Dissertation the Distribution of Lotic Insect Traits in Relation to Reference Conditions and Projected Climate Change in the We

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation the Distribution of Lotic Insect Traits in Relation to Reference Conditions and Projected Climate Change in the We DISSERTATION THE DISTRIBUTION OF LOTIC INSECT TRAITS IN RELATION TO REFERENCE CONDITIONS AND PROJECTED CLIMATE CHANGE IN THE WESTERN UNITED STATES Submitted by Matthew Ivern Pyne Graduate Degree Program in Ecology In partial fulfillment of the requirements For the Degree of Doctor of Philosophy Colorado State University Fort Collins, Colorado Summer 2014 Doctoral Committee: Advisor: N. LeRoy Poff Brian P. Bledsoe Jennifer A. Hoeting Colleen T. Webb Copyright by Matthew Ivern Pyne 2014 All Rights Reserved ABSTRACT THE DISTRIBUTION OF LOTIC INSECT TRAITS IN RELATION TO REFERENCE CONDITIONS AND PROJECTED CLIMATE CHANGE IN THE WESTERN UNITED STATES The use of species traits (e.g., life history, morphological, physiological, or ecological characteristics of an organism) to describe community responses to environmental change has become a common practice in stream ecosystems, with over 900 papers describing macroinvertebrate trait-environment relationships in streams. The use of traits provides some advantages over traditional taxonomic metrics, such as providing a mechanistic link between an organism and its environment, but also presents some challenges, such as many traits being correlated with other traits and multiple environmental variables. Various methods have been recommended to address these challenges, such as using multiple traits, posing a priori hypotheses, and evaluating streams across large-spatial scales. The vast majority of studies have not incorporated these recommendations, however, particularly in North America. My research had two general objectives: 1) describe the dominant trait-environmental relationships in natural streams in the western United States and 2) use two distinct traits-based methods to evaluate how stream aquatic insect communities are currently distributed in terms of multiple environmental variables and how species and communities may respond to climate change. Traits are often used to evaluate the ecological integrity of streams and a baseline understanding of aquatic insect trait-environment relationships is needed for the western United States. I used logistic regression, multinomial regression, and redundancy analysis to explore the ii relationships between 20 trait distributions and 83 environmental variables in 253 least-disturbed streams across 12 western states. Traits had the strongest relationships with regional climate and local stream habitat conditions (e.g., air temperature, conductivity, mean annual runoff) rather than elevation, land use, or measures of extreme hydrological events. Traits such as thermal tolerance, size, swimming strength, rheophily, voltinism, and armoring exhibited strong relationships with the environmental data and would be ideal for large-scale stream assessments. Aquatic insect communities contain many taxa that are sensitive to temperature increases and changes to runoff. Two traits, cold water preference and erosional obligate (i.e., needs to live in fast-water habitat) have been used in the past to estimate the effect of climate change on stream insect communities, but no study has accounted for both climatic and non-climatic effects on these two traits. I developed a Bayesian path analysis describing how the distributions of these two traits respond to multiple environmental gradients, not just temperature, and discovered that the distribution of cold-adapted taxa was strongly correlated with changes in air temperature in the wet, cool ecoregions, but was correlated with thermal buffers and refuges in most dry, warm ecoregions, indicating that temperature-sensitive taxa are likely on the brink of their thermal tolerance in those ecoregions. A second approach to assess community sensitivity to climate change is to determine the specific thermal tolerance of each taxon individually. I computed the thermal and stream runoff thresholds of common stream taxa and compared the World Climate Research Programme’s climate model predictions to these thresholds. I found that the stream communities most at risk to climate change were found in some dry ecoregions, concurring with the previous results, and in wet, warm ecoregions with a high proportion of spatially restricted and endemic taxa, such as northern California. These two approaches describe possible mechanisms of climate change resistance and identify sensitive ecoregions. iii ACKNOWLEDGEMENTS The research in my dissertation was made possible through the Edward and Phyllis Reed Fellowship from the Department of Biology, Colorado State University. A. T. Herlihy provided the WEMAP data, Christopher Cuhaciyan and Dan Baker developed of catchment and valley variables, and Daren Carlisle developed of the hydrology variables used in this document. I thank them for their contributions. I thank the modeling groups, Program for Climate Model Diagnosis and Intercomparison (PCMDI), and WCRP's Working Group on Coupled Modelling (WGCM) for the development, archiving, and organization of the climate models. I thank my committee chair and advisor, N. LeRoy Poff, for his guiding hand in my development as a scientist. Thank you for your advice, support, and collaboration. I would also like to thank my committee members, Brian Bledsoe, Jennifer Hoeting, and Colleen Webb, for their involvement in my degree, readily available counsel, and enthusiasm. Additionally, I thank Janice Moore and Paul Doherty for your friendship and genuine interest in me and my career. My labmates have provided many hours of consultation, commiseration, and cheer. Thank you, Julia McCarthy, Angie Moline, Julie Zimmerman, Dan Auerbach, Thomas Wilding, Ryan McShane, Kevin McCluney, David Martin, Rachel Harrington, Carolina Gutierrez, and Audrey Maheu, for all the great conversations and collaborations. I thank my family; you have been my anchor in this endeavor. My parents, in-laws, and siblings have provided so much emotional and temporal support I will never be able to repay. I am certain my children, Alexis, Nathan, Bryce, and Juliette, added at least 2 years to my PhD, but it has been worth every minute. Bekah, you make my life a joy every day and I couldn’t have done this without you. Finally, I thank my Heavenly Father for His love and guidance. iv TABLE OF CONTENTS ABSTRACT .................................................................................................................................... ii ACKNOWLEDGEMENTS ........................................................................................................... iv TABLE OF CONTENTS ................................................................................................................ v CHAPTER 1: THE USE OF MACROINVERTEBRATE TRAITS IN LOTIC SYSTEMS: A SHORT REVIEW OF THE HISTORY OF TRAIT RESEARCH IN STREAMS AND AN ASSESSMENT OF STUDY CHARACTERISTICS ..................................................................... 1 Summary ..................................................................................................................................... 1 Introduction ................................................................................................................................. 2 Advantages, challenges, and recommendations of trait research in streams .............................. 8 Review of Studies...................................................................................................................... 13 LITERATURE CITED ............................................................................................................. 24 CHAPTER 2: LOTIC INSECT TRAIT-ENVIRONMENT RELATIONSHIPS IN REFERENCE STREAMS ACROSS THE WESTERN UNITED STATES ............................... 35 Summary ................................................................................................................................... 35 Introduction ............................................................................................................................... 36 Methods ..................................................................................................................................... 40 Environmental variables ........................................................................................................ 42 Trait data ............................................................................................................................... 51 Statistical analyses ................................................................................................................ 54 A priori predictions and literature review ............................................................................. 57 Results ....................................................................................................................................... 66 1. Detecting response of single trait states ............................................................................ 66 2. Detecting shifts in multiple state distributions within a single trait .................................. 71 3. Detecting correlations between multiple traits and multiple environmental variables. ... 77 Discussion ................................................................................................................................. 79 Trait categorization ............................................................................................................... 87 Scales of traits-based bioassessment ..................................................................................... 88 LITERATURE CITED ............................................................................................................
Recommended publications
  • Aquatic Insects Are Dramatically Underrepresented in Genomic Research
    insects Communication Aquatic Insects Are Dramatically Underrepresented in Genomic Research Scott Hotaling 1,* , Joanna L. Kelley 1 and Paul B. Frandsen 2,3,* 1 School of Biological Sciences, Washington State University, Pullman, WA 99164, USA; [email protected] 2 Department of Plant and Wildlife Sciences, Brigham Young University, Provo, UT 84062, USA 3 Data Science Lab, Smithsonian Institution, Washington, DC 20002, USA * Correspondence: [email protected] (S.H.); [email protected] (P.B.F.); Tel.: +1-(828)-507-9950 (S.H.); +1-(801)-422-2283 (P.B.F.) Received: 20 August 2020; Accepted: 3 September 2020; Published: 5 September 2020 Simple Summary: The genome is the basic evolutionary unit underpinning life on Earth. Knowing its sequence, including the many thousands of genes coding for proteins in an organism, empowers scientific discovery for both the focal organism and related species. Aquatic insects represent 10% of all insect diversity, can be found on every continent except Antarctica, and are key components of freshwater ecosystems. However, aquatic insect genome biology lags dramatically behind that of terrestrial insects. If genomic effort was spread evenly, one aquatic insect genome would be sequenced for every ~9 terrestrial insect genomes. Instead, ~24 terrestrial insect genomes have been sequenced for every aquatic insect genome. A lack of aquatic genomes is limiting research progress in the field at both fundamental and applied scales. We argue that the limited availability of aquatic insect genomes is not due to practical limitations—small body sizes or overly complex genomes—but instead reflects a lack of research interest. We call for targeted efforts to expand the availability of aquatic insect genomic resources to empower future research.
    [Show full text]
  • Impacts of a Novel Predator on Aquatic Invertebrates in Fishless Lakes: Implications for Conservation Translocations
    Impacts of a novel predator on aquatic invertebrates in fishless lakes: Implications for conservation translocations by Allison L K Banting A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Conservation Biology Department of Renewable Resources University of Alberta © Allison L K Banting, 2018 ABSTRACT Fishless mountain lakes hold important ecological and conservation value. As such, managers are establishing conservation goals (e.g., non-native fish removal) to restore the naturalness to many of these lakes. Managers who are recovering native coldwater fish populations threatened by climate change (e.g., Westslope Cutthroat Trout, Oncorhynchus clarki lewisi and Bull Trout, Salvelinus confluentus) are simultaneously exploring conservation strategies involving the intentional translocation of native fish species to more suitable areas. These areas include unoccupied, or naturally fishless, stream and lake habitat within their native range or favorable habitats outside their native range. This action presents a potential threat for fishless mountain lakes as conservation managers view these as recovery habitat for imperiled native fish species. The purpose of my study was to inform native fish recovery efforts by assessing the potential consequences of translocating native fishes to naturally fishless lakes, thus outside their historic distribution. Forty alpine and sub-alpine lakes in Banff National Park, Alberta and Kootenay National Park, British Columbia were sampled and divided into three lake types, including: 13 naturally fishless lakes, 13 native fish-bearing or native fish-stocked lakes, and 14 non-native fish-stocked lakes historically unoccupied by fish. Littoral invertebrate community composition (presence or absence), density and diversity were examined among lake types to 1) quantify the impacts of introducing non-native fishes into historically fishless lakes, and 2) quantify the differences between native fish lakes and naturally fishless lakes.
    [Show full text]
  • In Baltic Amber 85
    Overview and descriptions of fossil stoneflies (Plecoptera) in Baltic amber 85 Entomologie heute 22 (2010): 85-97 Overview and Descriptions of Fossil Stoneflies (Plecoptera) in Baltic Amber Übersicht und Beschreibungen von fossilen Steinfliegen (Plecoptera) im Baltischen Bernstein CELESTINE CARUSO & WILFRIED WICHARD Summary: Three new fossil species of stoneflies (Plecoptera: Nemouridae and Leuctridae) from Eocene Baltic amber are being described: Zealeuctra cornuta n. sp., Lednia zilli n. sp., and Podmosta attenuata n. sp.. Extant species of these three genera are found in Eastern Asia and in the Nearctic region. It is very probably that the genera must have been widely spread across the northern hemisphere in the Cretaceous period, before Europe was an archipelago in Eocene. The current state of knowledge about the seventeen Plecoptera species of Baltic amber is shortly presented. Due to discovered homonymies, the following nomenclatural corrections are proposed: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 and Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010. Keywords: Fossil insects, fossil Plecoptera, Eocene, paleobiogeography Zusammenfassung: In dieser Arbeit werden drei neue fossile Steinfliegen-Arten (Plecoptera: Nemouridae und Leuctridae) des Baltischen Bernsteins beschrieben: Zealeuctra cornuta n. sp., Lednia zilli n. sp., Podmosta attenuata n. sp.. Rezente Arten der drei Gattungen sind in Ostasien und in der nearktischen Region nachgewiesen. Sehr wahrscheinlich breiteten sich die Gattungen in der Krei- dezeit über die nördliche Hemisphäre aus, noch bevor Europa im Eozän ein Archipel war. Der gegenwärtige Kenntnisstand über die siebzehn Plecoptera Arten des Baltischen Bernsteins wird kurz dargelegt. Wegen bestehender Homonymien werden folgende nomenklatorische Korrekturen vorgenommen: Leuctra fusca Pictet, 1856 in Leuctra electrofusca Caruso & Wichard, 2010 und Nemoura affinis Berendt, 1856 in Nemoura electroaffinis Caruso & Wichard, 2010.
    [Show full text]
  • 2010 Animal Species of Concern
    MONTANA NATURAL HERITAGE PROGRAM Animal Species of Concern Species List Last Updated 08/05/2010 219 Species of Concern 86 Potential Species of Concern All Records (no filtering) A program of the University of Montana and Natural Resource Information Systems, Montana State Library Introduction The Montana Natural Heritage Program (MTNHP) serves as the state's information source for animals, plants, and plant communities with a focus on species and communities that are rare, threatened, and/or have declining trends and as a result are at risk or potentially at risk of extirpation in Montana. This report on Montana Animal Species of Concern is produced jointly by the Montana Natural Heritage Program (MTNHP) and Montana Department of Fish, Wildlife, and Parks (MFWP). Montana Animal Species of Concern are native Montana animals that are considered to be "at risk" due to declining population trends, threats to their habitats, and/or restricted distribution. Also included in this report are Potential Animal Species of Concern -- animals for which current, often limited, information suggests potential vulnerability or for which additional data are needed before an accurate status assessment can be made. Over the last 200 years, 5 species with historic breeding ranges in Montana have been extirpated from the state; Woodland Caribou (Rangifer tarandus), Greater Prairie-Chicken (Tympanuchus cupido), Passenger Pigeon (Ectopistes migratorius), Pilose Crayfish (Pacifastacus gambelii), and Rocky Mountain Locust (Melanoplus spretus). Designation as a Montana Animal Species of Concern or Potential Animal Species of Concern is not a statutory or regulatory classification. Instead, these designations provide a basis for resource managers and decision-makers to make proactive decisions regarding species conservation and data collection priorities in order to avoid additional extirpations.
    [Show full text]
  • Nanonemoura, a New Stonefly Genus from the Columbia River Gorge, Oregon (Plecoptera: Nemouridae)
    Western North American Naturalist Volume 61 Number 4 Article 3 11-15-2001 Nanonemoura, a new stonefly genus from the Columbia River Gorge, Oregon (Plecoptera: Nemouridae) R. W. Baumann Brigham Young University G.R. Fiala Gresham, Oregon Follow this and additional works at: https://scholarsarchive.byu.edu/wnan Recommended Citation Baumann, R. W. and Fiala, G.R. (2001) "Nanonemoura, a new stonefly genus from the Columbia River Gorge, Oregon (Plecoptera: Nemouridae)," Western North American Naturalist: Vol. 61 : No. 4 , Article 3. Available at: https://scholarsarchive.byu.edu/wnan/vol61/iss4/3 This Article is brought to you for free and open access by the Western North American Naturalist Publications at BYU ScholarsArchive. It has been accepted for inclusion in Western North American Naturalist by an authorized editor of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Western North American Naturalist 61(4), © 2001, pp. 403–408 NANONEMOURA, A NEW STONEFLY GENUS FROM THE COLUMBIA RIVER GORGE, OREGON (PLECOPTERA: NEMOURIDAE) R.W. Baumann1 and G.R. Fiala2 ABSTRACT.—Nanonemoura, a new genus of Nearctic Nemouridae, is described to accommodate Nemoura wahkeena Jewett. New descriptions and illustrations are provided for the adult male, adult female, and nymph collected at Wah- keena Spring, Columbia River George, Oregon. A diagnosis is furnished to distinguish the new genus from related gen- era of the subfamily Nemourinae. Key words: Plecoptera, Nemouridae, Nanonemoura, Columbia River Gorge, Oregon. Nearly 50 years ago Jewett (1954) named a nymph of this species. We discovered that the nemourid species from the Columbia River species does not live in the falls or even in the Gorge.
    [Show full text]
  • Invertebrates
    State Wildlife Action Plan Update Appendix A-5 Species of Greatest Conservation Need Fact Sheets INVERTEBRATES Conservation Status and Concern Biology and Life History Distribution and Abundance Habitat Needs Stressors Conservation Actions Needed Washington Department of Fish and Wildlife 2015 Appendix A-5 SGCN Invertebrates – Fact Sheets Table of Contents What is Included in Appendix A-5 1 MILLIPEDE 2 LESCHI’S MILLIPEDE (Leschius mcallisteri)........................................................................................................... 2 MAYFLIES 4 MAYFLIES (Ephemeroptera) ................................................................................................................................ 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ............................................................................................................ 4 [unnamed] (Paraleptophlebia jenseni) ............................................................................................................ 4 [unnamed] (Siphlonurus autumnalis) .............................................................................................................. 4 [unnamed] (Cinygmula gartrelli) .................................................................................................................... 4 [unnamed] (Paraleptophlebia falcula) ...........................................................................................................
    [Show full text]
  • Microsoft Outlook
    Joey Steil From: Leslie Jordan <[email protected]> Sent: Tuesday, September 25, 2018 1:13 PM To: Angela Ruberto Subject: Potential Environmental Beneficial Users of Surface Water in Your GSA Attachments: Paso Basin - County of San Luis Obispo Groundwater Sustainabilit_detail.xls; Field_Descriptions.xlsx; Freshwater_Species_Data_Sources.xls; FW_Paper_PLOSONE.pdf; FW_Paper_PLOSONE_S1.pdf; FW_Paper_PLOSONE_S2.pdf; FW_Paper_PLOSONE_S3.pdf; FW_Paper_PLOSONE_S4.pdf CALIFORNIA WATER | GROUNDWATER To: GSAs We write to provide a starting point for addressing environmental beneficial users of surface water, as required under the Sustainable Groundwater Management Act (SGMA). SGMA seeks to achieve sustainability, which is defined as the absence of several undesirable results, including “depletions of interconnected surface water that have significant and unreasonable adverse impacts on beneficial users of surface water” (Water Code §10721). The Nature Conservancy (TNC) is a science-based, nonprofit organization with a mission to conserve the lands and waters on which all life depends. Like humans, plants and animals often rely on groundwater for survival, which is why TNC helped develop, and is now helping to implement, SGMA. Earlier this year, we launched the Groundwater Resource Hub, which is an online resource intended to help make it easier and cheaper to address environmental requirements under SGMA. As a first step in addressing when depletions might have an adverse impact, The Nature Conservancy recommends identifying the beneficial users of surface water, which include environmental users. This is a critical step, as it is impossible to define “significant and unreasonable adverse impacts” without knowing what is being impacted. To make this easy, we are providing this letter and the accompanying documents as the best available science on the freshwater species within the boundary of your groundwater sustainability agency (GSA).
    [Show full text]
  • A Remarkable New Genus and Species of Nemourinae (Plecoptera, Nemouridae) from Sichuan, China, with Systematic Notes on the Related Genera
    RESEARCH ARTICLE A remarkable new genus and species of Nemourinae (Plecoptera, Nemouridae) from Sichuan, China, with systematic notes on the related genera 1,2 3 3 1 2 RaoRao Mo , Maribet GamboaID , Kozo Watanabe , GuoQuan Wang *, WeiHai Li *, 4 5,6 Ding Yang , DaÂvid MuraÂnyiID * a1111111111 1 Guangxi Key Laboratory of Agric-Environment and Agric-Products Safety, Agricultural College, Guangxi University, Nanning, Guangxi, China, 2 Department of Plant Protection, Henan Institute of Science and a1111111111 Technology, Xinxiang, Henan, China, 3 Department of Civil and Environmental Engineering, Ehime a1111111111 University, Matsuyama, Japan, 4 Department of Entomology, China Agricultural University, Beijing, China, a1111111111 5 Department of Zoology, EszterhaÂzy KaÂroly University, Eger, Hungary, 6 Department of Zoology, Hungarian a1111111111 Natural History Museum, Budapest, Hungary * [email protected] (GQW); [email protected] (WHL); [email protected] (DM) OPEN ACCESS Abstract Citation: Mo R, Gamboa M, Watanabe K, Wang G, Li W, Yang D, et al. (2020) A remarkable new A remarkable new genus and species of Nemourinae, Sinonemura balangshana gen. et sp. genus and species of Nemourinae (Plecoptera, n., is described from Balang Mountains, Sichuan, southwestern China. The description is Nemouridae) from Sichuan, China, with systematic based on morphology and molecular data. The Nemourinae genera related to the new taxon notes on the related genera. PLoS ONE 15(3): are re-evaluated on the basis of comparative functional morphology of male epiproct. Notes e0229120. https://doi.org/10.1371/journal. pone.0229120 on the Asian distribution of the Nemourinae are also given. Editor: Michael Schubert, Laboratoire de Biologie du DeÂveloppement de Villefranche-sur-Mer, FRANCE Introduction Received: August 6, 2019 The forestfly genus Nemoura Latreille, 1796 [1] is one of the most species-rich genera among Accepted: January 29, 2020 the stoneflies (Plecoptera), and is widely distributed in running waters of Holarctic and Orien- Published: March 4, 2020 tal regions.
    [Show full text]
  • New Distributional Data for the Northern Forestfly, Lednia Borealis Baumann and Kondratieff, 2010
    bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428104; this version posted January 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 New distributional data for the northern forestfly, Lednia borealis Baumann and Kondratieff, 2010 2 (Plecoptera: Nemouridae), Washington, USA 3 Candace E. Fallon1, Emilie Blevins1, Michele Blackburn1, Taylor B. Cotten2, and Derek W. Stinson2 4 Affiliations: 5 1The Xerces Society for Invertebrate Conservation, Portland, OR, USA; 6 [email protected] (https://orcid.org/0000-0002-6100-6436) 7 [email protected] (https://orcid.org/0000-0003-4252-7620) 8 [email protected] (https://orcid.org/0000-0003-4962-6234) 9 2Washington Department of Fish and Wildlife, Olympia, WA, USA; 10 [email protected] 11 [email protected] 12 Correspondence: Candace E. Fallon, The Xerces Society for Invertebrate Conservation, 628 NE Broadway 13 St, Suite 200, Portland, OR 97232 USA; Phone: (503) 232-6639; Email: [email protected] 14 Running head: Lednia borealis distribution in Washington 15 bioRxiv preprint doi: https://doi.org/10.1101/2021.01.25.428104; this version posted January 27, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.
    [Show full text]
  • Ephemeroptera, Plecoptera, Megaloptera, and Trichoptera of Great Smoky Mountains National Park
    The Great Smoky Mountains National Park All Taxa Biodiversity Inventory: A Search for Species in Our Own Backyard 2007 Southeastern Naturalist Special Issue 1:159–174 Ephemeroptera, Plecoptera, Megaloptera, and Trichoptera of Great Smoky Mountains National Park Charles R. Parker1,*, Oliver S. Flint, Jr.2, Luke M. Jacobus3, Boris C. Kondratieff 4, W. Patrick McCafferty3, and John C. Morse5 Abstract - Great Smoky Mountains National Park (GSMNP), situated on the moun- tainous border of North Carolina and Tennessee, is recognized as one of the most highly diverse protected areas in the temperate region. In order to provide baseline data for the scientifi c management of GSMNP, an All Taxa Biodiversity Inventory (ATBI) was initiated in 1998. Among the goals of the ATBI are to discover the identity and distribution of as many as possible of the species of life that occur in GSMNP. The authors have concentrated on the orders of completely aquatic insects other than odonates. We examined or utilized others’ records of more than 53,600 adult and 78,000 immature insects from 545 locations. At present, 469 species are known from GSMNP, including 120 species of Ephemeroptera (mayfl ies), 111 spe- cies of Plecoptera (stonefl ies), 7 species of Megaloptera (dobsonfl ies, fi shfl ies, and alderfl ies), and 231 species of Trichoptera (caddisfl ies). Included in this total are 10 species new to science discovered since the ATBI began. Introduction Great Smoky Mountains National Park (GSMNP) is situated on the border of North Carolina and Tennessee and is comprised of 221,000 ha. GSMNP is recognized as one of the most diverse protected areas in the temperate region (Nichols and Langdon 2007).
    [Show full text]
  • Ohio USA Stoneflies (Insecta, Plecoptera): Species Richness
    A peer-reviewed open-access journal ZooKeys 178:Ohio 1–26 (2012)USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution... 1 doi: 10.3897/zookeys.178.2616 RESEARCH ARTICLE www.zookeys.org Launched to accelerate biodiversity research Ohio USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states R. Edward DeWalt1, Yong Cao1, Tari Tweddale1, Scott A. Grubbs2, Leon Hinz1, Massimo Pessino1, Jason L. Robinson1 1 University of Illinois, Prairie Research Institute, Illinois Natural History Survey, 1816 S Oak St., Cham- paign, IL 61820 2 Western Kentucky University, Department of Biology and Center for Biodiversity Studies, Thompson Complex North Wing 107, Bowling Green, KY 42101 Corresponding author: R. Edward DeWalt ([email protected].) Academic editor: C. Geraci | Received 31 December 2011 | Accepted 19 March 2012 | Published 29 March 2012 Citation: DeWalt RE, Cao Y, Tweddale T, Grubbs SA, Hinz L, Pessino M, Robinson JL (2012) Ohio USA stoneflies (Insecta, Plecoptera): species richness estimation, distribution of functional niche traits, drainage affiliations, and relationships to other states. ZooKeys 178: 1–26. doi: 10.3897/zookeys.178.2616 Abstract Ohio is an eastern USA state that historically was >70% covered in upland and mixed coniferous for- est; about 60% of it glaciated by the Wisconsinan glacial episode. Its stonefly fauna has been studied in piecemeal fashion until now. The assemblage of Ohio stoneflies was assessed from over 4,000 records accumulated from 18 institutions, new collections, and trusted literature sources. Species richness totaled 102 with estimators Chao2 and ICE Mean predicting 105.6 and 106.4, respectively.
    [Show full text]
  • Effects of a Labile Carbon Addition on a North Carolina
    EFFECTS OF A LABILE CARBON ADDITION ON A NORTH CAROLINA HEADWATER STREAM FOOD WEB By Heidi S. Wilcox (Under the direction of Dr. J.B. Wallace) ABSTRACT We added dextrose during two eight-week periods (summer and autumn) to a headwater stream in North Carolina, U.S.A. Bacterial densities were significantly higher in the treatment reach during both additions. Increased microbial growth led to higher respiration rates on leaf disks and a three-fold increase in instantaneous growth rates of Chironomidae larvae. Collector-gatherer and predator abundance and biomass in bedrock habitats increased significantly during the summer addition. No functional feeding group in bedrock habitat increased in abundance during the autumn addition; however, shredder biomass increased significantly. In mixed substrates, shredder abundance and scraper biomass increased significantly during the autumn addition. All functional feeding groups assimilated isotopically distinct dextrose during additions. Assimilation of dextrose, measured by stable isotope analysis, and increases in insect abundance and biomass suggest that the added carbon was an important food resource, particularly for consumers of heterotrophic organisms and biofilm. INDEX WORDS: Aquatic insects, organic enrichment, carbon isotopes, streams. EFFECTS OF A LABILE CARBON ADDITION ON A NORTH CAROLINA HEADWATER STREAM FOOD WEB by Heidi S. Wilcox B.S San Francisco State University, 2000 A Thesis submitted to the Graduate Faculty of The University of Georgia in Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE ATHENS, GEORGIA 2003 2003 Heidi S. Wilcox All Rights Reserved EFFECTS OF A LABILE CARBON ADDITION ON A NORTH CAROLINA HEADWATER STREAM FOOD WEB By HEIDI S.
    [Show full text]