Polycyclic Aromatic Hydrocarbons (Pahs) in Fired Clay Bricks Incorporating Cigarette Butts
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Reactivity and Functionalization of Naphthalene and Anthracene Complexes of {Tpw(NO)(Pme3)}
Reactivity and Functionalization of Naphthalene and Anthracene Complexes of {TpW(NO)(PMe3)} Laura Jessica Strausberg Baltimore, Maryland B.A., Hollins University, 2008 A Dissertation presented to the Graduate Faculty of the University of Virginia in Candidacy for the Degree of Doctor of Philosophy Department of Chemistry University of Virginia July, 2013 ii Abstract Chapter 1 introduces the organic chemistry of aromatic hydrocarbons, with attention paid to regiochemical outcomes of organic reactions. The binding of naphthalene and anthracene to metal complexes is discussed, along with organic transformations they undergo as a result of their complexation. The previous work on osmium and rhenium complexes of naphthalene from the Harman group is explored. Finally, some spectroscopic techniques for exploring the chemistry of {TpW(NO)(PMe3)} complexes of naphthalene and anthracene are introduced. Chapter 2 discusses the highly distorted allyl complexes formed from {TpW(NO)(PMe3)} and the exploration of their origin. Attempts at stereoselectively deprotonating these cationic complexes is also discussed. 2 Chapter 3 describes our study of TpW(NO)(PMe3)(3,4-η -naphthalene)’s ability to undergo a Diels-Alder reaction with N-methylmaleimide. A solvent study suggested that this reaction proceeds by a concerted mechanism. To probe the mechanism further, we synthesized a series of methylated and methoxylated naphthalene complexes and measured their rates of reaction with N-methylmaleimide compared to the parent complex. We found that 1- substitution on the naphthalene increased the rate of cycloaddition, even if the substituent was in the unbound ring, while 2-substitution slowed the reaction rate when in the bound ring. This information is consistent with a concerted mechanism, as a 2-substituted product would be less able to isomerize to form the active isomer for the cycloaddition to occur. -
PITT Research Brief Pyrolysis
POTENTIAL PFAS DESTRUCTION TECHNOLOGY: PYROLYSIS AND GASIFICATION In Spring 2020, the EPA established the PFAS Innovative Treatment Team (PITT). The PITT was a multi-disciplinary research team that worked full-time for 6-months on applying their scientific efforts and expertise to a single problem: disposal and/or destruction of PFAS- contaminated media and waste. While the PITT formally concluded in Fall 2020, the research efforts initiated under the PITT continue. As part of the PITT’s efforts, EPA researchers considered whether existing destruction technologies could be applied to PFAS-contaminated media and waste. This series of Research Briefs provides an overview of four technologies that were identified by the PITT as promising technologies Figure 1. Biosolids beneficial use. for destroying PFAS and the research underway by the readily available, cost effective, and produce little to no EPA’s Office of Research and Development to further hazardous residuals or byproducts. Pyrolysis and explore these technologies. Because research is still gasification have been identified as promising needed to evaluate these technologies for PFAS technologies that may be able to meet these destruction, this Research Brief should not be considered requirements with further development, testing, and an endorsement or recommendation to use this demonstrations. technology to destroy PFAS. Background Pyrolysis/Gasification: Technology Overview Pyrolysis is a process that decomposes materials at Various industries have produced and used per- and moderately elevated temperatures in an oxygen-free polyfluoroalkyl substances (PFAS) since the mid-20th environment. Gasification is similar to pyrolysis but uses century. PFAS are found in consumer and industrial small quantities of oxygen, taking advantage of the products, including non-stick coatings, waterproofing partial combustion process to provide the heat to materials, and manufacturing additives. -
Wood Products: Thermal Degradation and Fire
Wood Products: Thermal Degradation and off. The hemicelluloses and lignin components are pyrolyzed in the ranges 200-300°C and 225-450 °C, Fire respectively (see Wood, Constituents of). Much of the acetic acid liberated from wood pyrolysis is attributed Wood is a thermally degradable and combustible to deactylation of hemicellulose. Dehydration reac material. Applications range from a biomass provid tions around 200°C are primarily responsible for ing useful energy to a building material with unique pyrolysis of hemicellulose and lignin and results in a properties. Wood products can contribute to unwant high char yield for wood. Although cellulose remains ed fires and be destroyed as well. Minor amounts of mostly unpyrolyzed, its thermal degradation can be thermal degradation adversely affect structural pro accelerated in the presence of water, acids, and oxygen. perties. Therefore, knowledge of the thermal degrad As the temperature increases, the degree of poly ation and fire performance of wood can be critical in merization of cellulose decreases further, free radicals many applications. Chemical treatments are available appear, and carbonyl, carboxyl, and hydroperoxide to improve fire performance characteristics. groups are formed. Bryden (1998) assumed tar under- goes cracking to lighter gases and repolymerization to char while streaming through the hot charred residue. Overall pyrolysis reactions are endothermic due to 1. Thermal Degradation decreasing dehydration and increasing CO formation As wood reaches elevated temperatures, the different from porous char reactions with H2O and CO2 with chemical components undergo the thermal de- increasing temperature. During this “low-temperature gradation that affects the performance of wood. The pathway” of pyrolysis, exothermic reactions of ex- extent of the changes depends on the temperature level posed char and volatiles with atmospheric oxygen are and length of time under exposure conditions. -
Chapter 16 Liquid and Solids
Homework #2 Chapter 16 Liquid and Solids 7. Vapor Pressure: The pressure exerted by the vapor of a liquid when the vapor and the liquid are in dynamic equilibrium. The vapor pressure reflects the fact that within a system there is a distribution of energies that molecules can have, therefore, some molecules will have enough energy to overcome the intermolecular forces and enter into the gas phase. All liquids have some vapor pressure. The stronger the intermolecular forces the smaller the vapor pressure. All solids also have a vapor pressure. This is why if you leave ice in the freezer for a long time it “disappears.” The vapor pressure of solids is less than the vapor pressure of liquids. As the temperature increases the molecules have more energy, therefore, more molecules can escape into the gas phase (vapor pressure increases). When the vapor pressure is equal to the atmospheric pressure the solution boils. 9. a) Surface Tension As the intermolecular forces increase (↑), surface tension increases (↑). b) Viscosity As the intermolecular forces increase (↑), the viscosity increases (↑). c) Melting Point As the intermolecular forces increase (↑), the melting point increases (↑). d) Boiling Point As the intermolecular forces increase (↑), the boiling point increases (↑). e) Vapor Pressure As the intermolecular forces increase (↑), the vapor pressure decreases (↓). 11. Intermolecular Forces: The forces of attraction/repulsion between molecules. Intramolecular Forces: The forces of attraction/repulsion within a molecule. Intramolecular forces are stronger the intermolecular forces. Types of intermolecular forces: Dipole-Dipole Forces: The interaction between two electric dipoles in different molecules. Hydrogen Bonding: The attraction between a hydrogen atom (that is bonded to an O, N, or F atom) and an O, N, or F atom in a neighboring molecule. -
Pyrolysis Fuel Oil (PFO)
PRODUCT BACKGROUNDER Pyrolysis Fuel Oil (PFO) Important! For detailed information on this product and emergency measures, obtain the Canadian Safety Data Sheet (SDS)/ U.S. Safety Data Sheet (SDS). In the case of an emergency, please call our 24-hour hotline at 1-800-561-6682 or 1-403-314-8767. May also be called: PFO-Joffre, Heavy Fuel Oils Product/Substance Use: • This product is a complex mixture of naphthalene, polycyclic aromatic hydrocarbons, indene, and dicyclopentadiene, manufactured at NOVA Chemicals' Joffre, Alberta facility and shipped by railcar. • This product is used as chemical intermediate feedstock or industrial fuel. Characteristics and Safe Handling: • This product is a dark coloured, oily liquid with a pungent odour whose odour threshold is < 1 ppm. • This product is classified as a flammable liquid, health and environmental hazard in the workplace and as flammable for transportation. • Any equipment used in areas of handling or storage of the heated product must be approved for flammable liquids and properly grounded for control of static electricity. • If released from containment, product may be ignited by uncontrolled heat, sparks or flames. Containers exposed to fire conditions may explode. • Material burns readily when heated, and sparks or flames may ignite released hot liquids, vapours or mists. The vapor is heavier than air and may collect in low areas Ignition from a distant source with flashback is possible. • Any release to land or water must be isolated, controlled to avoid ignition, contained and recovered or cleaned up by properly trained and equipped personnel. Health and Safety Information: • Wear all recommended personal protective equipment if any contact with this material is likely. -
1983 Center for Fire Research Annual Conference on Fire Research
1983 CENTER FOR FIRE RESEARCH ANNUAL CONFERENCE ON FIRE RESEARCH (Summaries of Research Grants and CFR In-House Programs) August 23-25, 1983 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Washington, D.C. 20234 July 1983 Preprint of the 1983 Center for Fire Research Annual Conference on Fire Research to be Held August 23-25, 1983 QC 100 .U56 #82-2612- 1983 CENTER FOR FIRE RESEARCH ANNUAL CONFERENCE ON FIRE RESEARCH (Summaries of Research Grants and CFR In-House Programs) August 23-25, 1983 U.S. DEPARTMENT OF COMMERCE National Bureau of Standards National Engineering Laboratory Center for Fire Research Washington, D.C. 20234 July 1983 Malcolm Baldrige, Secretary of Commerce Ernest Ambler, Director, National Bureau of Standards Preprint of the 1983 Center for Fire Research Annual Conference on Fire Research to be Held August 23-25, 1983 — FOREWORD The Seventh Annual Conference on Fire Research honors Professor Howard Emmons who retires from Harvard University this year. Professor Emmons has provided leadership and inspiration to many in this field as attested by the breadth and depth of the topics in the conference modeling of fire growth, flame phenomena and spread, diffusion flames and radiation, fire plumes , extinction and suppression— and the contributions of those he has taught. Howard Emmons has demonstrated the viability of scientifically based fire protection engineering practice. Of course, much remains to be done. The conference program and papers (to be published separately) provide a good indication of where we are in a numoer or crt-txcal areas of tare science. -
Determination of Petroleum Hydrocarbons in Sediments
UNITED NATIONS ENVIRONMENT PROGRAMME NOVEMBER 1992 Determination of petroleum hydrocarbons in sediments Reference Methods For Marine Pollution Studies No. 20 Prepared in co-operation with IOC IAEA UNEP 1992 ~ i - PREFACE The Regional Seas Programme was initiated by UNEP in 1974. Since then the Governing Conncil ofUNEP has repeatedly endorsed a regional approach to the control of marine pollution and the management of marine and coastal resources and has requested the development of regional action plans. The Regional Seas Progranune at present includes ten regions and has over 120 coastal States participating in it (1),(2). One of the basic components of the action plans sponsored by UNEP in the framework of the Regional Seas Programme is the assessment of the state of the marine em~ronment and of its resources, and of the sources and trends of the pollution, and the impact of pollution on human health, marine ecosystems and amenities. In order to assist those participating in this activity and to ensure that the data obtained through this assessment can be compared. on a world-wide basis and thns contribute to the Global Environment Monitoring System (GEMS) of UNEP, a set of Reference Methods and Guidelines for marine pollution studies is being developed as part of a programme of c9mprehensive technical support which includes the provision of expert advice, reference methods and materials, training and data quality assurance (3). The Methods are recommended to be adopted by Governments participating in tbe Regional Seas Programme. The methods and guidelines are prepared in co-operation with the relevant specialized bodies of the United Nations system as well as other organizations and are tested by a number of experts competent in the field relevant to the methods described. -
Toxicity of the Pyrolysis and Combustion Products of Poly (Vinyl Chlorides): a Literature Assessment
FIRE AND MATERIALS VOL. II, 131-142 (1987) Toxicity of the Pyrolysis and Combustion Products of Poly (Vinyl Chlorides): A Literature Assessment Clayton Huggett and Barbara C. Levin* us Department of Commerce, National Bureau of Standards, National Engineering Laboratory, Center for Fire Research, Gaithersburg, MD 20899, USA Poly(vinyl chlorides) (PVC) constitute a major class of synthetic plastics. Many surveys of the voluminous literature have been performed. This report reviews the literature published in English from 1969 through 1984 and endeavors to be more interpretive than comprehensive. pve compounds, in general, are among the more fire resistant common organic polymers, natural or synthetic. The major products of thermal decomposition include hydrogen chloride, benzene and unsaturated hydrocarbons. In the presence of oxygen, carbon monoxide, carbon dioxide and water are included among the common combustion products. The main toxic products from PVC fires are hydrogen chloride (a sensory and pulmonary irritant) and carbon monoxide (an asphyxiant). The LCso values calculated for a series of natural and synthetic materials thermally decomposed according to the NBS toxicity test method ranged from 0.045 to 57 mgl-l in the flaming mode and from 0.045 to > 40mgl-l in the non-flaming mode. The LCso results for a PVC resin decomposed under the same conditions were 17 mg 1- 1 in the flaming mode and 20 mg 1- 1 in the non-flaming mode. These results indicate that PVC decomposition products are not extremely toxic when compared with those from other common building materials. When the combustion toxicity (based on their HCI content) of PVC materials is compared with pure HCI experiments, it appears that much of the post-exposure toxicity can be explained by the HCI tha t is genera ted. -
WHO Guidelines for Indoor Air Quality : Selected Pollutants
WHO GUIDELINES FOR INDOOR AIR QUALITY WHO GUIDELINES FOR INDOOR AIR QUALITY: WHO GUIDELINES FOR INDOOR AIR QUALITY: This book presents WHO guidelines for the protection of pub- lic health from risks due to a number of chemicals commonly present in indoor air. The substances considered in this review, i.e. benzene, carbon monoxide, formaldehyde, naphthalene, nitrogen dioxide, polycyclic aromatic hydrocarbons (especially benzo[a]pyrene), radon, trichloroethylene and tetrachloroethyl- ene, have indoor sources, are known in respect of their hazard- ousness to health and are often found indoors in concentrations of health concern. The guidelines are targeted at public health professionals involved in preventing health risks of environmen- SELECTED CHEMICALS SELECTED tal exposures, as well as specialists and authorities involved in the design and use of buildings, indoor materials and products. POLLUTANTS They provide a scientific basis for legally enforceable standards. World Health Organization Regional Offi ce for Europe Scherfi gsvej 8, DK-2100 Copenhagen Ø, Denmark Tel.: +45 39 17 17 17. Fax: +45 39 17 18 18 E-mail: [email protected] Web site: www.euro.who.int WHO guidelines for indoor air quality: selected pollutants The WHO European Centre for Environment and Health, Bonn Office, WHO Regional Office for Europe coordinated the development of these WHO guidelines. Keywords AIR POLLUTION, INDOOR - prevention and control AIR POLLUTANTS - adverse effects ORGANIC CHEMICALS ENVIRONMENTAL EXPOSURE - adverse effects GUIDELINES ISBN 978 92 890 0213 4 Address requests for publications of the WHO Regional Office for Europe to: Publications WHO Regional Office for Europe Scherfigsvej 8 DK-2100 Copenhagen Ø, Denmark Alternatively, complete an online request form for documentation, health information, or for per- mission to quote or translate, on the Regional Office web site (http://www.euro.who.int/pubrequest). -
FID Vs PID: the Great Debate
5/5/2017 FID vs PID: The Great Debate 2017 Geotechnical, GeoEnvironmental, and Geophysical Technology Transfer April 11, 2017 Raleigh, NC Why is it Important? As consultants, we are expected to produce data that is Reliable Repeatable Representative Defensible We can only meet these criteria if we understand the instruments we use and their limitations 1 5/5/2017 PID=Photo Ionization Detector Non-destructive to the sample Responds to functional groups Can operate in non-oxygen atmosphere Does not respond to methane Affected by high humidity FID=Flame Ionization Detector Destructive to the sample Responds to carbon chain length Must have oxygen to operate Responds to methane Not affected by high humidity 2 5/5/2017 Combination FID/PID TVA 1000B Main Concepts Ionization Energy Minimum amount of energy required to remove an electron from an atom or molecule in a gaseous state Response Factors The response factor is a calculated number provided by the instrument manufacturer for each compound, which is used to calculate the actual concentration of said compound in relation to the calibration gas. 3 5/5/2017 Ionization Energy Basis for FID/PID operations and measurement Measurements are in electron volts (eV) Ionization in a PID Energy source for ionization with PID is an ultraviolet light Three UV lamp energies are used: 9.5 eV, 10.6 eV, and 11.7 eV The higher the lamp energy, the greater the number of chemicals that can be detected. Detection range of 0.1 to 10,000 ppm 4 5/5/2017 Ionization in a FID Energy source for ionization -
Fire Deaths and Toxic Gases Ization and the Development of Separate Tests in Germany, France, Japan and from Barbara Chernov Levin Belgium
18 News& Views Nature Vol. 300 4 November 1982 International Organization for Standard Fire deaths and toxic gases ization and the development of separate tests in Germany, France, Japan and from Barbara Chernov Levin Belgium. All these tests provide information on AMoNG the industrialized countries which of Utah7 and suggests the need for an the acute toxicity resulting from the record statistics on fires, the United States animal testing system - conventional inhalation of combustion products, but has the most fires per capita. The rate of chemical techniques would have failed to each test is performed in different labor fire death in the United States is almost detect such an unusual toxic product. atory decomposition conditions. The tests twice the international average and is sur Moreover, scientists at the National do not address the problem of the total passed only by Canada 1 • In 1979, approxi Bureau of Standards have found that car toxic hazard which a fire produces or the mately 7,800 people died and another bon monoxide concentrations measured at contribution of a material (or product in its 2 31,000 were reported injured • Direct the LC50 of twelve thermally decomposed actual end use) to that hazard under a 'real dollar loss was greater than $5 billion, but materials were 60-4,400 p.p.m., whereas fire' situation. Nonetheless, some building when indirect costs (meeting fire codes, the LC50 of pure carbon monoxide was code officials and state regulators are installing fire protection systems, support 5,000 p.p.m. The LC50 here measures the anxious to evaluate the combustion ing fire departments and insuring property) amount of material necessary to kill 50 per product toxicity of materials and are exam are included in this calculation, the annual cent of the rats exposed for 30 min. -
Toxicological Profile for Naphthalene, 1
NAPHTHALENE, 1-METHYLNAPHTHALENE, AND 2-METHYLNAPHTHALENE 1 1. PUBLIC HEALTH STATEMENT This public health statement tells you about naphthalene, 1-methylnaphthalene, and 2-methyl- naphthalene and the effects of exposure to these chemicals. The Environmental Protection Agency (EPA) identifies the most serious hazardous waste sites in the nation. These sites are then placed on the National Priorities List (NPL) and are targeted for long-term federal clean-up activities. Naphthalene, 1-methylnaphthalene, and 2-methyl- naphthalene have been found in at least 654, 36, and 412, respectively, of the 1,662 current or former NPL sites. Although the total number of NPL sites evaluated for these substances is not known, the possibility exists that the number of sites at which naphthalene, 1-methylnaphthalene, and 2-methylnaphthalene are found may increase in the future as more sites are evaluated. This information is important because these sites may be sources of exposure and exposure to these substances may harm you. When a substance is released either from a large area, such as an industrial plant, or from a container, such as a drum or bottle, it enters the environment. Such a release does not always lead to exposure. You can be exposed to a substance only when you come in contact with it. You may be exposed by breathing, eating, or drinking the substance, or by skin contact. If you are exposed to naphthalene, 1-methylnaphthalene, or 2-methylnaphthalene, many factors will determine whether you will be harmed. These factors include the dose (how much), the duration (how long), and how you come in contact with them.