The set L, of formulas of FOL, is given by the abstract syntax L 3 φ, ::= ? j > j :φ j φ ^ j φ _ j φ ! j t1 = t2 j 8x: φ j 9x: φ j P (t1; : : : ; tar(P )) :, 8, 9 bind most tightly; then _ and ^; then !, which is right-associative.
    [Show full text]
  • Chapter 10: Symbolic Trails and Formal Proofs of Validity, Part 2
    Essential Logic Ronald C. Pine CHAPTER 10: SYMBOLIC TRAILS AND FORMAL PROOFS OF VALIDITY, PART 2 Introduction In the previous chapter there were many frustrating signs that something was wrong with our formal proof method that relied on only nine elementary rules of validity. Very simple, intuitive valid arguments could not be shown to be valid. For instance, the following intuitively valid arguments cannot be shown to be valid using only the nine rules. Somalia and Iran are both foreign policy risks. Therefore, Iran is a foreign policy risk. S I / I Either Obama or McCain was President of the United States in 2009.1 McCain was not President in 2010. So, Obama was President of the United States in 2010. (O v C) ~(O C) ~C / O If the computer networking system works, then Johnson and Kaneshiro will both be connected to the home office. Therefore, if the networking system works, Johnson will be connected to the home office. N (J K) / N J Either the Start II treaty is ratified or this landmark treaty will not be worth the paper it is written on. Therefore, if the Start II treaty is not ratified, this landmark treaty will not be worth the paper it is written on. R v ~W / ~R ~W 1 This or statement is obviously exclusive, so note the translation. 427 If the light is on, then the light switch must be on. So, if the light switch in not on, then the light is not on. L S / ~S ~L Thus, the nine elementary rules of validity covered in the previous chapter must be only part of a complete system for constructing formal proofs of validity.
    [Show full text]
  • An Introduction to Formal Language Theory That Integrates Experimentation and Proof
    An Introduction to Formal Language Theory that Integrates Experimentation and Proof Allen Stoughton Kansas State University Draft of Fall 2004 Copyright °c 2003{2004 Allen Stoughton Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sec- tions, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled \GNU Free Documentation License". The LATEX source of this book and associated lecture slides, and the distribution of the Forlan toolset are available on the WWW at http: //www.cis.ksu.edu/~allen/forlan/. Contents Preface v 1 Mathematical Background 1 1.1 Basic Set Theory . 1 1.2 Induction Principles for the Natural Numbers . 11 1.3 Trees and Inductive De¯nitions . 16 2 Formal Languages 21 2.1 Symbols, Strings, Alphabets and (Formal) Languages . 21 2.2 String Induction Principles . 26 2.3 Introduction to Forlan . 34 3 Regular Languages 44 3.1 Regular Expressions and Languages . 44 3.2 Equivalence and Simpli¯cation of Regular Expressions . 54 3.3 Finite Automata and Labeled Paths . 78 3.4 Isomorphism of Finite Automata . 86 3.5 Algorithms for Checking Acceptance and Finding Accepting Paths . 94 3.6 Simpli¯cation of Finite Automata . 99 3.7 Proving the Correctness of Finite Automata . 103 3.8 Empty-string Finite Automata . 114 3.9 Nondeterministic Finite Automata . 120 3.10 Deterministic Finite Automata . 129 3.11 Closure Properties of Regular Languages .
    [Show full text]
  • Logic and Proof
    Logic and Proof Computer Science Tripos Part IB Michaelmas Term Lawrence C Paulson Computer Laboratory University of Cambridge [email protected] Copyright c 2000 by Lawrence C. Paulson Contents 1 Introduction and Learning Guide 1 2 Propositional Logic 3 3 Proof Systems for Propositional Logic 12 4 Ordered Binary Decision Diagrams 19 5 First-order Logic 22 6 Formal Reasoning in First-Order Logic 29 7 Clause Methods for Propositional Logic 34 8 Skolem Functions and Herbrand’s Theorem 42 9 Unification 49 10 Applications of Unification 58 11 Modal Logics 65 12 Tableaux-Based Methods 70 i ii 1 1 Introduction and Learning Guide This course gives a brief introduction to logic, with including the resolution method of theorem-proving and its relation to the programming language Prolog. Formal logic is used for specifying and verifying computer systems and (some- times) for representing knowledge in Artificial Intelligence programs. The course should help you with Prolog for AI and its treatment of logic should be helpful for understanding other theoretical courses. Try to avoid getting bogged down in the details of how the various proof methods work, since you must also acquire an intuitive feel for logical reasoning. The most suitable course text is this book: Michael Huth and Mark Ryan, Logic in Computer Science: Modelling and Reasoning about Systems (CUP, 2000) It costs £18.36 from Amazon. It covers most aspects of this course with the ex- ception of resolution theorem proving. It includes material that may be useful in Specification and Verification II next year, namely symbolic model checking.
    [Show full text]
  • Foundations of Mathematics
    Foundations of Mathematics Fall 2019 ii Contents 1 Propositional Logic 1 1.1 The basic definitions . .1 1.2 Disjunctive Normal Form Theorem . .3 1.3 Proofs . .4 1.4 The Soundness Theorem . 11 1.5 The Completeness Theorem . 12 1.6 Completeness, Consistency and Independence . 14 2 Predicate Logic 17 2.1 The Language of Predicate Logic . 17 2.2 Models and Interpretations . 19 2.3 The Deductive Calculus . 21 2.4 Soundness Theorem for Predicate Logic . 24 3 Models for Predicate Logic 27 3.1 Models . 27 3.2 The Completeness Theorem for Predicate Logic . 27 3.3 Consequences of the completeness theorem . 31 4 Computability Theory 33 4.1 Introduction and Examples . 33 4.2 Finite State Automata . 34 4.3 Exercises . 37 4.4 Turing Machines . 38 4.5 Recursive Functions . 43 4.6 Exercises . 48 iii iv CONTENTS Chapter 1 Propositional Logic 1.1 The basic definitions Propositional logic concerns relationships between sentences built up from primitive proposition symbols with logical connectives. The symbols of the language of predicate calculus are 1. Logical connectives: ,&, , , : _ ! $ 2. Punctuation symbols: ( , ) 3. Propositional variables: A0, A1, A2,.... A propositional variable is intended to represent a proposition which can either be true or false. Restricted versions, , of the language of propositional logic can be constructed by specifying a subset of the propositionalL variables. In this case, let PVar( ) denote the propositional variables of . L L Definition 1.1.1. The collection of sentences, denoted Sent( ), of a propositional language is defined by recursion. L L 1. The basis of the set of sentences is the set PVar( ) of propositional variables of .
    [Show full text]
  • Logic and Proof Release 3.18.4
    Logic and Proof Release 3.18.4 Jeremy Avigad, Robert Y. Lewis, and Floris van Doorn Sep 10, 2021 CONTENTS 1 Introduction 1 1.1 Mathematical Proof ............................................ 1 1.2 Symbolic Logic .............................................. 2 1.3 Interactive Theorem Proving ....................................... 4 1.4 The Semantic Point of View ....................................... 5 1.5 Goals Summarized ............................................ 6 1.6 About this Textbook ........................................... 6 2 Propositional Logic 7 2.1 A Puzzle ................................................. 7 2.2 A Solution ................................................ 7 2.3 Rules of Inference ............................................ 8 2.4 The Language of Propositional Logic ................................... 15 2.5 Exercises ................................................. 16 3 Natural Deduction for Propositional Logic 17 3.1 Derivations in Natural Deduction ..................................... 17 3.2 Examples ................................................. 19 3.3 Forward and Backward Reasoning .................................... 20 3.4 Reasoning by Cases ............................................ 22 3.5 Some Logical Identities .......................................... 23 3.6 Exercises ................................................. 24 4 Propositional Logic in Lean 25 4.1 Expressions for Propositions and Proofs ................................. 25 4.2 More commands ............................................
    [Show full text]
  • CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem
    CHAPTER 8 Hilbert Proof Systems, Formal Proofs, Deduction Theorem The Hilbert proof systems are systems based on a language with implication and contain a Modus Ponens rule as a rule of inference. They are usually called Hilbert style formalizations. We will call them here Hilbert style proof systems, or Hilbert systems, for short. Modus Ponens is probably the oldest of all known rules of inference as it was already known to the Stoics (3rd century B.C.). It is also considered as the most "natural" to our intuitive thinking and the proof systems containing it as the inference rule play a special role in logic. The Hilbert proof systems put major emphasis on logical axioms, keeping the rules of inference to minimum, often in propositional case, admitting only Modus Ponens, as the sole inference rule. 1 Hilbert System H1 Hilbert proof system H1 is a simple proof system based on a language with implication as the only connective, with two axioms (axiom schemas) which characterize the implication, and with Modus Ponens as a sole rule of inference. We de¯ne H1 as follows. H1 = ( Lf)g; F fA1;A2g MP ) (1) where A1;A2 are axioms of the system, MP is its rule of inference, called Modus Ponens, de¯ned as follows: A1 (A ) (B ) A)); A2 ((A ) (B ) C)) ) ((A ) B) ) (A ) C))); MP A ;(A ) B) (MP ) ; B 1 and A; B; C are any formulas of the propositional language Lf)g. Finding formal proofs in this system requires some ingenuity. Let's construct, as an example, the formal proof of such a simple formula as A ) A.
    [Show full text]
  • Languages and Regular Expressions Lecture 2
    Languages and Regular expressions Lecture 2 1 Strings, Sets of Strings, Sets of Sets of Strings… • We defined strings in the last lecture, and showed some properties. • What about sets of strings? CS 374 2 Σn, Σ*, and Σ+ • Σn is the set of all strings over Σ of length exactly n. Defined inductively as: – Σ0 = {ε} – Σn = ΣΣn-1 if n > 0 • Σ* is the set of all finite length strings: Σ* = ∪n≥0 Σn • Σ+ is the set of all nonempty finite length strings: Σ+ = ∪n≥1 Σn CS 374 3 Σn, Σ*, and Σ+ • |Σn| = ?|Σ |n • |Øn| = ? – Ø0 = {ε} – Øn = ØØn-1 = Ø if n > 0 • |Øn| = 1 if n = 0 |Øn| = 0 if n > 0 CS 374 4 Σn, Σ*, and Σ+ • |Σ*| = ? – Infinity. More precisely, ℵ0 – |Σ*| = |Σ+| = |N| = ℵ0 no longest • How long is the longest string in Σ*? string! • How many infinitely long strings in Σ*? none CS 374 5 Languages 6 Language • Definition: A formal language L is a set of strings 1 ε 0 over some finite alphabet Σ or, equivalently, an 2 0 0 arbitrary subset of Σ*. Convention: Italic Upper case 3 1 1 letters denote languages. 4 00 0 5 01 1 • Examples of languages : 6 10 1 – the empty set Ø 7 11 0 8 000 0 – the set {ε}, 9 001 1 10 010 1 – the set {0,1}* of all boolean finite length strings. 11 011 0 – the set of all strings in {0,1}* with an odd number 12 100 1 of 1’s.
    [Show full text]